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Magnetopolaron effect on shallow-impurity states in the presence of magnetic and intense terahertz
laser fields in the Faraday configuration
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The magnetopolaron effect on shallow-impurity states in semiconductors is investigated when subjected
simultaneously to a magnetic field and an intense terahertz laser field within the Faraday configuration. We
use a time-dependent nonperturbative theory to describe electron interactions. The externally applied fields are
exactly included via a laser-dressed interaction potential. Through a variational approach we evaluate the binding
energy of the shallow-impurity states. We find that the interaction strength of the laser-dressed Coulomb potential
can not only be enhanced but also weakened by varying the two external fields. In this way, the binding energy
can be tuned by the external fields and red- or blue-shifted with respect to the static binding energy. In the
nonresonant polaron region, a magnetopolaron correction that includes the effects of photon process is observed.
In the resonant polaron region, moreover, the resonant magnetopolaron effect accompanied by the emission and
absorption of a single photon is distinctly observed. This can be modulated to be far away from the reststrahlen
band. The intriguing findings of this paper can be observed experimentally and, in turn, provide a way to measure
the strength of the electron-phonon interaction.
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I. INTRODUCTION

The intriguing characteristics of shallow-impurity states in
semiconductors and their nanostructures have attracted a lot
of interest in the past few decades. This is due to the fact that
shallow-impurity states in semiconductor systems affect many
characteristics of the semiconductor such as conductivity [1],
impurity cyclotron resonance [2], impurity-assisted tunneling
[3], to mention a few, and also play an important role in deter-
mining the optical and transport properties of these devices at
low temperature. Moreover, the behavior of shallow-impurity
states under a static magnetic field can provide a deeper insight
into several problems in astrophysics [4].

Nowadays, with the development of state-of-the-art laser
sources such as free-electron lasers (FELs), new possibilities
have arisen in probing the behavior of shallow-impurity states
in semiconductors and their nanostructures when irradiated by
intense terahertz (THz) laser fields (ITLFs). This is due to the
fact that the applied THz laser field frequency is nearly of the
order of characteristic frequencies in these systems, which sug-
gests that an ITLF can intensively interact with semiconductor
systems and processes of momentum and energy excitation
and relaxation of electrons can be significantly modified in
such laser-driven systems.

The influence of the ITLFs on shallow-impurity states
in semiconductor systems can be detected, for instance,
by measuring the distortion of the binding energy and in-
tradonor transitions associated with those shallow-impurity
states. This shows up as modifications of optical properties in
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the systems under irradiation. Consequently, the behavior of
shallow-impurity states in laser-driven systems has attracted
the attention of research communities around the world in
the last decades [5–9]. Already some interesting phenomena
associated with shallow-impurity states have been obtained
theoretically or experimentally; including dichotomy of hydro-
gen atoms [10,11] and excitons [12], shallow-impurity states in
bulk semiconductors that become stable against ionization in
the high-intensity limit [13], a reduction of the binding energy
with increasing laser field intensity in semiconductors [13,14]
and their nanostructures [15,16].

Moreover, it has also been shown that the effect of the
ITLFs on the intraimpurity state transitions in semiconduc-
tor nanostructures can be comparable to that of a magnetic
field [8]. More recently, particular interest has been paid to
the nonlinear magneto-optical properties of shallow-impurity
states in quantum wells [17–20], quantum well wires [21,22],
and quantum dots [23] subjected simultaneously to ITLFs and
magnetic fields. This interest has been motivated, in part, due
to the opening of a promising route to design new efficient
optoelectronic devices manipulated by two external applied
fields [24]. These studies show that the electronic and optical
properties of shallow-impurity states in semiconductor systems
strongly depend not only on the geometric parameters and the
laser-dressed Coulomb potential and quantum confinement,
but also on the two external applied fields. This clearly indi-
cates that both the laser field and magnetic field intensities can
be properly chosen, together with an appropriate choice of the
geometric parameters of the considered systems, to generate
the desired energy spectrum for shallow-impurity states in
semiconductors and related nanostructures. In addition, it has
also been found that the conduction-electron g factor in het-
erostructures [25] and the exciton binding energy in quantum
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well wires [26] in the presence of the ITLFs and magnetic fields
can be effectively manipulated and tuned by changing the two
externally applied fields. However, these previous studies were
only focused on the Voigt configuration in which the vector po-
tentials induced by the ITLFs and magnetic fields do not couple
directly with each other. Notice that theoretical approaches
used previously, i.e., the so-called “dressed-band approach”
[8,17,22,23] and the “dressed-atom approach” [18–21] are not
valid in the Faraday configuration. Recently, we proposed a
time-dependent nonperturbative approach to investigate the
binding energy and transition energy for ground 1s-like and
excited 2p−-like states in bulk semiconductors under the ITLFs
and magnetic fields within the Faraday configuration [27].

