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We present a general framework to study quantum disordered systems in the context of the Kikuchi’s cluster
variational method (CVM). The method relies in the solution of message passing-like equations for single instances
or in the iterative solution of complex population dynamic algorithms for an average case scenario. We first show
how a standard application of the Kikuchi’s CVM can be easily translated to message passing equations for
specific instances of the disordered system. We then present an “ad hoc” extension of these equations to a
population dynamic algorithm representing an average case scenario. At the Bethe level, these equations are
equivalent to the dynamic population equations that can be derived from a proper cavity ansatz. However, at the
plaquette approximation, the interpretation is more subtle and we discuss it taking also into account previous
results in classical disordered models. Moreover, we develop a formalism to properly deal with the average case
scenario using a replica-symmetric ansatz within this CVM for quantum disordered systems. Finally, we present
and discuss numerical solutions of the different approximations for the quantum transverse Ising model and the
quantum random field Ising model in two-dimensional lattices.
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I. INTRODUCTION

Exact solutions of problems involving many interacting
particles in finite dimensional systems are very difficult to find.
This is particularly true in specific complex situations where
disorder is present, like in the classical Edward-Anderson
model, or the quantum Anderson transition [1]. When dealing
with classical systems, a very successful approach in the last
few years has been the well-known cavity method [2–4], which
is exact for models designed on a tree or a random graph.
Moreover, it is possible to show that the method corresponds to
the Bethe approximation of the free energy for a model defined
in a finite dimensional lattice [5,6], and that it is intimately
connected with message passing algorithms in single instances
of a specific problem [7–10].

Although the success of the method in many models is
undisputed [11], it took some time to understand how to
improve over this Bethe approximation for a finite dimensional
disordered system [5,6,12–17]. The idea behind most of these
improvements is based on a cluster variational method [18],
that applied to specific instances of the problem usually leads to
what is called generalized belief propagation (GBP) algorithm
[19–21]. However, it is also possible to use the same approach
to the replicated free energy and then to choose the RS ansatz
or the more general Parisi’s hierarchical ansatz to send the
number of replicas n to zero [12,21,22]. Remarkably, also in
this more general approximation one encounters a connection
between average case predictions and the behavior of message
passing algorithms in single instances of the same problem
[21–24].

For quantum disordered models such a comprehension
is still lacking, and even the simpler quantum models on
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random graphs require effort and are actively studied. A clear
breakthrough in that direction was the use in Ref. [25] of the
path-integral representation of quantum spin models that was
suitable to derive a closed equation where the histories of the
spins constitute the proper variables to iterate. As in classical
systems, the method is exact in trees, however, it is much more
demanding from the computational point of view. Because
of its clear connection with the cavity method in classical
systems, it is usually coined quantum cavity method. Somewhat
similar in spirit is the approach followed in Refs. [26–28]
where the quantum model is also defined in treelike structures
but is properly parametrized to simplify the solution of the
corresponding closed equation. The approach can also be
understood as a further approximation within the quantum
cavity method presented by Ref. [25].

Moreover, again within a Bethe approximation in
Refs. [29–31], the authors proposed a message-passing algo-
rithm to compute the Hamiltonian expectation of a quantum
disordered system. The technique rests on the use of an
appropriate trial wave function and the connection of quantum
expectations to average quantities in a classical system with
both local and global interactions. On the other hand, starting
from a more algorithmic point of view the authors in [32–
37] proposed different versions of what they called quantum
belief propagation (QBP) algorithm suitable also to be used in
single instances of disordered systems with treelike topology.
Here again approximations are unavoidable to guarantee a
polynomial performance of the algorithm.

These approaches, however, rest on Bethe-like models or
Bethe-like approximations to finite dimensional systems and
are difficult to extend to more general scenarios. Fortunately,
already Morita and Tanaka [38–42] developed a general ap-
proach to derive a set of self-consistent equations within a
cluster variational method formalism. However, as far as we
know, these equations were mainly studied in homogeneous
systems and only formally presented for disordered models.
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In this work, we first take profit of this derivation and the
parametrization done in Ref. [28] to study single instance
implementations of message passing algorithms for quantum
disordered systems at both the Bethe level and the plaquette
approximation. Moreover, inspired by previous results on
classical models [12,21,24], we propose a set of fixed point
equations to describe these quantum models without the
specification of the instance and compare both approaches.
At the Bethe level, these equations are a generalization of the
dynamic population equations already derived in Refs. [38,39].
At the plaquette level, to our knowledge, this is the first time
that these equations are presented for quantum models. Finally,
we present how to properly generalize the cluster variational
method for quantum disordered models within the RS ansatz in
an average case scenario. These approaches were tested in the
quantum Ising model in a transverse field and in the quantum
Ising model with a random field.

The rest of the work is organized in the following way.
In the next section, we present the models used to test the
different approximations. This will make clear the kind of
models of interest and help to simplify the notation below.
Then we will present the cluster variational method in the
form derived by Morita and Tanaka [38–42] in their seminal
works but using a modern notation and connecting it to message
passing equations. We do this for the Bethe and the plaquette
approximation. Then we show how to derive similar equations
but taking into account the average over the disorder. Finally,
we present and discuss the numerical results of the different
approximations for the two models under study.

II. MODELS

The quantum Ising model in a transverse field is one of
the most basic models displaying quantum phase transitions.
Under this name, we identify a general class of models
described by the Hamiltonian:

Ĥ = −
∑
(ij )

Jij σ̂
x
i σ̂ x

j −
∑
(i)

hiσ̂
z
i , (1)

where the choice of the interacting pairs (i,j ) defines the under-
lying lattice. The properties of this system obviously depend
on the topological structure as well as on the distribution of
interaction constants Jij and local fields hi . Popular choices
for the fields and interactions include the ferromagnetic case,
where Jij = J is uniform and positive everywhere and the local
field is also uniform. More interesting is the so called random
field Ising model (RFIM) where interactions are homogeneous
too but local fields fluctuate from site to site according to a
given distribution Ph(hi).

In contrast to the classical version, the local fields applied
perpendicularly to the easy direction of the material included
in Eq. (1) result in noncommuting terms that make the
Hamiltonian difficult to diagonalize. The basis with a definite x

direction of each spin is no longer an eigenstate of the system,
meaning that transverse fields introduce quantum fluctuations
that can destroy any long range order for sufficiently strong
field intensities.

