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We study the Loschmidt echo for quenches in open one-dimensional lattice models with symmetry protected
topological phases. For quenches where dynamical quantum phase transitions do occur we find that cusps in
the bulk return rate at critical times tc are associated with sudden changes in the boundary contribution. For our
main example, the Su-Schrieffer-Heeger model, we show that these sudden changes are related to the periodical
appearance of two eigenvalues close to zero in the dynamical Loschmidt matrix. We demonstrate, furthermore,
that the structure of the Loschmidt spectrum is linked to the periodic creation of long-range entanglement between
the edges of the system.
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I. INTRODUCTION

Two important concepts in modern condensed matter
physics are topological and dynamical phase transitions. These
two ideas differ from the traditional phenomenology of phase
transitions which can be traced back to Landau [1]. Key to
the Landau classification of phase transitions is the concept
of order parameters indicative of symmetries broken across
phase boundaries. Contrarily, topological phase transitions
separate regions with the same symmetries but with different
topological properties of the ground state. Dynamical phase
transitions—rather than focusing on the nonanalyticities which
occur in the derivatives of the free energy—concern nonanalyt-
icities which occur in dynamical quantities after a perturbation
of the system.

The definition of a dynamical phase transition which we
want to follow here is based on the Loschmidt echo |L(t)|2,
which is the modulus squared of the Loschmidt amplitude [2]

L(t) = 〈�0|e−iH1t |�0〉. (1)

Here |�0〉, the ground state of a Hamiltonian H0, is the
initial state of the system before the quench, and H1 is the
time-independent Hamiltonian which induces the unitary time
evolution of the system. The Loschmidt echo can be viewed
as a “partition function” with fixed boundaries. Similar to
the canonical partition function [3,4] there are “Fisher zeros”
for complex times t with the Loschmidt echo vanishing if
the Fisher zeros are real or approach the real axis in the
thermodynamic limit. For the Ising model in a transverse
field the authors of Ref. [2] have shown that the Loschmidt
echo becomes zero at real critical times tc only for quenches
across the critical point, i.e., in cases where the initial state
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is the ground state of the Hamiltonian on one side of the
transition while the time-evolving Hamiltonian belongs to the
other phase. In this case there is therefore a direct connection
between the equilibrium and the dynamical phase transition.
In recent years, dynamical phase transitions have also been
studied in a number of other models [5–12]. Contrary to the
transverse Ising model it has been found that, in general, there
is no connection between equilibrium and dynamical phase
transitions: crossing an equilibrium phase transition does not
necessarily lead to zeros at real times in the Loschmidt echo
while such zeros can also occur for quenches within the same
phase [8,13]. A special case is that of quenches in Gaussian
models with topological order. Here it has been shown that,
under certain conditions, a quench across a topological phase
transition is guaranteed to lead to dynamical phase transitions
while the opposite is not true [14]. The phase of the Loschmidt
echo can then be used to define a dynamical topological order
parameter which changes at critical times tc [15].

A natural question to ask which we want to address in this
paper is then, is there a dynamical analog to the bulk-boundary
correspondence of equilibrium topological phase transitions?
Our paper is organized as follows. In Sec. II we introduce
the class of models we will discuss. In Sec. III we review
known results for the Loschmidt echo and the return rate in the
periodic case. We then present results of numerical calculations
of the return rate for open systems in Sec. IV. To understand
the origins of the observed sudden changes of the boundary
contribution to the return rate at dynamical phase transitions
we investigate the dynamical entanglement structure in Sec. V.
Our results are summarized in Sec. VI.

II. MODELS

We focus here on one-dimensional (1D) models with
symmetry protected topological (SPT) phases. Following the
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tenfold way symmetry classification [16] we have three sym-
metry classes with ground states labeled by a Z topological
invariant AIII, BDI, and CII; and two labeled by a Z2

topological invariant D, and DIII. The unitary particle-hole
operator C for BDI, D, and DIII obeys {C,H } = 0 with H

the Hamiltonian of the system and C2 = 1. The other two
symmetries we require are the time-reversal symmetries T±
satisfying T 2

± = ±1. They must also anticommute with C. BDI
has additionally [T+,H ] = 0 and a Z invariant in 1D. DIII has
additionally [T−,H ] = 0 and a Z2 invariant in 1D. As T− is
the time-reversal (TR) symmetry of the electrons, DIII has
Kramers pairs. D, with a Z2 invariant in 1D, has no additional
symmetry beyond particle-hole. If both T± symmetries are
present the system is best thought of as in BDI with an
additional TR symmetry protecting the Kramers pairs and this
will have a Z invariant in 1D [16,17].