Due to the single-particle nature of the shallow impurity
system, possible complications from many-body effects such
as screening and Pauli exclusion effects [28] are not im-
portant in the interpretation of the observed phenomena. As
a consequence, shallow impurities in polar semiconductors
and related nanostructures provide a natural and almost ideal
system to investigate the interaction between electrons and
longitudinal-optical (LO) phonons, which has received a lot
of attention in the past. The importance of this interaction
not only arises from the fact that it modifies the carrier
effective mass [29], but also comes from its influence on
the device performance through carrier velocity and mobil-
ity. The consequences of electron-phonon (e-p) interaction
are specifically apparent when the magneto-optical transition
energy associated with the shallow-impurity states is tuned
into resonance with the LO phonon energy by means of a
high magnetic field, leading to a resonant splitting of this
transition. As a result, a characteristic anticrossing behavior,
so-called resonant magnetopolaron effect (RMPE), can be
observed directly, which has been intensively studied in bulk
semiconductors [30–32] as well as in the related nanostructures
including quantum wells [33], superlattices [34], and quantum
dots [35]. This resonant splitting of the shallow-impurity states
in semiconductor systems in turn provides a direct measure of
the e-p interaction. More interestingly, the e-p interaction in
semiconductors and related nanostructures under ITLFs can
be appropriately modulated by the ITLFs [36] and effectively
suppressed when the laser field intensity is strong enough
[37–39], while the effective electron-photon coupling is en-
hanced. Therefore, it is more reasonable to experimentally ob-
serve an intriguing resonant magnetopolaron effect modulated
by the two external applied fields in polar semiconductors and
their nanostructures subjected to the ITLFs and magnetic fields
simultaneously in the Faraday configuration. However, such
novel phenomena have not been investigated up to now.

In this study, we are concerned with the behavior of
shallow-impurity states in polar bulk semiconductors under
ITLFs and magnetic fields within the Faraday configuration.
Using a nonperturbative approach and a variational method, we
investigate the effect of two external applied fields, an electric
field and a magnetic field, on the energy levels associated
with the shallow-impurity states. A resonant magnetopolaron
effect adjusted by the external applied fields is predicted using
the time-dependent perturbation approach, leading to new
intriguing physical phenomena. This paper is organized as
follows. In Sec. II we outline the nonperturbative approach
together with the time-dependent perturbation approach. Our
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FIG. 1. Schematic representation of a shallow donor D+ in a bulk
semiconductor in the presence of ITLF and magnetic field within the
Faraday configuration. Here, �k is the wave vector of the applied ITLF.

numerical results and discussions are presented in Sec. III and
concluding remarks are given in Sec. IV.

II. THEORETICAL APPROACH

We consider a shallow donor impurity in a bulk semicon-
ductor which is simultaneously subjected to an ITLF and a
static magnetic field along the z axis, where the laser field is
linearly polarized along the x axis, as shown in Fig. 1. Under
the usual dipole approximation, the vector potential of the
laser field is given as �At = (F0/ω) cos(ωt)�ex with F0 and ω

being, respectively, the amplitude and angular frequency of
the laser field. Within the framework of the effective-mass
approximation and assuming that the dielectric constant ε

and electron effective mass m∗ are both isotropic, the total
Hamiltonian for a single conduction band electron coupled to
a hydrogenic donor and interacting with longitudinal-optical
(LO) phonons is described by

H = He( �R,t) + HLO + HI ( �R), (1)

where He( �R,t) is the Hamiltonian for the hydrogenic donor
electron in the two external applied fields

He( �R,t) = 1

2m∗ ( �p + e �A)2 + V ( �R). (2)

Here, �A = �At + �AB with �AB = (−eBy/2,eBx/2,0) being the
vector potential induced by the magnetic field and expressed in
the symmetric gauge, and V ( �R) = −e2/ε| �R| is the Coulomb
potential induced by the electron-impurity coupling. ε is
the dielectric constant of the medium and �p and �R are the
momentum and position operators of the electron, respectively.
In Eq. (1), the LO phonon Hamiltonian is taken to be

HLO =
∑

�Q
h̄ω �Q

(
a
†
�Qa �Q + 1

2

)
, (3)

where (a†
�Q,a �Q) are the creation and annihilation operators

of a LO phonon with wave vector �Q = (�q,qz) = (qx,qy,qz)
and phonon frequency ω �Q. Finally, the Hamiltonian of the
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electron-phonon (e-p) interaction is given by

HI ( �R) =
∑

�Q
(V �Qa �Qei �Q· �R + V ∗

�Qa
†
�Qe−i �Q· �R). (4)

Here, V �Q is the Fourier coefficient of electron-phonon coupling
given by the Fröhlich Hamiltonian and taken to be |V �Q|2 =
4παL0(h̄ω �Q)2/�Q2, where α is the coupling constant, L0 =
(h̄/2m∗ω �Q)1/2 is the polaron radius, and� is the crystal volume
of the system.

A. Nonperturbative approach

Since in the Faraday configuration vector potentials induced
by ITLF and magnetic field are coupled with each other, reso-
nant phenomena can be directly observed experimentally like
the cyclotron resonance effect. As a result, the dressed-atom
approach [18–21] which is based on the Kramers-Henneberger
(KH) unitary transformation [5,6] and the dressed-band ap-
proach [8,17,22,23] are only valid in the nonresonant region
and therefore cannot be used to seek the solution of the
following time-dependent Schrödinger equation (TDSE) for
the electronic part:

ih̄
∂�( �R,t)

∂t
= He( �R,t)�( �R,t). (5)

On the other hand, direct numerical integration in time steps is a
strenuous computational task [11]. Note that usual perturbation
theory is far beyond the limit of its validity for large laser
field intensities, so only nonperturbative approaches should be
attempted.