An exact solution for this kind of systems has been found
only for special cases, mainly mean field and fully connected
models or very particular treelike topologies such as a random

lattice [25]. For the latter, the quantum cavity method is the
most successful technique, but solutions for finite dimensional
lattices remain elusive, and this quantum cavity method repre-
sents just an approximation at the Bethe level of the actual
problem [26–28]. In finite dimensional lattices, a quantum
extension of the CVM is suitable because of the geometric
and periodic character of the structure. We follow this line
of thought in the next sections to obtain a description of
both, the ferromagnetic and RFIM at the level of the Bethe
(pairwise) and Kikuchi (plaquette) free energy approximations
for a bi-dimensional square lattice. Extensions to other lattice
models should follow straightforwardly.

III. QUANTUM CLUSTER VARIATIONAL METHOD:
SINGLE INSTANCES AND MESSAGE PASSING

The cluster variational method [5,6,18,38–44] relies on a
constrained minimization procedure of a region-based free
energy functional. As a result, it is possible to get estimates for
the local probability distributions of the system under study;
distributions that are otherwise hard to obtain because of the
well known difficulty of tracing the complete distribution over
the exponential number of allowable states in the large N limit.

For quantum problems, the equivalent of local probability
distributions are the projections of the full system density
matrix on the subset of variables of each region. With these
local density operators it is possible to write a region free
energy and repeat essentially the same classical minimization.

A. Bethe approximation

In the specific case of pairwise interactions at the Bethe
level, the variational parameters of the problem are the pair
and site density operators, denoted ρ̂

(ij )
l and ρ̂(i)

s , respectively.
The Bethe free energy FBethe is thus written in terms of these
operators as a sum of weighted contributions of all pairs and
sites of the interaction network or lattice:

FBethe =
∑
(ij )

clF
(ij )
l +

N∑
(i)

csF
(i)
s , (2)

where

F
(ij )
l = Tr

[
Ĥ(ij )

l ρ̂
(ij )
l

] + 1

β
Tr

[
ρ̂

(ij )
l ln ρ̂

(ij )
l

]
(3)

can be regarded as the free energy of the pair l ≡ (ij ) and the
other term represents the contribution of the individual sites:

F (i)
s = Tr

[
Ĥ(i)

s ρ̂(i)
s

] + 1

β
Tr

[
ρ̂(i)

s ln ρ̂(i)
s

]
. (4)

The prefactors cl and cs take integer values such that the
contribution of each variable to the total free energy is counted
only once. These are the two first terms in a cumulant expansion
of the total free energy [40]. For the 2D square lattice, cl = 1
and cs = −3. The minimization of FBethe is performed under a
set of constraints enforcing normalization and consistency of
the set of operators {ρ̂(ij )

l } and {ρ̂(i)
s }:

T r
[
ρ̂(i)

s

] = 1 ∀i, T r
[
ρ̂

(ij )
l

] = 1 ∀ l = (ij ),

ρ̂(i)
s = T rj

[
ρ̂

(ij )
l

] ∀l, ∀i ∈ l. (5)

We can use now Lagrange multipliers to put together the
objective function FBethe and the restrictions (5). Up to this
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point there is no particular relevance in the choice of the basis
for the Hilbert state space. In fact, the Lagrange function for
this problem can be nicely written in a basis-independent way:

L
[{

ρ̂
(ij )
l

}
,
{
ρ̂(i)

s

}] = FBethe +
N∑
(i)

αi

(
T r

[
ρ̂(i)

s

] − 1
)

+
∑
(ij )

αl

(
T r

[
ρ̂

(ij )
l

] − 1
)

+
N∑
(i)

∑
l∈P(i)

T r
[
λ̂l→i

(
ρ̂(i)

s − T rj

[
ρ̂

(ij )
l

])]
.

In this last equation (6), the different α’s are real numbers
and λ̂l→i are Hermitian operators acting on the single site
Hilbert spaces. The stationarity condition for L is obtained
by setting to zero the linear part in ε of the increment

δL ≡ L({ρ̂ + ε δρ̂}) − L({ρ̂}).
The resulting equations are the operator version of the belief

propagation (BP) [5] equations for the local distributions in
terms of the Lagrange multipliers:

ρ̂(i)
s = 1

Z (i)
s

exp −β

⎛
⎝Ĥ(i)

s − 1

cs − 1

∑
l∈P(i)

λ̂l→i

⎞
⎠, (6)

ρ̂
(ij )
l = 1

Z (ij )
l

exp −β
(
Ĥ(ij )

l − λ̂l→i − λ̂l→j

)
. (7)

It is customary to make the linear transformation

λ̂l→i =
∑

l′∈P(i)\l
ûl′→i , (8)

where the sum includes all links containing i, denoted as P(i),
except the link l itself. This substitution gives the more familiar
BP-like structure:

ρ̂(i)
s = 1

Z (i)
s

exp −β

⎛
⎝Ĥ(i)

s −
∑

l′∈P(i)

ûl′→i

⎞
⎠, (9)

ρ̂
(ij )
l = 1

Z (ij )
l

exp −β

⎛
⎝Ĥ(ij )

l −
∑

l′∈P(i)\l
ûl′→i −

∑
l′′∈P(j )\l

ûl′′→j

⎞
⎠.

(10)

The operator ûl→i represents the effective interaction of the
spin i with its neighbor j , both forming the link l = (ij ). Since
the site-site interaction in (1) is directed along the x direction
we chose to parametrize this operator as ûl→i ≡ ul→i σ̂

x
i . This

form resembles the projected cavity solution in Ref. [28]. In
this work, the authors make a recursive construction in a tree
to obtain a self-consistent equation for a cavity field. In our
parametrization, ul→i (without a hat) can be interpreted again
as a kind of cavity magnetic field, in the sense that it stands
for the interaction of spin i with the portion of the network
growing in the direction of link l.

The set of {ul→i} fields can be determined by a fixed
point iteration after plugging (9) and (10) into the consistency
conditions in (5). The procedure is analogous to the use of the

FIG. 1. Message passing in the Bethe approximation. To calculate
the field ul→i (green thick line) at time t + 1, we need to sample all the
fields acting on the link (red thin lines) at the previous iteration step, t .
Using the same external messages in red we can also determine ul→j

(not shown in the figure).