We will use examples principally in the BDI class, which
possesses both a unitary “time-reversal symmetry” and a
particle-hole symmetry. It therefore also possesses chiral
or sublattice symmetry. The topological superconductors in
which Majorana bound states are sought all belong to either
BDI, D, or DIII [18–23].

For concreteness we consider 1D Hamiltonians, which after
a Fourier transform on a periodic lattice are of the form

H =
∑

k

�
†
kH(k)�k with H(k) = dk · τ , (2)

where τ is the vector of Pauli matrices acting in some subspace
and �k are the appropriate operators for that subspace. This
will be particle-hole space for examples such as the Kitaev
chain, which is a topological superconductor, or a unit-cell
subspace for the Su-Schrieffer-Heeger (SSH) chain. These two
examples will be those we focus on and we will introduce
them in more detail below. In general dk = (dx

k ,d
y

k ,dz
k ), and

diagonalizing dk · τ one can find d̃k · τ̃ with d̃k = (0,0,εk) and
such Hamiltonians have pairs of eigenenergies ±εk , a result of
the particle-hole symmetry of the Hamiltonians we consider.

A. SSH model

The first example we will consider is the SSH model with
open or periodic boundary conditions,

H = −J
∑

j

[(1 + δ eiπj )c†j cj+1 + H.c.]. (3)

Here J is the nearest-neighbor hopping amplitude, δ is the
dimerization, and c

†
j is the creation operator on site j . For

periodic boundary conditions the sum is taken up to site
N and cN+1 = c1 while the sum is taken up to N − 1 for
open boundary conditions. The main reason to consider this
specific model first is that an exact solution for open boundary
conditions exists [24,25] which depends on a set of parameters
determined by nonlinear equations. As a result, numerically
accurate data for very large open systems can be easily
obtained. The system is topologically nontrivial for δ > 0.
The particle-hole symmetry C is then ψj → iψ

†
j and T+ is

ψj → (−1)jψ†
j . Note that the phase of C must be fixed such

that {C,T+} = 0.
For periodic boundary conditions the Hamiltonian can be

easily diagonalized. First after a Fourier transform and a

convenient rotation,

�
†
k =

√
2

N

N/2∑
j=1

ei2kj

(
1 0
0 ei2k

) (
c2j−1

c2j

)
︸ ︷︷ ︸

=�j

, (4)

the Hamiltonian takes the form (2) with

dk = (−2J cos[k],2Jδ sin[k],0), (5)

which can be readily diagonalized. The momenta are k =
2πn/N with n = 1,2, . . . ,N/2. The particle-hole symmetry
is now C = eiπ/2τ xK̂ and T+ = K̂ , where K̂ is the complex
conjugation operator.

Although this model has a Z winding number, the values
are nevertheless confined to be either 0 or 1. Extensions of this
model in the same symmetry class but with a higher winding
number are however possible [26].

B. Long-range Kitaev chain

As our second example we will consider the Kitaev chain
of M sites with long-range hopping terms [18,27],

H =
∑
i,j

�
†
i (	|i−j |iτ y − J|i−j |τ z)�j+1 + H.c.

−μ
∑

j

�
†
jτ

z�j , (6)

with open or periodic boundary conditions. For the periodic
case we have �M+1 = �1. The operators in particle-hole space
are given by �

†
j = (c†j ,cj ), and c

(†)
j annihilates (creates) a

spinless fermionic particle at a site j . In this case we have
again C = eiπ/2τ xK̂ , T+ = K̂ , and a Fourier transform brings
the Hamiltonian into the form of Eq. (2) where �

†
k = (c†k,c−k)

and

dk =
3∑

m=1

(−2Jm cos[mk] − μ/3,2	m sin[mk],0). (7)

The long-range hopping has been truncated here at a distance
of 3 sites and we define �J = (J1,J2,J3) and �	 = (	1,	2,	3).
Note that contrary to the SSH model phases with higher
winding numbers in Z exist, allowing for a more general
investigation of quenches between topological phases with
different invariants, and therefore also different numbers of
boundary states. The momenta are k = 2πn/M with n =
1,2, . . . ,M and the total system size is N = 2M .