Thus, we have to develop a new nonperturbative approach to
deal with such a time-dependent problem, namely, one in which
the laser field can be treated in a more exact way. Following
the nonperturbative approach proposed previously [27,39,40],
we use the time-dependent unitary transformation [27]

U = exp

(
i

h̄
ft

)
exp

[
i

h̄
(utx + vty)

]
exp

(
i

h̄
xtpx

)
× exp

(
i

h̄
ytpy

)
, (6)

where px = −ih̄∂/∂x is the momentum operator along the x

direction, the coordinate shifts xt and yt produce a translation
in space, the phase shifts ut and vt lead to a translation in
momentum, and ft takes care of the terms in the Hamiltonian
depending only on time. In such a case, the electronic wave
function �( �R,t) can be expressed as

�( �R,t) = Uψ( �R,t). (7)

By inserting Eqs. (6) and (7) into Eq. (5), one obtains

ih̄
∂ψ( �R,t)

∂t
= H̃e( �R,t)ψ( �R,t), (8)

where

H̃e( �R,t) = 1

2m∗ ( �p + e �AB)2 + V [ �R − �c(t)], (9)

with �c(t) = xt �ex + yt �ey . Here, �c(t) describes the quiver motion
of the classical electron under the two external applied fields,
which is significantly different from the back-and-forth motion

along the polarized direction of the applied ITLF in the absence
of magnetic field [5–7]. Moreover, Eq. (8) characterizes the
dynamics of shallow-impurity states in semiconductor systems
and produces an intriguing behavior when irradiated by the
two external fields, in which the electrons interact with the
oscillating potential V [ �R − �c(t)]. This is because the time
dependence has been transferred from the momentum term to
the interaction potential in this accelerated frame of reference.
In addition, no assumptions concerning the validity of Eq. (8)
in the accelerated frame of reference has been made so far, so
that Eqs. (5) and (8) must be completely equivalent.

Due to the arbitrariness of the functions xt , yt , ut , vt , and ft ,
one can use them to cancel the time-dependent terms in H̃e( �R,t)
that are linear in �p and �R and the terms that depend only on time
[40]. Note that such initial conditions have been widely and
successfully used in solving time-dependent problems [41,42].
In doing so and performing some algebraic manipulations, the
shifts of coordinates are obtained as

xt = r0 sin(ωt)

and

yt = −r0η cos(ωt),

where r0 = eF0/[m∗(ω2
c − ω2)] and η = ωc/ω with

ωc = eB/m∗ being the cyclotron frequency. In addition,
the phase shifts are given by vt = −r1 sin(ωt) and
ut = −r1η cos(ωt) with r1 = eF0ωc/[2(ω2

c − ω2)], and
ft = −Eem[t + sin(2ωt)/2ω] with an energy Eem =
e2F 2

0 /[4m∗(ω2 − ω2
c )] induced by the two external applied

fields. More interestingly, Eem will result in a shift in the
fundamental absorption edge known as magneto-optical
dynamical Franz-Keldysh effect (MODFKE) [43] in
semiconductor systems under ITLFs and magnetic fields,
which can be reduced to the ponderomotive energy
Eem = e2F 2

0 /(4m∗ω2) in the absence of magnetic field,
leading to the usual dynamical Franz-Keldysh effect in a
laser-driven semiconductor system.

1. Laser-dressed Coulomb potential

The explicit expression of the laser-dressed Coulomb po-
tential (LdCP) is given by

V [ �R − �c(t)] = − e2

ε(R2 + a2)1/2
[1 − b(t)]−1/2, (10)

where b(t) = [a2η0 cos(2ωt) + 2 �R · �c(t)]/(R2 + a2) with
η0 = (1 − η2)/(1 + η2) and a = |r0|[(1 + η2)/2]1/2. By
application of the previous approximation method [44],
Eq. (10) can be cast into a new one which is essentially the
time average of the LdCP, namely,

V (R; a) = − e2

ε(R2 + a2)1/2

[
1 + 3

16

8R2a2 + a4η2
0

(R2 + a2)2

]
, (11)

which is quite similar to the well-known results obtained in
Ref. [45]. Note that this adopted approximation has no bearing
as to the laser field strength [44,45], which indicates that
Eq. (11) is valid for the description of shallow-impurity states
in our considered systems under either an intense or a weak
laser field. Moreover, this approximation has been widely used
in atomic and molecular problems [45,46] and successfully
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extended to study the physical properties of shallow-impurity
states in semiconductor nanostructures under ITLFs [16,47].
In the absence of the ITLFs, the LdCP returns back to the bare
Coulomb potential. On the contrary, the LdCP approaches zero
in the high laser field limit or in the vicinity of a cyclotron
frequency, which implies that the shallow-impurity states in
semiconductor systems under the two external fields can be
tuned into unbound states by changing both external fields.