BP algorithm in the classical case. This time though, we have
a set of coupled operator equations:

1

Z (i)
s

exp −β

⎛
⎝Ĥ(i)

s − σ̂ x
i

∑
l′∈P(i)

ul′→i

⎞
⎠

= 1

Z (ij )
l

T rj

⎡
⎣exp −β

⎛
⎝Ĥ(ij )

l − σ̂ x
i

∑
l′∈P(i)\l

ul′→i

− σ̂ x
j

∑
l′′∈P(j )\l

ul′′→j

⎞
⎠

⎤
⎦, (11)

where the (local) partition functions ZR are fixed from the
normalization condition Tr[ρ̂R] = 1. Spin i, for example, will
have the following normalization:

Z (i)
s = Tr

⎡
⎣exp −β

⎛
⎝Ĥ(i)

s − σ̂ x
i

∑
l′∈P(i)

ul′→i

⎞
⎠

⎤
⎦. (12)

Then, instead of working in (11) directly with operators
that are hard to translate into actual numerical values, it is
convenient to write the consistency between them by matching
their moments. That is, we make use of the relation mx

i ≡
Tr[σ̂ x

i ρ̂(i)
s ] = Tr[σ̂ x

i ρ̂
(ij )
l ], a relation that is sufficient for our

purposes of finding ul→i .
The algorithmic procedure to solve for all the values in a

given lattice is the following. First, select at random a link
region l ≡ (ij ). Then, using all the ul′→i and ul′′→j acting on
each one of the spins from outside l, form the local density
operator ρ̂

(ij )
l and find the magnetization of spin i, mx

i . Now
focus on the expression for ρ̂(i)

s . All cavity fields in the exponent
were used in the link equation except precisely ul→i , the cavity
field of link l on spin i. Its value is now found numerically as the
root of the equation mx

i − Tr[σ̂ x
i ρ̂(i)

s ] = 0. This step is repeated
many times on different links and spins pairs until the value
of ul→i changes less than a certain tolerance everywhere in
the lattice. The process is schematically explained in Fig. 1.
In thinner red lines appear the messages taken at step t to
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find a new value (green, thick line) at step t + 1. The reader
familiar with the BP algorithm may notice that in this case
we need to keep the cavity fields on i during the calculation,
whereas in the classical case they can be canceled out in both
sides of (11) due to the commutation properties of the effective
Hamiltonian.

B. Kikuchi approximation

For finite dimensional lattices, it is important to take into
account explicitly the existence of short loops, which are
completely disregarded by the Bethe approximation [5]. A
sound improvement of the Bethe choice of regions could be
obtained by including larger regions into the free energy. The
simplest generalization for a square lattice is precisely the
inclusion of plaquette regions, each formed by the four spins
of the elementary cell. The Kikuchi free energy FKik will have
an extra term with respect to (2), comprising the contribution
of all plaquettes:

FKik =
∑

(ijkm)

cpF (ijkm)
p +

∑
(ij )

clF
(ij )
l +

∑
(i)

csF
(i)
s . (13)

The free energy of a plaquette (ijkm) is defined similarly to (3)
and (4) by means of a plaquette density operator ρ̂

(ijkm)
p . The

prefactors take the values cp = 1, cl = −1, and cs = 1 in this
case. Constrained minimization of FKik is technically similar
to the Bethe case except for the use of some extra Lagrange
multipliers Ûp′→l that enforce marginalization of plaquettes
over link distributions. These new multipliers are Hermitian
operators acting on the two-spins Hilbert space corresponding
to the spins in each link. They represent an effective x-directed
interaction of the spins in the link with the rest of the lattice.
Hence we write them in the following way:

Ûp→l = Up→l σ̂
x
i σ̂ x

j + up→i σ̂
x
i + up→j σ̂

x
j . (14)

This is not the most general expression for an operator
in the product space of two spins. This choice is based on
the fact that the spin to spin interaction lies always in the
OX direction. The value of the Lagrange parameters should
be obtained from the marginalization conditions (5) and the
equivalent for plaquettes. For the local density operators of
each region, we get

ρ̂(i)
s = 1

Z (i)
s

exp −β

⎛
⎝Ĥ(i)

s −
∑

l′∈P(i)

ûl′→i

⎞
⎠, (15)

ρ̂
(ij )
l = 1

Z (ij )
l

exp −β

⎛
⎜⎜⎜⎝Ĥ(ij )

l −
∑

i ′∈D(l)
l′∈P(i ′) \ l

ûl′→i ′ −
∑

p∈P(l)

Ûp→l

⎞
⎟⎟⎟⎠, (16)

ρ̂(ijkm)
p = 1

Z (ijkm)
p

exp −β

⎛
⎜⎜⎜⎝Ĥ(ijkl)

p −
∑

i∈D(p)
l′∈P(i) \ D(p)

ûl′→i −
∑

l∈D(p)
p′∈P(l) \ p

Ûp′→l

⎞
⎟⎟⎟⎠, (17)

where p, l, and i are indexes corresponding to plaquette, link
and site regions, respectively. For a region R, the set D(R)
contains all its subregions and the set P(R) is populated with
all the regions to which R belongs. For example, for the link
l ≡ (i,j ), D(l) contains the two spin regions i and j , whereas
P(l) includes all the plaquettes intersecting on l.

The fixed point iterations are again performed via moment
matching. This is, the mx magnetization predicted by ρ̂(i)

s must
be consistent with ρ̂

(ij )
l and this last operator must also produce

the same magnetization and correlation as the parent plaquettes
ρ̂

(ijkm)
p :

Tr
[
σ̂ x

i ρ̂(i)
s

] = Tr
[
σ̂ x

i ρ̂
(ij )
l

]
, (18)

Tr
[
σ̂ x

i ρ̂
(ij )
l

] = Tr
[
σ̂ x

i ρ̂(ijkm)
p

]
, (19)

Tr
[
σ̂ x

j ρ̂
(ij )
l

] = Tr
[
σ̂ x

j ρ̂(ijkm)
p

]
, (20)

Tr
[
σ̂ x

i σ̂ x
j ρ̂

(ij )
l

] = Tr
[
σ̂ x

i σ̂ x
j ρ̂(ijkm)

p

]
. (21)

The set (18)–(21) gives the solution for the cavity fields
implicitly. For future use, it is convenient to formally define
the functions that would give these fields in an explicit way:

ul→i = ūl→i(#), up→i = ūp→i(#), Up→l = Ūp→l(#).

(22)

The algorithmic details for the implementation of the fixed
point iteration are very similar to the Bethe case. We take
a random plaquette with the corresponding external cavity
fields at step t (see Fig. 2) and evaluate the RHS of (19) and
(21) for every connected pair and single spin in the plaquette.
Then, by a fixed point iteration, we make the LHS of the
same equations be consistent with the plaquette prediction.
The consistency equation (18) is used too at this step. This
way we find the internal fields of the plaquette at step t + 1 in
terms of the external ones at t . Once the approximated marginal
distributions ρ̂ are known, the local contributions to the free
energy can easily be obtained through the normalization factors
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FIG. 2. Message passing in the Kikuchi approximation. Sampling
the fields external to plaquette p (red arrows) at step t we can
determine the messages inside it (in green) at time t + 1. In the
figure, arrows starting in the center of a plaquette represent the triad
(Up→l ,up→i ,up→j ), the thick one corresponding to the correlation
field Up→l . Other arrows, parallel to plaquette edges, are link-to-spin
messages, ul→i .

of (15)–(17):

−βFKik =
⎡
⎣ ∑

(ijkm)

cp lnZ (ijkm)
p +

∑
(ij )

cl lnZ (ij )
l

+
∑
(i)

cs lnZ (i)
s

⎤
⎦. (23)

Finally, let us discuss the connection of the formalism to the
classical GBP. The classical results are obtained effortlessly
from Eqs. (15)–(21) when the transverse field is zero. In these
cases, all terms in the exponentials commute and the cavity
fields that appear in both sides of the consistency equations
can be canceled out. When commutation is important though,
the terms do not cancel and must be taken into account.