III. THE LOSCHMIDT ECHO AND RETURN RATE

In this section we will define the quantities studied through-
out the following, and review results for periodic boundary
conditions. The initial state |�0〉 in Eq. (1) is the many-
body ground state of the initial Hamiltonian H0 before the
quench. The unitary time evolution is then determined by
the Hamiltonian H1. The Loschmidt echo in a translationally
invariant system of the form of Eq. (2) can be easily calculated
[28] as the momentum k remains a good quantum number
during the quench. One finds

L(t) =
∏
k

[
cos

(
ε1
k t

) + id̂0
k · d̂1

k sin
(
ε1
k t

)]
, (8)
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with d̂0,1
k = d0,1

k /
√

d0,1
k · d0,1

k and d0,1
k being the parameter

vector in the Hamiltonian (2) before and after the quench,
respectively. The product in k is over all filled states of the
lower band.

More generally, for any free fermion system the Loschmidt
echo can always be obtained from the single-particle correla-
tion matrix defined by

Cij = 〈�0|�†
i �j |�0〉. (9)

Here i and j run over all lattice sites. The Loschmidt amplitude
in terms of the correlation matrix is given by [29–31]

L(t) = det M ≡ det[1 − C + Cei H1t ]. (10)

Here H1 is the Hamiltonian matrix written in the same basis as
C. We will use (10) to calculate L(t) in the open boundary case
and call M the Loschmidt matrix in the following. Equation
(8) is easily recovered for periodic boundary conditions by
transforming to momentum space and by using the eigenbasis
of the initial (momentum-resolved) Hamiltonian.

In a many-body system we expect, in general, an orthogo-
nality catastrophe: the overlap between the initial state and the
states in the time evolution will become exponentially small in
system size N . It is therefore useful to define the return rate as

l(t) = − 1

N
ln |L(t)|. (11)

The nonanalytic points of the return rate are determined by the
zeros of the Loschmidt echo [2]. Fisher zeros in the complex
plane occur in the translationally invariant case at times [14]

tn(k) = π

ε1
k

(
n + 1

2

)
+ i

ε1
k

tanh−1
(
d̂0

k · d̂1
k

)
(12)

with n being an integer. These zeros lie on the real axis and
therefore give rise to nonanalytic behavior for the return rate
at critical times

tn = π

2ε1
k∗

(2n − 1), where n ∈ Z, (13)

if a critical momentum k∗ exists with

d̂0
k∗ · d̂1

k∗ = 0. (14)

This is the condition for the vanishing of the imaginary part
in Eq. (12). We introduce the critical time scale tc = π/(2ε1

k∗ ).
Where multiple critical times exist, we take the smallest critical
time to be the time scale tc.

IV. BOUNDARY CONTRIBUTIONS TO THE RETURN RATE

In this study we are interested in the boundary contributions
to the return rate (11) for systems with open boundaries. In the
large-N limit we can expand the return rate as

l(t) ∼ l0(t) + lB(t)

N
. (15)

Here l0 is the bulk contribution which is equivalent to the
return rate in the thermodynamic limit for periodic boundary
conditions. lB is the boundary contribution which contains
information about the topologically protected edge states, as
we will demonstrate in the following.

0 1 2 3 4 5 6
t/t c

0

0.1

0.2

0.3

0.4

l 0(t)

|δ|=0.3

|δ|=0.95

FIG. 1. Bulk contributions for symmetric quenches δ → −δ in
the SSH model for δ = 0.3 and δ = 0.95.

A. Finite-size scaling

The most straightforward approach to find lB(t) is a nu-
merical calculation of the correlation matrix (9) followed by
a finite-size scaling analysis of the return rate, Eq. (15). We
will discuss the results of such an approach here for both our
examples, the SSH and the long-range Kitaev chain.

1. SSH chain

We start with the SSH chain where the semianalytical
solution for open boundary conditions allows one to obtain
highly accurate results for very large systems. We consider
quenches between the topologically ordered phase with edge
states (δ > 0) and the topologically trivial phase without edge
states (δ < 0) in the half-filled case. If we perform a symmetric
quench δ → −δ then the direction of the quench does not mat-
ter for the bulk contribution l0(t) shown in Fig. 1 as is obvious
from Eq. (8). In both examples cusps in the bulk return rate are
present at the critical times determined by Eqs. (13) and (14).