2. Laser-dressed potential for electron-phonon coupling

In the accelerated frame of reference, the Hamiltonian
HI ( �R) for e-p interaction has also been transformed into a
laser-dressed oscillating potential [36,39]. This can be obtained
by U †HI ( �R)U , namely,

H̃I ( �R,t) =
∑
�Q,n

[
Ṽ �Qa �Qei( �Q· �R+nθ) + Ṽ ∗

�Qa
†
�Qe−i( �Q· �R+nθ)],

(12)

where Ṽ �Q = (χq/χ
∗
q )n/2Jn[Z(q)]V �Q is the laser-modulated

e-p coupling with χq = ηqy + iqx , θ = ωt , and Jn(x) is the
Bessel function of the first kind with Z(q) = |r0|(χqχ

∗
q )1/2.

Equation (12) shows that the laser-dressed interaction potential
[LdIP, i.e., H̃I ( �R,t)] depends explicitly on time, so that it
cannot produce a stationary e-p interaction, particulary in
the high-frequency limit. As a result, the electron sees a
LdIP induced by the two external applied fields, namely, the
electron motion is dominated by the oscillation stemming from
the ITLFs. In the absence of the ITLFs (i.e., F0 = 0), due
to limx→0 Jn(x) = δn,0, H̃I ( �R,t) goes back to the bare one,
namely, HI ( �R). In contrast, in the opposite limit of intense
laser field intensity (i.e., F0 → ∞) or in the vicinity of ωc

(i.e., ω → ωc) the Bessel function in Eq. (12) approaches zero
since limx→∞ Jn(x) = 0. Consequently, an increase of laser
field intensity (or as ω approaches ωc and vice versa) leads to
a weakening of the laser-dressed e-p interaction. This has been
observed experimentally [37,38] and investigated theoretically
[38,39]. Most importantly, it has been explicitly confirmed that
H̃I ( �R,t) can be reasonably treated as a perturbation potential
in studying the intriguing properties of semiconductor systems
under ITLFs [38,39].

B. Electronic states

By inserting Eq. (11) into Eq. (9), the time-dependent
Hamiltonian H̃e( �R,t) transfers into a practically time-
independent one, namely,

H̃e( �R) = 1

2m∗ ( �p + e �AB)2 + V (R; a). (13)

As a result, we can seek stationary solutions of Eq. (13) in the
accelerated frame of reference to investigate the characteristics
of shallow-impurity states in generic hydrogenic systems under
the two external applied fields. In this case, the corresponding
solutions can be expressed asψi( �R,t) = e−iE

(0)
i t/h̄ψi( �R), where

the wave function ψi( �R) and the energy spectrum E
(0)
i are

determined by [H̃e( �R) − E
(0)
i ]ψi( �R) = 0.

By considering the symmetry of our system, we chose
the cylindrical polar coordinate system (ρ,φ,z) and introduce

dimensionless units expressed in terms of the Bohr radius a0 =
h̄2ε/m∗e2 and the effective Rydberg energy R∗ = h̄2/2m∗a2

0 ,
and then Eq. (13) can be rewritten as

H̃e( �R) = −
[

∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂ϕ2
+ ∂2

∂z2

]
+ 1

4
γ 2ρ2

+ γLz − 2√
R2 + a′2

[
1 + 3

16

8R2a′2 + a′4η2
0

(R2 + a′2)2

]
,

(14)

where Lz = −i(∂/∂ϕ) is the z component of the angular
momentum operator, γ = a2

0/l2
B is the dimensionless param-

eter determining magnetic field with magnetic length lB =
(h̄/eB)1/2, and a′ = a/a0. Unfortunately, there is still no
simple analytic solution to Eq. (14). In this case, we have
to resort to the variational method to calculate the energy
spectrum and the corresponding wave functions for the shallow
impurity.

As the obtained laser-dressed H̃e( �R) is identical to the
Hamiltonian of the hydrogenic system in a static magnetic
field, except for the LdCP V (R; a), we can reasonably adopt
similar trial wave functions for the shallow-impurity states as
in Refs. [30,31], which are taken to be

ψnmp(ρ,φ,z) = ρ|m|zpeimφe−ξρ2−ζR(1 − λRσ ), (15)

where n, m, and p = 0,1 are, respectively, the principal, mag-
netic, and conserved z-parity quantum numbers with |m| < n.
Note that these wave functions have been verified to be very
accurate in describing the shallow-impurity states under a
static magnetic field [31]. Here, ξ and ζ are two variational
parameters, and σ is an additional one for the 2s state, which
are determined such that they minimize the unperturbed energy

E(0)
nmp = 〈ψnmp|H̃e( �R)|ψnmp〉

〈ψnmp|ψnmp〉 . (16)

In Eq. (15), λ is nonzero only for the 2s state and is cho-
sen such that this state is orthogonal to the ground state,
R = (ρ2 + z2)1/2, and Rσ = (ρ2 + σ 2z2)1/2. In this study,
we only consider the following states in the calculation:
1s = |1,0,0〉, 2s = |2,0,0〉, 2pz = |2,0,1〉, 2p± = |2,±1,0〉,
3d−2 = |3,−2,0〉, and 4f −3 = |4,−3,0〉. This is because these
lowest impurity states are the most likely to be observed in
experiments, which are the relevant states only needed to study
the RMPE on shallow-impurity states in semiconductors in a
magnetic field [30–32]. In addition, we have found that the
influence of the external fields on the impurity states with
different quantum numbers is similar, so that a similar behavior
of the higher excited impurity states can be observed.