IV. QUANTUM CLUSTER VARIATIONAL METHOD:
AVERAGE CASE SCENARIO

In the previous sections, we discussed how to deal with
single instances of disordered systems within a quantum
cluster variational method. More frequently in physics one
expects to be able to average over the disorder right from
the beginning. Inspired by the replica-CVM methodology
introduced in Ref. [12] for the classical version, we now try
to perform the average case calculations for disordered Ising
quantum models.

The replica trick is a general framework that in principle
allows to account for different degrees of complexity in the
structure of the state space. Here we present the solution of the
problem within the replica symmetric (RS) approximation that
assumes that a single state dominates the thermodynamics of

the problem. Within this approximation we studied the RFIM
at the level of the Bethe and Kikuchi approximations starting
from (1) with hi being i.i.d random variables in the interval
[0,h). The extension to more general ansatz follows directly
from the work [12] and the approach presented here.

As a starting point let us consider an alternative approach
to find the CVM free energy of a single instance. With a given
realization of the disorder {h} one way to find the region free
energy of the system is to minimize a variational expression
that is equivalent to the Lagrange function discussed in previ-
ous sections:

F var
CVM({h},{u}) = − 1

β

∑
R

cR lnZR({u}R), (24)

FCVM({h}) = min
{u}

[
F var

CVM({h},{u})]. (25)

Here, {u}R is the subset of cavity fields appearing in the
expressions for ZR , the normalization constant of each region
distribution. The minimization process makes this set of fields
depend in principle on all the external parameters {h}:

FCVM({h}) = − 1

β

∑
R

cR lnZR({u}R,{h}). (26)

The average free energy density is now defined in the
thermodynamic limit as the free energy per spin after averaging
over the distribution of {h}:

〈fCVM〉 ≡ lim
N→∞

1

N
〈FCVM({h})〉{h}. (27)

Here, FCVM stands for the Bethe or Kikuchi approximations
FBethe and FKik defined in (2) and (13) or any other valid region
based free energy approximation. Putting (26) into (27), we see
that the problem now reduces to averaging the logarithm of the
local partition functions:

〈fCVM〉 = lim
N→∞

− 1

βN

∑
R

cR〈lnZR({u}R,{h})〉{h}. (28)

This is not an easy task, mainly because we do not know
the analytic dependence of the cavity fields on the realization
of the disorder; remember that the cavity fields are found via
a fixed point iteration. To overcome this problem, let us take a
step back, return to the variational character of the expression
(24), and define

〈fCVM〉var = lim
N→∞

− 1

βN

∑
R

cR〈lnZR({u}R)〉{h}R . (29)

The difference between (28) and (29) is that in the latter the
fields are free parameters to be optimized. Notice also that each
region depends only on the external fields acting locally. Since
the cavity fields are independent parameters (to be fixed later
by a minimization process) the average over all the set {h}
reduces to only the fields in the region {h}R . Another useful
manipulation is to split the sum over R according to the kind
of region

∑
R[·] = ∑

r∈{s,l,p}
∑

Rr
[·]. Here, r is an index that

goes over the types of regions used in the approximation and
Rr labels different regions of the same kind. Also, let us define
brN as the number of regions of type r in the system. This way
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we arrive to an expression that has the form of an average over
the disorder and the cavity fields:

〈fCVM〉var = − 1

β

∑
r∈{s,l,p}

brcr lim
N→∞

〈∑
Rr

lnZRr

({u}Rr

)
brN

〉
{h}Rr

(30)

= − 1

β

∑
r∈{s,l,p}

brcr〈lnZr ({u}r )〉{h}r ,{u}r . (31)

Notice that the sum in (31) is not extensive anymore; for
the Bethe and Kikuchi approximation it has two and three
terms, respectively. This is now a functional on the cavity
field distribution and at the end of the calculations it should
be minimized. For each region type, the set {u}r includes a
different number of link-to-spin and plaquette-to-link fields; in
order to make this explicit, it is convenient to use the notation
{u}r ≡ 
ul,
up, 
Up.

The RS ansatz implies that the cavity fields in the expression
for Zr are described by a certain distribution Pr (
ul,
up, 
Up):

〈lnZr〉{h}r ,{u}r =
∫

d 
hd 
uld 
upd 
UpPh(
h)Pr (
ul,
up, 
Up)

× lnZr (
h,
ul,
up, 
Up). (32)

This is the same expression that is obtained by the explicit
replica symmetric calculations in Ref. [12]. Symmetry break-
ing considerations may define an average (32) that includes
distributions of distributions in the case of 1RSB or more levels
in general.

A further assumption in our RS calculation is that the joint
Pr (
ul,
up, 
Up) is factored out in terms of simpler distributions.
In general, we consider that each ul→i in the terms ul→i σ̂

x
i is in-

dependently distributed with probability q(ul→i) and the same
for the fields in Ûp→l = Up→l σ̂

x
i σ̂ x

j + up→i σ̂
x
i + up→j σ̂

x
j ,

distributed according to Q(Up→l ,up→i ,up→j ). This simplifi-
cations are justified for Bethe lattices but for finite dimensional
problems remain an approximation. The disordered fields hi

are distributed independently so their distribution factorizes
too.