The direction of the quench does, however, strongly affect
the boundary contribution lB(t). For a quench from the trivial
into the topological phase we find a boundary contribution
lB(t) which shows large jumps at the critical times; see Fig. 2.
For a quench from the topological into the trivial phase
we also observe jumps in lB(t) at tc as shown in Fig. 3;
however, the jumps are more than two orders of magnitude

0 1 2 3 4 5 6
t/t c

0

20

40

60

80

100

l B
(t) |δ|=0.3

|δ|=0.95

FIG. 2. Boundary contribution to the return rate lB (t) for sym-
metric quenches from the trivial into the topological phase in the
SSH model. lB (t) is extracted from a 1/N scaling analysis of chains
of up to N = 2200 sites.
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t/t c
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(t)
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l B
(t)

|δ|=0.3

|δ|=0.95
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FIG. 3. Boundary contribution to the return rate lB (t) for sym-
metric quenches from the topological into the trivial phase in the
SSH model. lB (t) is extracted from a 1/N scaling analysis of chains
of up to N = 2200 sites. Note the different scale of lB (t) compared
to the quenches in Fig. 2. The top panel shows a close-up of lB (t) for
the quench from δ = 0.95 to δ = −0.95.

smaller than for the quench in the opposite direction. The
data in the two figures clearly point to a bulk-boundary
correspondence: At the same critical times where the bulk
contribution shows cusps and the bulk dynamical winding
number changes [15], the boundary contribution also shows
discontinuities. The dependence on the direction of the quench
furthermore suggests that the boundary contribution lB(t) is
strongly affected by the presence or absence of symmetry
protected edge states in the final Hamiltonian. That the bound-
ary contribution is directly related to the edge states can be
seen from the time-dependent occupation of these states; see
Fig. 4. For a system with N/2 spinless fermions in the
topological phase, one of the edge modes is filled at time t = 0
while the other one is empty. At the critical times tc, where the
cusps in l0(t) occur, both edge modes are approximately half
filled. In the remainder of the paper we will investigate the
relation between the edge modes and the singularities in the
Loschmidt echo in more detail.

2. Long-range Kitaev chain

Before doing so, we will first present numerical results for
lB(t) for the other model system we study here, the long-range

0 1 2 3 4 5 6
t/tc

0

0.5

1

n

FIG. 4. Occupation of the edge modes for a symmetric quench at
|δ| = 0.95 from the topological to the trivial phase for a system of
size N = 80 in the SSH model.
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0.1

0.15

l 0(t)

(a)

(b)

FIG. 5. Bulk return rate for quenches in the long-range Kitaev
model from (a) νw = 1 to νw = 3 and (b) νw = 1 to νw = −1. The
gray and dashed red lines show the positions of the critical times.

Kitaev chain. Contrary to the SSH model, this chain has
different topological phases characterized by an integer wind-
ing number νw. Dynamical phase transitions are expected for
any quench between phases with different winding numbers.
In Fig. 5 the bulk return rate is shown for two examples.
In the case shown in Fig. 5(a) the quench is from νw = 1
with �J = (1,−2,2), μ = 2, and �	 = (1.3,−0.6,0.6) to νw = 3
with �J = (1,−2,2), μ = 0.1, and �	 = (0.45,−0.9,1.35). Two
critical momenta exist leading to two distinct critical times at
which dynamical phase transitions (DPTs) occur. In Fig. 5(b)
a quench from νw = 1 with �J = (1,−2,−2), μ = 3, and �	 =
(1.3,−0.6,0.6) to νw = −1 with �J = (1,−2,−2), μ = 3, and
�	 = −(1.3,−0.6,0.6) is considered. Cusps in the return rate
are again clearly visible, demonstrating that DPTs also occur
for quenches where only the sign of the winding number
changes.

By a finite-size scaling analysis of chains up to N = 1600,
we have also extracted the boundary contribution. As an
example we show lB(t) for the same quench as in Fig. 5(a)
in Fig. 6(a), and for the reverse quench in Fig. 6(b). Note
that contrary to the SSH model an analytic solution for the
eigensystem is not known so that we cannot increase the
system size till a clear scaling also for times very close
to tc emerges. Finite-size corrections are still present near
DPTs. Furthermore, the edge states have energies which are
exponentially close to zero so that an exact diagonalization
in multiprecision is required. While the obtained data are
therefore not as accurate as for the SSH chain, we nevertheless
observe a behavior which is qualitatively similar. At the critical
times tc the boundary contribution shows jumps. However, here
the jumps are of similar magnitude for both quench directions.