With the variational wave functions given as Eq. (15) and
the Hamiltonian H̃e( �R) shown in Eq. (14), we can derive the
following expressions for the diagonal matrix elements: (1)
for all the shallow-impurity states apart from 2s which can be
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simplified to a twofold numerical integral

〈ψnmp|ψnmp〉 = Q(|m|,p,0), (17)

〈ψnmp|H̃e|ψnmp〉 = [γm + 4ξ (|m| + 1) − ζ 2]Q(|m|,p,0) + 2ζ (|m| + p + 1)Q(|m|,p,−1) + p(1 − p)Q(|m|,p − 1,0)

+
(

γ 2

4
− 4ξ 2

)
Q(|m| + 1,p,0) − 4ξζQ(|m| + 1,p,−1) + W (|m|,p), (18)

where we have defined the function

Q(i,j,k) = (−1)iπ

2i+2j+k

∂i

∂ξ i

∫ ∞

0
dz e−2z(ζ+ξz) ∂2j

∂(ζ + 2ξz)2j

�[k + 2,2z(ζ + 2ξz)]

(ζ + 2ξz)k+2
e2z(ζ+2ξz)

and the functions W (i,j ) induced by the LdCP

W (i,j ) = −8π

∫ ∞

0
dρ ρ2i+1e−2ξρ2

∫ ∞

0
dz z2j e−2ζRW0

with W0 = [1 + 3(8R2a′2 + a′4η2
0)/16(R2 + a′2)2]/(R2 + a′2)1/2 and �(k,z) being the incomplete gamma function; and (2) for

the 2s state which involves two different twofold numerical integrals

〈ψ2s |ψ2s〉 = 4π

∫ ∞

0
dρ ρe−2ξρ2

∫ ∞

0
dz e−2ζR(1 − λRσ )2 (19)

and

〈ψ2s |H̃e|ψ2s〉 = 4π

∫ ∞

0
dρ ρe−2ξρ2

∫ ∞

0
dz e−2ζR(1 − λRσ )

×
{

(1 − λRσ )

[
4ξ − ζ 2 + 2ζ (1 − 2ξρ2)

R
+

(
γ 2

4
− 4ξ 2

)
ρ2 − 2W0

]
+ λσ 2R2

R3
σ

− λ(4ξρ2 − 1)

Rσ

− 2λζRσ

R

}
.

(20)

In addition, here we only need to calculate the energy levels
of shallow-impurity states with m � 0 because of the exact
relation E−|m| = E|m| − 2|m|γ .

The binding energy for the ith [i = (n,m,p)] shallow-
impurity state is defined as follows:

Eb
i = (2N + 1)γ − E

(0)
i , (21)

where N is the Landau level (LL) quantum number of the
system in the presence of the two external fields. For all the
considered states except 2p+, N = 0 corresponds to the first
LL. For the 2p+ state, one has N = 1.

C. Magnetopolaron correction

With the electron wave function, in the presence of a time-
dependent scattering potential V (t) = V eδt , one can derive the
energy shift of the ith state using time-dependent perturbation
theory (TdPT) [48] up to the second order on the scattering
potential

	Ei = Vii +
∑

j

|Vij |2
E

(0)
i − E

(0)
j + ih̄δ

. (22)

Here, V is assumed to be constant and δ is small and positive.
The first and second terms on the right-hand side of Eq. (22),
respectively, correspond to the first- and second-order energy
shifts induced by the scattering potential V (t). It should be
mentioned that δ is not necessarily a real number because
this energy shift can be generalized to a harmonic perturba-

tion. Most importantly, the real part of this energy shift is
associated with the well-known level shift obtained by using
time-independent perturbation theory [48], namely,

Re(	Ei) = Vii +
∑

j

|Vij |2
E

(0)
i − E

(0)
j + 	i

, (23)

where we have introduced an important physical quantity,
namely, 	i in the denominator of Eq. (23). On the one hand,
	i = 0 when δ is infinitesimally small, then the obtained level
shift is equivalent to that obtained from Rayleigh-Schrödinger
perturbation theory (RSPT) which has been widely applied to
evaluate the magnetopolaron correction (MPC) to donor states
in the nonresonant region [30,31,33–35]. On the other hand,
we can reasonably define 	i = Re(	Ei) when δ is a small but
finite quantity, then Eq. (23) is completely in line with the result
obtained from Wigner-Brillouin perturbation theory (WBPT)
which has also been extensively used to investigate the RMPE
of donor states in the resonant region [30,31,33–35].