Our task now is to find the q(u) and Q(U,u1,u2) such that
the functional 〈fCVM〉var reaches a minimum. We have to solve
the stationarity conditions

∂〈fCVM〉var

∂q
= 0, (33)

∂〈fCVM〉var

∂Q(U,u1,u2)
= 0. (34)

A. Bethe approximation

Let us start by writing down with detail the Bethe average
case calculation. The (variational) average free energy for a
network with fixed connectivity c is, using (31),

−βfBethe = c

2
〈lnZl〉 − (c − 1)〈lnZs〉. (35)

The averages in (35) are over the external field and the cavity
fields. The explicit expressions for each term are

〈lnZl〉 =
∫

dhidhj

[
c−1∏
k

duk→i

c−1∏
m

dum→j

]
Ph(hi)Ph(hj )

×P l
u({uk→i},{um→i}) lnZl({uk→i},{um→j },hi,hj )

(36)

and

〈lnZs〉 =
∫

dhi

[
c∏
k

duk→i

]
Ph(hi)P

s
u ({uk→i})

× lnZs({uk→i},hi). (37)

The partition function for the link and spin regions are
as usual defined as the trace of the Boltzmann factor for the
corresponding effective Hamiltonian:

Zs({uk→i},hi) = T r
[

exp −β
(
Ĥeff

s ( 
̂σi)
)]

, (38)

Ĥeff
s ( 
̂σi) = Ĥs

(
σ̂ z

i

) − σ̂ x
i

∑
l′∈P(i)

ul′→i , (39)

Zl({uk→i},{um→j },hi,hj ) = T r
[

exp −β
(
Ĥeff

l ( 
̂σi, 
̂σj )
)]

,

(40)

Ĥeff
l ( 
̂σi, 
̂σj ) = Ĥl( 
̂σi, 
̂σj )−σ̂ x

i

∑
k∈P(i)\l

uk→i −σ̂ x
j

∑
m∈P(j )\l

um→j .

(41)

The important quantities in (36) and (37) are the distribu-
tions P s

u and P l
u. In the classical version of this calculation,

one assumes that cavity fields are uncorrelated and these dis-
tributions factorize. This is literally true for random networks
and only an approximation for lattices with short loops. The
factorized forms we consider are

P s
u ({uk→i}) =

c∏
k

q(uk→i) (42)

and

P l
u({uk→i},{um→i}) =

c−1∏
k

q(uk→i)
c−1∏
m

q(um→j ). (43)

The next step is to plug everything into the free energy and
use the stationarity condition ∂fBethe

∂q(uk0→i )
= 0. A simple functional

derivative shows that the minimization implies that〈
lnZs

(
uk0→i

)〉 = 〈
lnZl

(
uk0→i

)〉
, (44)

where the explicit dependence onuk0→i means that this variable
is not averaged out. Differentiating both sides we get a nice
relation between the average magnetization predicted by the
link and the spin terms:〈

ms

(
uk0→i

)〉 = 〈
ml

(
uk0→i

)〉
. (45)

Multiplying both sides by q(uk0→i) and integrating to
average out also uk0→i :

〈ms〉 = 〈ml〉, (46)
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where averages on left- and right-hand sides are done using expressions similar to (37) and (36), respectively,

〈ms〉 =
∫

dPh(hi)

[
c∏
k

dq(uk→i)

]
ms({uk→i},hi) (47)

and

〈ml〉 =
∫

dPh(hi)dPh(hj )

[
c−1∏
k

dq(uk→i)
c−1∏
m

dq(um→j )

]
ml({uk→i},{um→j },hi,hj ). (48)

We have used the shorthand dPh(hi) ≡ dhiPh(hi) and dq(um→j ) ≡ dum→j q(um→j ) to increase the readability of the expressions.
Let us focus for a moment on the magnetization functions ms({uk→i},hi) and ml({uk→i},{um→j },hi,hj ). In an actual lattice,

if both are referred to the same spin, they must have the same value. This is a consequence of the consistency relations (18).
The function ms depends on c fields, of which c − 1 are also arguments of ml . The extra field ukc→i can be obtained from the
condition ms = ml . This is an implicit equation that we can solve. Formally, this solution is written as

ukc→i = ū({uk→i}c−1,{um→j }c−1,hi,hj ). (49)

Using the previous definition, we can now relate the link magnetization to the spin one:

ml({uk→i}c−1,{um→j }c−1,hi,hj ) =
∫

dukc→ims

({uk→i}c−1,ukc→i ,hi

)
δ
(
ukc→i − ū({uk→i}c−1,{um→j }c−1,hi,hj )

)
. (50)

Putting (46), (47), (48), and (50) together, we get an expression that allows the determination of q(u) by means of a population
dynamics scheme:

∫
dukc→idPh(hi)

[
c−1∏
k

dq(uk→i)

]
ms

({uk→i}c−1,ukc→i ,hi

)
q(ukc→i)

=
∫

dukc→idPh(hi)dPh(hj )

[
c−1∏
k

dq(uk→i)
c−1∏
m

dq(um→j )

]
ms

({uk→i}c−1,ukc→i ,hi

)
× δ

(
ukc→i − ū({uk→i}c−1,{um→j }c−1,hi,hj )

)
. (51)

The above equation has the following interpretation: the LHS represents the average magnetization of a spin obtained by sampling
the c cavity fields {uk→i}c from their distribution. The RHS, on the other hand, represents also the average magnetization of a
spin but calculated by taking c − 1 fields {uk→i}c−1 from their distribution and the other ukc→i fixed by the delta function to be
consistent with the link to spin marginalization.

From Eq. (51), we can obtain a numerical approximation for q(u) using a population dynamics method. The idea is to represent
q(u) by a list of N � 1 field values, that is, one typical sample of N values taken independently from q(u). In order to obtain the
right q(u), we perform a sampling process that simulates (51). First, two groups of (c − 1) fields are selected randomly from the
list. Consider that each set acts on one of the spins of a hypothetic link region l and find the magnetization of the two spins. In this
step, the disordered external fields hi need to be sampled too. Once we have the magnetization predicted by the link for the spin,
say i, we demand the spin region to predict the same magnetization as the link. This fixes the total cavity field on the spin. Finally,
substracting the c − 1 values initially sampled from the total cavity field we get the effective cavity field ukc→i as represented in
(49). This value is returned to the list of fields in a random position. The convergence of this procedure is monitored by following
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the evolution of the first two moments of the list. Once the process has converged, the distribution q(u) satisfying (51) is obtained
as a histogram of the sample list. Algorithm (1) shown below summarizes the method:

Algorithm 1 Population Dynamics

1: Represent q(u) by a list qlist of N numbers with an arbitrary initial distribution
2: i = 1
3: while i < SWEEPMAX do
4: for j = 1 to N do // Repeat N times
5: Pick (c − 1) fields uk→i randomly from qlist and the same number of um→j .
6: Find ml from ml = T r[σ̂ x

i ρ̂
(ij )
l ]

7: From the condition ms = ml obtain a new field ukc→i

8: Put the new ukc→i back to qlist, substituting one element chosen at random
9: end for
10: Check the first and second moments of qlist
11: if Relative change of moments is smaller than TOL = 10−4 then
12: Calculate observables O[q(u)] by sampling qlist repeatedly
13: i = SWEEPMAX // Stop iterations
14: end if
15: i++
16: end while
17: return