B. Loschmidt eigenvalues

In order to understand the origin of the discontinuous
boundary contribution we next investigate the spectrum of the
dynamical Loschmidt matrix M defined in Eq. (10).

We concentrate first on symmetric quenches in the SSH
model for large dimerizations δ where the structure of the
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t/tc

0

0.5

1

l B
(t)

(a)

(b)

FIG. 6. Boundary contribution lB (t) in the long-range Kitaev
model for (a) the same quench as in Fig. 5(a) from νw = 1 to νw = 3,
and (b) the reverse quench from νw = 3 to νw = 1. lB (t) is extracted
from a 1/N scaling analysis of chains of up to N = 1600. The gray
and dashed red lines show the positions of the critical times.

spectrum is particularly simple. In Fig. 7 the spectrum of the
matrix M for a quench from the trivial into the topological
phase is shown. At the first critical time tc there are two
eigenvalues λ1,2 whose absolute values become exponentially
small in system size. Between tc and 3tc these eigenvalues stay
close to zero and this structure repeats itself in time. At tc, the
argument of the eigenvalues also changes abruptly from zero
to ±π . These two eigenvalues are related to the edges of the
system as a comparison to the case with periodic boundary
shows where they are absent.

The return rate in terms of the eigenvalues λi of the matrix
M is given by

l(t) = − 1

N

N∑
j=1

ln |λj |. (16)

0 1 2 3 4 5 6
t/tc

-1

-0.5

0

0.5

1

|λ
j|

-1

-0.5

0

0.5

1

A
rg

[λ
j]/π

FIG. 7. Absolute value (black circles) and argument (green dia-
monds) of the eigenvalues of the matrix M for a symmetric quench
at |δ| = 0.95 from the trivial into the topological phase for a system
of size N = 80 in the SSH model.
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t/t c
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0.1

0.15
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Λ
(t)
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0.1

0.15

0.2

l(t
)-

l 0(t)

FIG. 8. The boundary contribution to the return rate l(t) − l0(t)
(red circles) compared to � (green triangles), the contribution to the
return rate from the two eigenvalues which are close to zero for t ∈
[tc,3tc]; see Fig. 7. Shown for a system of size N = 500 in the SSH
model.

We can isolate the contribution to l(t) from λ1,2, the two
eigenvalues which periodically approach zero:

� ≡ − 1

N
ln |λ1λ2|. (17)

At a particular system size N , � reproduces the same behavior
as the finite-size boundary contribution which we define as
l(t) − l0(t); see Fig. 8. It is the principal source of the large
boundary contribution for t ∈ [tc,3tc].

At a DPT the system thus not only changes back and forth
between the trivial phase with dynamical winding number
ν = 0 and the topological one with ν = 1 [15]; there is also—at
the same time—a transition in the edge degrees of freedom.
The presence or absence of a pair of zero eigenvalues of
the dynamical matrix M can serve as an equivalent order
parameter to the bulk winding number, establishing a concrete
bulk-boundary correspondence in this case.

For the quench from the topological to the trivial phase we
obtain a slightly different picture. While at the critical times
there is still a pair of eigenvalues which approach zero, the
eigenvalues no longer remain close to zero for t ∈ [tc,3tc];
see Fig. 9. The direction of the quench can thus clearly
be distinguished from the spectrum of M. From the almost
symmetric spectrum around tc for the topological to trivial

0 1 2 3 4 5 6
t/tc

-1

-0.5

0

0.5

1

|λ
j|

-1

-0.5

0

0.5

1
A

rg
[λ

j]/π

FIG. 9. Absolute value (black circles) and argument (green dia-
monds) of the eigenvalues of the matrix M for a symmetric quench
at |δ| = 0.95 from the topological into the trivial phase for a system
of size N = 80 in the SSH model.
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0
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1

|λ
j|

(a)

(b)

0 1 2 3
t/tc

0

0.5|λ
j|

FIG. 10. Absolute value (black circles) of the smallest 20 eigen-
values of the matrix M for a symmetric quench at |δ| = 0.3 from
(a) the trivial to the topological phase, and (b) vice versa, for a system
of size N = 160 in the SSH model.

quench it is in particular clear that the boundary contribution
is of similar magnitude on both sides of the transition consistent
with the scaling results shown in Fig. 3.