The MPC to the energy of shallow-impurity states in weak
polar semiconductor systems can be reasonably characterized
by second-order perturbation theory (i.e., RSPT and WBPT).
As a consequence, with the LdIP for the e-p interaction
obtained as Eq. (12) and the trial electron wave functions
given as Eq. (15), the RMPE on shallow-impurity states can
be investigated following the above TdPT in semiconductor
systems under the two external fields. By applying the TdPT
to our case, the MPC of the shallow-impurity energy for the
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ith state is calculated by

	Ei = −
∑
j,n′

∑
�Q

|〈ψj ; �Q|HI |ψi ; �0〉|2J 2
n′ [Z(q)]

h̄ω �Q + n′h̄ω + E
(0)
j − E

(0)
i − 	i

. (24)

Here, 	i = 0 for all shallow-impurity states in the nonresonant
polaron region corresponding to the RSPT, 	2p+ = 	E2p+ −
	E1s for the 2p+ state in the resonant polaron region cor-
responding to the improved WBPT (IWBPT) [30,31,33–35],
and |ψj ; �Q〉 describes a state composed by an electron with
unperturbated energy E

(0)
j and a LO phonon with momentum

h̄ �Q and energy h̄ω �Q. In the presence of an ITLF, the RMPE
on shallow-impurity states in semiconductor systems can be
accompanied by the emission and absorption of photons. In
Eq. (24), n′ > 0, n′ < 0, and n′ = 0 correspond, respectively,
to n-photon absorption, n-photon emission, and elastic-photon
scattering. In the absence of the ITLF (i.e., F0 → 0), due to
limx→0 Jn′ (x) = δn′,0, one has

	Ei = −
∑

j

∑
�Q

|〈ψj ; �Q|HI |ψi ; �0〉|2
h̄ω �Q + E

(0)
j − E

(0)
i − 	i

,

which is the well-known result obtained previously for the
MPC to the energy levels of shallow-impurity states in semi-
conductor systems when only subjected to a static magnetic
field [30,31] using the RSPT and IWBPT.

In order to calculate the MPC to the energy of the ith
shallow-impurity state, in principle, one has to include all
shallow-impurity states in the sum

∑
j in Eq. (24), which is a

formidable task, especially for the polaron nonresonant region
where the sum over the shallow-impurity states converges very
slowly because no single state in this sum dominates. However,
if we limit this sum to a finite number, it will result in a sys-
tematical underestimation of the MPC. Fortunately, it has been
found that we only need to include a few relevant electronic
states to calculate the MPC to the energy of shallow-impurity
states using a method proposed previously [49,50], which has
been extensively and successfully applied to study the RMPE
on shallow-impurity states in semiconductor systems under
magnetic field [30,31].

Following the method described in Refs. [49,50], we can
evaluate the MPC approximately by formally including all
shallow-impurity states in the sum

∑
j , so that Eq. (24) can

be rewritten as

	Ei =−αh̄ωLO −
∑
j,n′

∑
�Q

|〈ψj ; �Q|HI |ψi ; �0〉|2J 2
n′ [Z(q)]

×
(
E

(0)
i + 	i + Q2 − E

(0)
j − n′h̄ω

)2

(h̄ωLO + Q2)2
(
h̄ωLO + n′h̄ω + E

(0)
j − E

(0)
i − 	i

) ,

(25)

where the LO phonon frequency has been considered to be
independent of its wave vector in the long-wavelength range,
say, ω �Q = ωLO. Here, Eq. (25) consists of two terms: the first
−αh̄ωLO is the polaron correction of a free electron in the
field-free case, and the second term is the MPC attributed to the
two external applied fields and depends on the specific shallow-
impurity states. As a result, the calculation of the MPC to the

energy of shallow-impurity states is reduced to the evaluation
of the second term on the right-hand side of Eq. (25).

In the polaron nonresonant region, a similar expression for
the MPC as in Refs. [30,31] can be found,

	Ei = −α(h̄ωLO + Si), (26)

where Si = (2/3)〈ψi |H̃e( �R) − 2V (R; a)|ψi〉, which can be
simplified as

Si = 2

3

(
E

(0)
i + W̃ (|mi |,pi)

〈ψi |ψi〉
)

.

Obviously, the photon process contributes absolutely nothing
towards the MPC in the polaron nonresonant region. Here, E(0)

i

is the unperturbed energy of the ith state obtained by the above
variational method, and the function W̃ (|mi |,pi) is defined as

W̃ (|mi |,pi) = −8π

∫ ∞

0
dρ ρ2|mi |+1e−2ξρ2

∫ ∞

0
dz z2pj

×e−2ζR(1 − λRσ )2W0

for the ith shallow-impurity state with the magnetic quantum
number mi and conserved z-parity quantum number pi .

In the vicinity of the polaron resonant region, the MPC to
the 2p+ state can not be evaluated using Eq. (26). Following
the method used in Refs. [30,31], however, the MPC to the
2p+ state can be calculated as

	E2p+ = 	E2p− −
∑

i=2p±

∑
j,n′

∑
�Q

mi |〈ψj ; �Q|HI |ψi ; �0〉|2

×
(
E

(0)
j + n′h̄ω − E

(0)
i − Q2

)2
J 2

n′[Z(q)]

(h̄ω �Q + Q2)2
(
h̄ω �Q + n′h̄ω + E

(0)
j − E

(0)
i − 	i

) ,

(27)

where 	E2p− is the nonresonant MPC and is obtained from
Eq. (26), mi is the magnetic quantum number of the ith
shallow-impurity state, and the sum

∑
j is limited only to

the relevant shallow-impurity states. In contrast to Eq. (26),
the photon process plays an important role in determining the
MPC to the 2p+ state in this resonant region.