B. Kikuchi approximation

The formalism for the plaquette approximation is essentially the same. We will assume for definiteness a 2D configuration but
the results are easy to extend to more dimensions or other kind of lattices, for example, triangular ones. The intensive variational
free energy according to (31) is

−βfKik = 〈lnZp〉 − 2〈lnZl〉 + 〈lnZs〉. (52)

Below, we include for clarity the resulting equations for all the 〈lnZr〉 for a spin region s = (i), a link l = (i,j ) and a plaquette
p = (i,j,k,m):

〈lnZs〉 =
∫

dPh(hi)

⎡
⎣ ∏

l′∈P(i)

dq(ul′→i)

⎤
⎦ ln Tr

[
exp −β

(
Ĥeff

s ( 
̂σi)
)]

, (53)

〈lnZl〉 =
∫ ∏

i ′∈D(l)

⎡
⎣dPh(hi ′)

∏
l′∈P(i ′)\l

dq(ul′→i ′)

⎤
⎦

⎡
⎣ ∏

p′∈P(l)

dQ(Up′→l ,up′→i ,up′→j )

⎤
⎦

× ln Tr
[

exp −β
(
Ĥeff

l ( 
̂σi, 
̂σj )
)]

, (54)

〈lnZp〉 =
∫ ∏

i ′∈D(p)

⎡
⎢⎢⎢⎣dPh(hi ′)

∏
l′ ∈ P(i ′)
l′ /∈ D(p)

dq(ul′→i ′)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

∏
l ∈ D(p)
l = (il ,jl )

∏
p′∈P(l)\p

dQ
(
Up′→l ,up′→il ,up′→jl

)
⎤
⎥⎥⎥⎦

× ln Tr
[

exp −β
(
Ĥeff

p ( 
̂σi, 
̂σj , 
̂σk, 
̂σm)
)]

. (55)

To lighten the formulas above, we have used again the convention dq(ul→i) ≡ dul→iq(ul→i) and dQ(Up→l ,up→i ,up→j ) ≡
dup→idup→j dUp→lQ(Up→l ,up→i ,up→j ). Notice that the field probability distribution of each region is factored in terms of
single q(ul→i) and Q(Up→l ,up→i ,up→j ). The real interactions are put together with the cavity ones into an effective Hamiltonian
that includes all the terms of the Bethe case plus the plaquette-to-link fields:

Ĥeff
s ( 
̂σi) = Ĥs(σ̂

z
i ) − σ̂ x

i

∑
l′∈P(i)

ul′→i ,

Ĥeff
l ( 
̂σi, 
̂σj ) = Ĥl( 
̂σi, 
̂σj ) −

∑
i ′∈D(l)

σ̂ x
i ′

∑
l′∈P(i ′)\l

ul′→i ′ −
∑

p′∈P(l)

[
Up′→l σ̂

x
i σ̂ x

j + up′→i σ̂
x
i + up′→j σ̂

x
j

]
,
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Ĥeff
p ( 
̂σi, 
̂σj , 
̂σk, 
̂σm) = Ĥp( 
̂σi, 
̂σj , 
̂σk, 
̂σm) −

∑
i ′∈D(p)

σ̂ x
i ′

∑
l′ ∈ P(i ′)
l′ /∈ D(p)

ul′→i ′

−
∑

l ∈ D(p)
l = (il ,jl )

∑
p′∈P(l)\p

[
Up′→l σ̂

x
il
σ̂ x

jl
+ up′→il σ̂

x
il

+ up′→jl
σ̂ x

jl

]
.

Now we use the stationarity conditions (34) to obtain the relation between the first and second average moments (i.e., the
magnetization and correlation) predicted by each region:

〈ms〉 = 〈ml〉 = 〈mp〉, (56)

〈cl〉 = 〈cp〉. (57)

From the first equality in (56) and repeating the steps for the Bethe case, we get an expression for the q distribution:∫
dukc→idPh(hi)

[
c−1∏
k

dq(uk→i)

]
ms

({uk→i}c−1,ukc→i ,hi

)
q
(
ukc→i

)

=
∫

dukc→idPh(hi)dPh(hj )

⎡
⎣c−1∏

k

dq(uk→i)
c−1∏
m

dq(um→j )
2∏

p∈P(l)

dQ(Up→l ,up→i ,up→j )

⎤
⎦ms

({uk→i}c−1,ukc→i ,hi

)

× δ
[
ukc→i − ū({uk→i}c−1,{um→j }c−1,{Up→l ,up→i ,up→j }2,hi,hj )

]
. (58)

In (58), the function ū is the one that gives the effective field that makes the magnetization predicted by the spin consistent with
the magnetization predicted by the link. Compared to the Bethe case, it now includes the dependence on the plaquette-to-link
messages Up→l ,up→i ,up→j .

Let us work now with the rightmost equation of (56) or, equivalently, with (57). These involve the consistency between
plaquettes and links. It is to be noted that the single-instance update equations based on a plaquette to link marginalization alone
do not determine the value of the fields up→i . Instead, only the sum up→i + ul→i and up→j + ul→j is completely specified. As
a consequence, Eqs. (56) or (57) will not give us an expression for Q(Up→l ,up→i ,up→j ). Alternatively, we get an equation for
the joint distribution R(Up→l ,ui,uj ) of the correlation field Up→l and the sum of the magnetization fields ui = up→i + ul→i and
uj = up→j + ul→j . This distribution is defined as the convolution of the original Q and q,

R(Up→l ,ui,uj ) =
∫

dup→idup→jQ(Up→l ,up→i ,up→j )q(ui − up→i)q(uj − up→j ), (59)

and obeys an equation that is structurally very similar to (58):

〈cl〉 = 〈cp〉, 〈cl〉 =
∫

dUp→lduidujdPh(hi)dPh(hj )dR(Up′→l ,u
′
i ,u

′
j )dq(ul′1→i)dq

(
ul′2→j

)
cl(#l ,Up→l ,ui,uj )R(Up→l ,ui,uj ),

〈cp〉 =
∫

dUp→lduiduj

∏
i ′∈D(p)

⎡
⎢⎢⎢⎣dPh(hi ′)

∏
l′ ∈ P(i ′)
l′ /∈ D(p)

dq(ul′→i ′)

⎤
⎥⎥⎥⎦

⎡
⎣ ∏

l′′∈D(p)

∏
p′∈P(l′′)\p

dQ
(
Up′→l′′ ,up′→il′′ ,up′→jl′′

)⎤⎦

×cl(#l ,Up→l ,ui,uj )δ[ui − ūi(#p)] δ[uj − ūj (#p)] δ[Up→l − Ūp→l(#p)]. (60)