So far we have investigated quenches for large dimerizations
|δ| � 1 where the system is almost perfectly dimerized and the
Loschmidt spectrum is particularly simple. A natural question
to ask is whether or not the spectrum is still useful to detect if
edge states are present in the final Hamiltonian for smaller
dimerizations. To this end, we present in Fig. 10 data for
symmetric quenches at |δ| = 0.3. While the spectrum becomes
more complex, the direction of the quench is still obvious. In
particular, a pair of eigenvalues close to zero for t ∈ [tc,3tc]
persists for the trivial to topological quench.

In the long-range Kitaev model where we are able to
consider quenches between more general winding numbers a
similar structure is seen in the spectrum of M; see Fig. 11.
Although finite-size effects are still present, it is already
obvious that the results are again very different for the two
quench directions. Note that for the quench from νw = 1 to
νw = 3 the time-evolving Hamiltonian, H1, has two additional
pairs of edge states, compared to the initial Hamiltonian, H0.
For the quench where the number of edge states increases
[Fig. 11(a)] we find, in particular, an extended time interval
between critical times where 2 or 4 eigenvalues are zero. In
fact two eigenvalues are close to zero for t ∈ [tc,3tc] and two
different eigenvalues are close to zero for t ∈ [t ′c,3t ′c], where
t ′c is the larger of the two critical times for this quench. For
the opposite direction, on the other hand, we find a roughly
symmetric structure around the first two critical times very
similar to the SSH case. Note that finite-size effects strongly
influence the results for t/tc � 4. Compatible with the data
for the SSH and the Kitaev chain is thus the idea that for the
boundary contribution lB(t) and for the Loschmidt spectrum,
spec(M), it is important how many more or fewer edge states
are present for H1 as compared to H0.

0 1 2 3 4
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0.4

0.6

0.8

|λ
j|

0 1 2 3 4
t/tc
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0.8

|λ
j|

(a)

(b)

FIG. 11. Absolute value of the smallest four eigenvalues of the
matrix M for the quenches in Fig. 6 for the long-range Kitaev model,
for (a) νw = 1 to νw = 3, and (b) vice versa, for a system of size
N = 600. Eigenvalues are colored as an aid to the eye.

V. LONG-RANGE ENTANGLEMENT

We have established numerically a bulk-boundary corre-
spondence and could show that the spectrum of M contains
information about the edge states. However, the spectrum of
this matrix is not an easily measurable quantity and also does
not provide a physical picture about what happens to the edge
states during the time evolution. In this section we therefore
want to connect the changes on the Loschmidt echo with the
dynamical entanglement properties of the system. To this end,
we consider the entanglement between the two halves of an
open chain with an even number of sites. The entanglement
entropy is defined as the von Neumann entropy of a reduced
density matrix

Sent(t) = − Tr{ρA(t) ln ρA(t)} (18)
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FIG. 12. Sent(t) between two halves of the system for a symmetric
quench at |δ| = 0.95 in the SSH model from the trivial to the
topological phase with N = 32.
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t=0 t=tc

t=2tc t=3tc

FIG. 13. Time evolution of two-point correlations for the same
quench as in Fig. 12 in the SSH model for a system with N = 16
sites and times t = 0,tc,2tc,3tc. The opacity indicates the strength of
the correlation and the dashed gray line is the cut between the two
subsystems.

with ρA(t) = TrB |�(t)〉〈�(t)| and |�(t)〉 = e−iH1t |�0〉 being
the time-evolved state. The system has been divided up into
two blocks A and B of equal size. Here we will focus on the
SSH model.