Finally, notice that the band nonparabolicity plays an
important role in the energy levels associated to the shallow-
impurity states in GaAs bulk semiconductors for the case of
high magnetic fields. In order to obtain the energies of the
nonparabolic conduction band Enp from that of a parabolic
conduction band Ep, we use the standard Kane model [51]

Enp = Eg

2

[
−1 +

(
1 + 4

Ep

Eg

)1/2
]
. (28)

Note that this model has been proven to be successful in de-
scribing the band nonparabolicity in GaAs bulk semiconductor
[52] and has been widely used in studying the effects of band
nonparabolicity on the MPC for shallow-impurity states [31].

III. RESULTS AND DISCUSSIONS

The numerical results of this work pertain to the shallow
impurity in GaAs bulk semiconductors. In the numerical calcu-
lations, we take the effective-electron mass m∗ = 0.067 × me
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FIG. 2. The dependence of the binding energy (in units of R∗)
for the ground 1s (blue curve) and excited 2s (green curve), 2p±

(red cure), 2pz (dark blue curve), 3d−2 (dark red curve), and 4f −3

(pink curve) states as a function of the laser-field intensity at fixed
magnetic fields γ = 0.1 (left figure) and γ = 3.0 (right figure) for
three different laser field frequencies: 0.1 THz (solid curve), 1 THz
(dashed curve), and 5 THz (dotted curve). Here, the horizontal dashed
lines represent the shallow-impurity binding energies in the absence
of the ITLFs.

with me being the free-electron mass, the high-frequency
dielectric constant ε = 10.9 when irradiated by ITLFs, and
the band gap Eg = 1520 meV.

In order to check the validity of our results, first we
have calculated the energy levels of a shallow impurity in
GaAs semiconductors only under a static magnetic field with
or without the electron-phonon interaction. The comparison
shows that our results are consistent with those of Ref. [30].
This section is organized as follows. In Secs. III A and III B
we respectively outline the ITLF and magnetic field effects
on the binding energy of the shallow-impurity states and
discuss the related physical reasons in detail. The MPC to the
shallow-impurity states with photon process is discussed in
Sec. III C and the RMPE accompanied by the emission and
absorption of photons is calculated in Sec. III D.

A. ITLF effect on the binding energy
of the shallow-impurity states

The influence of ITLFs on the binding energy of the lowest
states, namely, 1s, 2s, 2p±, 2pz, 3d−2, and 4f −3, in GaAs
semiconductors at fixed magnetic field is shown in Figs. 2 and
3. As a reference we have also plotted the binding energy of the
shallow-impurity states under a static magnetic field indicated
by horizontal dashed lines in these figures. Note that the LdCP
is obviously affected by the electromagnetic fields through
the field parameter a = |r0|[(1 + η2)/2]1/2 ∝ F0/|ω2 − ω2

c | as
reflected in Eq. (11), so that the laser field intensity and
frequency affect the binding energy in an opposite way in the
region away from ωc.

From Fig. 2 it is clear that, in the low laser field intensity
limit, the binding energy is not affected by F0 and remains
the static one as calculated in Ref. [30]. As the laser field

FIG. 3. The dependence of the binding energy for the ground 1s

(blue curve) and excited 2s (green curve), 2p± (red cure), 2pz (dark
blue curve), 3d−2 (dark red curve), and 4f −3 (pink curve) states as a
function of the laser field frequency at fixed magnetic field for different
laser field intensities as indicated. In (c) and (d) the vicinity of the
cyclotron frequency of (b) is enlarged, the dashed horizontal lines
depict the binding energy for the laser-field-free case, and ωc is shown
to indicate the position of the cyclotron frequency.

intensity increases, the shallow-impurity binding energy in-
creases slowly at first, and after it reaches its maximum, which
shifts to higher laser field intensity with an increase of laser
field frequency, the binding energy rapidly decreases with
increasing F0, tending to approach each other, and finally it
decreases to zero in the high laser field intensity limit. This
implies that the shallow impurity has been ionized, which is
opposite to previous results in the absence of magnetic field
[13]. In addition, this nonmonotonic dependence of the binding
energy on F0 is also very different from previous monotonic
behavior of the binding energy only under ITLFs [13–16].

In the region away from ωc, in contrast to Fig. 2, as expected
an opposite nonmonotonic tendency of the binding energy as
function of f is observed in Figs. 3(a) and 3(b). In the vicinity
of ωc, more interestingly, Fig. 3 shows an appreciable effect
of cyclotron motion on the binding energy. In this way, a very
pronounced dip appears exactly at ωc and becomes more and
more significant with increasing F0 except for a special case:
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FIG. 4. Comparison of the bare Coulomb potential (green solid
curve) with the LdCP for a shallow impurity in semiconductors at
fixed magnetic field γ = 0.1 (left figure) and γ = 3 (right figure)
for different laser field intensities when (a) f = 1 THz and (b) f =
8 THz. In (a) a, b, c, and d correspond to the points indicated in
Fig. 2(a) and in (b) the radiation frequency is in the vicinity of ωc,
corresponding to Fig. 3(b). Inset: the region with small R is enlarged.