In the above equation, the symbol #p in the RHS stands for all the cavity fields acting on the plaquette p from neighboring
regions. It includes also the local magnetic field on each spin. The symbol #l includes a subset of #p; just those fields acting on
the link l ∈ p. The functions Ūp→l(#p), ūi(#p), and ūj (#p) give the effective correlation and magnetization fields on link l due
to the interactions in plaquette p.1

Although the method was presented having in mind the
broad interest of quantum spins models [45–47], the translation
to other quantum models can be done without major difficul-
ties. In particular, it is easily extendable to the study of moving

1The expressions Ū , ūi , and ūj are again only formal representations
of the result of the self-consistent determination of the fields.

interacting bosons in a disordered lattice, a subject that has
attracted the interest of condensed matter physicists for many
years and has recently called the attention of the quantum optics
community. For homogeneous models, a development similar
to ours was already done many years ago by Morita [42].
For these disordered models, an extension of our technique
could be done just by substituting the local magnetization
calculated in (18) by the corresponding local particle densities
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FIG. 3. h-T phase diagram of the transverse field Ising model in two dimensions. Three methods are considered: simulations in single
instances (SI), fixed point iterations (FP), and population dynamics (PD) (see text for details). (a) approximation (b) Plaquette approximation.
Both approximations reproduce the h → 0 classical limit and find an estimate of the hc above which the ordered phase disappear. Quantum
Monte Carlo predictions are hc = 3.04 and Tc = 2.45 [48–50].

that should be calculated self-consistently. At the plaquette
level, one would also consider the two point density-density
correlation function as a substitute of (21). Similarly, in the
average case scenario it would be possible to substitute local
fields distributions with local chemical potentials and to follow
Algorithm 1 or alternatively the equivalent to Eq. (60).

V. NUMERICAL RESULTS

A. Quantum transverse Ising model

For an homogeneous system Jij = J , in an homogeneous
transverse field hi = h, the numeric solution of the update
equations in single instances simplifies significantly. The
model at equilibrium should be described by a fixed point
iteration of a single combination of the parameters ul→i , up→l ,
and Up→l . Therefore we can take only one pair of plaquette-
to-link and link-to-spin marginalization equations and iterate
them recursively until the (ul→i ,up→l ,Up→l) combination
reaches a fixed point. To simplify the notation, we also drop
specific spatial indexes and write only (ul,up,Up).

Our description below makes emphasis on the plaquette
approximation considering that the Bethe case is extensively

presented in a vast literature. All the same, the reader interested
only on the Bethe approximation can formally put Up and up to
zero and iterate only the link-to-spin marginalization condition.

The sequence of steps is the following. First, the (ul,up,Up)
triad is initialized to some arbitrary real values. Then these
fields are used to evaluate the moments of ρ̂

(ijkm)
p of an

imaginary plaquette:

mp = Tr
[
σ̂ x

i ρ̂(ijkm)
p

]
, (61)

cp = Tr
[
σ̂ x

i σ̂ x
j ρ̂(ijkm)

p

]
. (62)

Calculations are made only for one spin and one link for
symmetry reasons. As a consequence of (18) and (19) a new
value for the field u′

l is generated such that spin magnetization
mi = Tr[σ̂ x

i ρ̂(i)
s ] equals mp. Explicitly, the equation that must

be solved is

mp = Ku′
l√

h2 + (Ku′
l)

2
tanh β

√
h2 + (Ku′

l)
2
,

where K = 4 is the connectivity of the spin in 2D. After, new
values u′

p and U ′
p are obtained from the LHS of (19) and (21).
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FIG. 4. Temperature dependence of the magnetization and correlation for two representative values of the external field in the (a) Bethe
and (b) Kikuchi approximation. We present the transverse value (mz, circles) and the longitudinal one (mx , squares). It is in the longitudinal
axis where long-range order emerges by lowering the temperature for a fixed field. A low field value (full symbols) does not affect strongly the
transition temperature observed for the mx magnetization at h = 0. This corresponds to the Bethe critical temperature of the classical model,
Tc ≈ 2.89 in part (a) and to Tc ≈ 2.43 in the Kikuchi approximation in part (b). Higher transverse fields make the transition move towards lower
temperatures under the influence of quantum fluctuations. The transverse magnetization mz reflects the phase transition in the form of a small
kink. The connected correlation in the x̂ direction, cxx = 〈σ̂ x

i σ̂ x
j 〉 − 〈σ̂ x

i 〉〈σ̂ x
j 〉, has a maximum in the vicinity of the transition in both cases.
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FIG. 5. Quantum CVM for transverse RFIM. h-T phase diagram
of the RFIM model in two dimensions. The disordered field on each
site is taken randomly in the [0,h) interval. Two methods are used:
simulations in single instances (SI) and population dynamics (PD)
(See text for details). In the Kikuchi approximation, convergence is a
serious issue near the critical line. In fact, what is shown in the figure
for the plaquette case is the line where the ferromagnetic solution
looses stability and the algorithm stops converging. The convergence
is recovered later inside the paramagnetic phase.

Their value must make the magnetization and correlation from
ρ̂

(ij )
l consistent with (61) and (62). We have

ml ≡ Tr
[
σ̂ x

i ρ̂
(ij )
l

] = f (u′
l ,u

′
p,U ′

p), (63)

cl ≡ Tr
[
σ̂ x

i σ̂ x
j ρ̂

(ij )
l

] = g(u′
l ,u

′
p,U ′

p), (64)

and then we would have to solve

f (u′
l ,u

′
p,U ′

p) = mp, (65)

g(u′
l ,u

′
p,U ′

p) = cp. (66)

In the equations above the value of u′
l from the previous step

is used when solving foru′
p,U ′

p. This algorithm is repeated until
stability is reached, i.e., until the variation of the field values
drop below certain prefixed threshold. For each temperature
and/or field, it is convenient to use as initial values the results
obtained for a nearby point in the phase diagram. This improves
the convergence speed significantly.

To compare this result with actual message passing equa-
tions in single instances, we studied a 16 × 16 square lattice
with homogeneous field and periodic boundary conditions
iterating (18)–(21) starting from random initial conditions and
following a random update scheme until convergence (SI).
Since the system is homogeneous, there is no need of running
a large number of instances nor using a large system; field
values tend to the same value everywhere. The only difference
between samples would be the initial conditions and the actual
random update order. In this case we averaged results for ten
different initial field configurations.