For a Gaussian model the entanglement between a subsys-
tem and the rest can be calculated from the correlation matrix
C(t) defined in Eq. (9) with the now time-dependent two-point
correlations restricted to lattice sites within the subsystem [32].
The entanglement entropy is then given by

Sent = −
∑

j

[ηj ln ηj + (1 − ηj ) ln(1 − ηj )] (19)

with ηj being the eigenvalues of C(t).
In Fig. 12 the entanglement entropy for a symmetric quench

from the trivial into the topological phase at large |δ| is shown.
Sent(t) is showing oscillations with local maxima located ex-
actly at the DPTs. For short times, in particular, Sent(tc) ≈ 2 ln 2
while at longer times the entanglement entropy on average
starts to increase linearly as is expected for a global quench.
These observations can be explained as follows: In the strongly
dimerized case, each dimer bond between the two subsystems
is in a fully entangled state, (|10〉 ± |01〉)/√2, and contributes
ln 2 to the entanglement entropy. The data in Fig. 12 therefore
indicate that there are two dimer bonds between the subsystems
at the critical times (2n + 1)tc. At times 2ntc, on the other
hand, the two subsystems are almost completely disentangled.
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FIG. 14. Sent(t) between two halves of the system for a symmetric
quench at |δ| = 0.95 in the SSH model from the topological to the
trivial phase with N = 32.

t=0 t=tc

t=2tc t=3tc

FIG. 15. Time evolution of two-point correlations for the same
quench as in Fig. 14 in the SSH model for a system with N = 16
sites and times t = 0,tc,2tc,3tc. The opacity indicates the strength
of the correlation and the dashed gray line is the cut between the
two subsystems. Long-range entanglement between the edges of the
system is present at all times.

This picture is confirmed by directly considering the two-point
correlations in the system as a function of time; see Fig. 13. The
system starts in a topologically trivial, strongly dimerized state
|�0〉 = |�(t = 0)〉 and thus Sent(t = 0) ≈ 0. At the critical
time tc, two dimer bonds have formed which cross the cut
between the subsystems leading to a Sent(tc) ≈ 2 ln 2. For short
times, the system oscillates between these two configurations
with other correlations slowly starting to build up and finally
leading to a linearly increasing entanglement entropy. Note
that for a finite system this linear increase will be cut off at
Smax

ent = N
2 ln 2.

For the quench in the opposite direction, shown in Fig. 14,
Sent also shows oscillations with a frequency set by the critical
time tc. In this case Sent(t = 0) ≈ 2 ln 2 and for long times
the entanglement entropy shows again the expected linear
increase. To understand this behavior it is again instructive to
consider the time evolution of the two-point correlations; see
Fig. 15. At time t = 0 a nearest-neighbor dimer and a dimer
between the two edge sites is cut. Such long-range entangle-
ment between the boundaries of an open SSH chain has been
discussed previously in Ref. [33]. Interestingly, the long-range
entanglement persists at all times during the unitary time
evolution despite the strong quench perturbing the system.
While at times 2ntc the two edge sites are strongly entangled,
the long-range entanglement moves to the sites one removed
from the edge for times (2n + 1)tc; see Fig. 15. The different
entanglement structure in the two cases explains the oscilla-
tions seen in the entanglement entropy shown in Fig. 14 while
the slow buildup of additional correlations explains the linear
increase of Sent(t) at longer times.

VI. CONCLUSIONS

In this paper we have studied dynamical phase transitions
in open chains with symmetry protected topological phases.
Specifically, we have concentrated on two examples: the SSH
chain and a long-range Kitaev model. In both cases we have
shown that for a quench between different topological phases
there is not only a cusp in the bulk return rate but also a jump
in the boundary (1/N ) contribution. In contrast to the bulk
part, the boundary return rate lB(t) is sensitive to the direction
of the quench. For the SSH model, in particular, we found
that the jump in lB(t) at a DPT is orders of magnitude larger
for a quench from the trivial to the topological phase than
in the other direction. A clear qualitative difference between
the quench directions can also be seen in the Loschmidt
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eigenvalue spectrum: While for the quench into the topological
phase two eigenvalues which behave very differently on both
sites of the DPT are largely responsible for the boundary
contribution, the spectrum near a DPT is almost symmetric
for a quench in the opposite direction.

The critical times tc at which DPTs occur are also clearly
visible as oscillations in the entanglement entropy between
two halves of the SSH chain. We found that these oscillations
can be explained by the time-dependent structure of two-
point correlations. At short times and large dimerizations the
system oscillates between two configurations of correlations.
Starting from the topological phase we discussed, in particular,
the long-range entanglement which is transferred from the
boundary sites onto the sites one removed from the boundary

going from times 2ntc to (2n + 1)tc. Quite surprisingly, the
long-range entanglement in this case remains stable despite
the fact that the quench introduces a large perturbation to the
system.
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