Although the population dynamics (PD) solution to the
problem is introduced properly in the next section, since it is
mainly relevant for disordered systems, its application to this
model is shown here for completeness. Broadly speaking, it is
similar to the FP but focuses on the stability of a population of
cavity fields instead of a single set of values. The population of
field values is supposed to represent the distribution of fields
for the average case scenario. In the homogeneous system,
populations will be represented by a single value, that is,
distributions are delta-shaped around the fixed point fields. The
numerical results obtained for the three methods are shown in
Fig. 3. In this figure, we present the H -T phase diagram of
the quantum Ising model in a transverse magnetic field for the
Bethe and Kikuchi approximations.

From Fig. 3, we observe that in all the approximations
we get a line dividing a paramagnetic solution where the
spontaneous magnetization in the x̂ direction is zero from
another region where long-range order dominates. For low
transverse field, the transition temperature coincides with the
classical case prediction. We also find that above a critical
value of the external field, quantum fluctuations destroy the
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FIG. 6. These histograms show some of the relevant effective field distributions for the Bethe approximation (left) and Kikuchi’s (right) at
two different temperatures for a given field intensity. The high temperature distribution corresponds to the point (h = 4.0,T = 3.5), well in the
paramagnetic phase of Fig. 5. On the other hand, the low temperature data were obtained for the same field at T = 1.0, inside the ferromagnetic
phase in both approximations. For the magnetization fields ul→i in (a), we observe that at high temperature the distribution is in fact a delta
function around zero that spreads when moving into lower temperature regions. The Up→l distribution for the plaquette approximation in (b)
peaks around a nonzero value for high temperatures, when the system is spatially homogeneous in the x̂ direction. In the paramagnetic region,
this distribution spreads after the onset of heterogeneous local magnetizations.
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possibility of ferromagnetic order at any temperature. The
results for the Bethe case are a lot less noisy that for the
plaquette approximation. It is interesting that in the latter all
methods find a region for intermediate values of the external
field where there is a gap of nonconvergence between the
paramagnetic region an the ferromagnetic one. It is not clear
to us whether it is a numerical problem or if it is an intrinsic
property of the approximation.

In Fig. 4, we show vertical cuts of the phase diagram taken
at h = 0.5 and 2.5. The behavior of the longitudinal magneti-
zation is qualitatively equivalent to the classical ferromagnetic
case. In the transversal direction, the system presents always a
magnetization in the same direction of the applied field. In these
plot, we see again that for small fields the critical temperature
depends weakly on h, taking values very close to the classical
one. As the external fields increases, the system needs to lower
the temperature to establish the long range order. This can
be done up to a certain critical field, above which quantum
fluctuations destroy the possibility of an ordered phase.

B. Quantum transverse Ising model in a random field

To numerically approach the average case scenario at the
Kikuchi level is not as simple as in the Bethe case, a result that is
already known from classical models [12]. The problem relies
in the proper equations (58) and (60) that do not define a simple
closed equation for Q and to obtain it obtaining by deconvolv-
ing R and q is numerically challenging. Further complications
may also arise from the fact that Q need not to be positive
definite. Nonetheless, one can still study the average properties
of the update equations in the Kikuchi approximation using
population dynamics. The result, though, will be a solution of
(58) and (60) only in the paramagnetic regime. In the case of
distributions with permanent magnetization, it constitutes only
an heuristic tool.

In a 2D square lattice, a plaquette p has four other neighbor
plaquettes p′ with which it shares a link. From each of
these regions it interacts via one plaquette to link triplet
(Up′→l ,up′→i ,up′→j ) and two link-to-spin fields ul′→i , ul′′→j ,
five fields in total. Given all those external messages one can,
using the update equations, find the fields inside the plaquette.
In order to keep as much information as possible, we define
a population representing the joint distribution of the five
values mentioned before. Following the scheme for the Bethe
case, we sample the surroundings of the plaquette, calculate
a new set of messages and return it to the population. Once
the population stabilizes, all the observables can be found by
sampling repeatedly the resulting distribution.

In Fig. 5, we compare the results of using the population
dynamics algorithm and single instance simulations for the
RFIM. Similar to the ordered case, the phase diagram of the
x̂ magnetization is divided in two regions, para and ferromag-
netic. The classical limits of low fields are in agreement with the
previously known results and of course with the corresponding
values in Fig. 3. For the SI calculations, 100 samples of a
32 × 32 square lattice with periodic boundary conditions are

averaged. For high h values convergence is an issue for both
PD and SI simulations. Also, in this region the longitudinal mx

magnetization is rather small in the ferromagnetic region. We
did not managed to observe a critical hc value as in the ordered
model.

The shape of the field distributions on the lattice changes
for the para or ferromagnetic phase. In the paramagnetic
region, the magnetization fields, ul→i and up→i distribute as
delta functions around zero, see, for example, Fig. 6(a). The
correlation fields Up→l are also well centered around a given
value for high temperatures, see Fig. 6(b). On the other hand,
inside the ferromagnetic phase, due to the heterogeneous local
fields in the ẑ direction, we observe that all distributions spread
suggesting the possible existence of a glassy phase.

VI. CONCLUSIONS

In this work, we first rederived the equations for the
cluster variational method for models involving quantum phase
transitions. Starting from a variational expression for a region-
based free energy, we managed to find approximations to
local probability distributions. The minimization of the region
free energy is somewhat hindered by the quantum nature of
the Hamiltonian and the noncommutativity of the operators
appearing on it. As a consequence, the cavity fields of the
classical models transform in our approach into Hermitian op-
erators, parametrized by Pauli matrices. We then approximate
the problem transforming these equations for operators into an
approximate set of equations for the parameters describing the
density operators defining the variational method.

This quantum CVM is a good framework for studying
finite dimensional models. For ordered systems, the standard
approach exploits the translational symmetry and reduces the
problem to the determination of a handful of parameters, a tech-
nique very well known in the literature. On the other hand, for
disordered models, we were able to transform the consistency
relations imposed between overlapping regions into proper
message passing equations that can be treated in polynomial
time. We showed by studying the quantum Ising model in
a transverse uniform external field, that both approaches are
equivalent when disorder is absent. When disorder is present,
like in the quantum Ising model in a transverse random external
field, the message passing equations derived here become,
nevertheless, a very efficient computational approach to study
the properties of the model.

In a more general setting, in this work, we also presented
a version of the CVM for quantum models within an average
case scenario, i.e., where the average over the disorder is done
without specifically treating single instances. Although this
generalization translates into a very complex set of population
dynamic equations between operators, we can approximate
them through complex populations of physically sound pa-
rameters, here, the magnetization and correlations, which can
be solved using a variation of standard techniques. The results
of all the approaches were compared studying the quantum
Ising model in a transverse random external field.
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