γ = 3 and F0 = 0.1 kV/cm as seen in Fig. 3(d). In this peculiar
case, on the contrary, the binding energy of the ground state
exhibits an appreciable peak at ωc. It should be pointed out that
such intriguing behavior of the binding energy seen in Fig. 3(d)
is also observed for the other impurity states. Moreover, these
tendencies of the binding energy with f can only be observed
in the Faraday configuration.

For a better understanding of these behaviors of the binding
energy associated with the shallow-impurity states, we have
plotted the LdCP at fixed magnetic field and laser field
frequency for increasing laser field intensity in Fig. 4. In
Fig. 4(a), a (blue dashed curve), b (red dotted curve), c (pink
dashed-dotted-dotted curve), and d (dark yellow dashed-dotted
curve) correspond to points shown in Fig. 2(a), which are
far away from the cyclotron frequency. From Fig. 4(a), it is
clear that the laser field intensity effect on the LdCP can be
reasonably neglected when F0 is less than or equal to that at
point a in Fig. 2(a) with the same magnetic field and radiation
frequency. When F0 changes from a to d, the LdCP is strongly
influenced by the F0 in the short-range interaction strength
while the long-range interaction strength is unaffected. Let us
see in more detail what happens in this short-range interaction
strength region. When F0 changes from a to b, the LdCP
decreases in the region with small R and increases in the
region with large value of R, on average, the average LdCP is
enhanced and reaches its maximum at point b. This is evident
by the fact that the binding energy starts with the static binding
energy and grows to a maximum when F0 increases from a to
b, as shown in Fig. 2(a). After that the average LdCP decreases
with increasing F0 and becomes equivalent to the effect of the
bare Coulomb potential at point c, and then it rapidly decreases.
This is the main reason why the binding energy decreases with
increasing F0 when it varies from b to d, as shown in Fig. 2.

When the radiation field is intense enough [for instance,
when F0 is larger than that at point d in Fig. 2(a) for the same

B and f ], the average LdCP becomes weak enough, so that
the magnetic force becomes much more effective in binding
the electrons in the plane perpendicular to the magnetic field.
In this way, the bound 1s, 2s, 2pz, 2p−, 3d−2, and 4f −3 states
are then just lying below the first LL of a free electron where
the energy levels of different impurity states begin to approach
each other and finally decrease to zero, as shown in Fig. 2.
By considering the definition of the binding energy given in
Eq. (21) and the relation E−|m| = E|m| − 2|m|γ , the binding
energies for the 2p− and 2p+ states are equal to each other
as seen in Fig. 2. Moreover, due to the opposite effect of F0

and f on the LdCP in the region away from ωc, the peak of
the binding energy shifts towards higher F0 with increasing f

as displayed in Fig. 2, which is also the physical reason why
the binding energy exhibits a nonmonotonic function of f in
Figs. 3(a) and 3(b).

In the vicinity of ωc, the variation of the LdCP with F0

is displayed in Fig. 4(b) at fixed γ = 3 and f = 8 THz,
corresponding to the case in the vicinity of ωc as shown
in Fig. 3(b). In this case, obviously, the LdCP can also be
slightly enhanced so long as F0 is weak enough while it
remarkably decreases in high F0. This explains two distinct
opposite tendencies of the binding energy with f as shown
in Fig. 3, namely, a pronounced peak and an appreciable dip
are simultaneously observed at ωc as seen in Figs. 3(a)–3(c)
and 3(d), respectively.

To provide further insights into these behaviors of the bind-
ing energy observed in Figs. 2 and 3, the effective widths of the
wave functions associated with the different shallow-impurity
states are calculated. Within the Ehlotzky approach [7], the
effective widths in the x-y plane and in the z direction can
be calculated as rρ = [〈ρ2/2〉 + a2/2]1/2 and rz = [〈z2〉]1/2,
respectively. We find that rρ is remarkably affected by the
electromagnetic field via the field parameter a. The numerical
results (in units of a0) for the ground state as a function of
laser field intensity and frequency at fixed magnetic field are
displayed in Figs. 5 and 6, respectively. Here, we do not plot the
widths associated with the other states since they have similar
qualitative dependence on the ITLFs as the ground state.

From Figs. 5 and 6 it is clear that the ground state is
unaffected by the ITLFs in the low-F0 limit or in the high-f
limit, i.e., the widths rρ and rz remain the static widths. In
contrast, in the opposite limit of F0 and f , both rρ and rz

for the 1s state exponentially increase and, correspondingly,
the electron wave function is spread out extensively, which
results in an ionization of the shallow impurity (i.e., the
binding energy approaches zero) as shown in Figs. 2 and 3.
Meanwhile, rρ is much larger than rz because the ITLF is
polarized in the x-y plane, which has a direct effect on rρ but
an indirect effect on rz, resulting in a worse localization in
this plane. As we can see clearly from Figs. 5(e)–5(h), both rρ

and rz decrease appreciably at first and after they reach their
minimum, which shifts towards higher F0 with increasing
f , rρ , and rz increase rapidly with increasing F0. In other
words, with increasing F0 the ground state first becomes more
localized, but after a critical value of F0, the ground state
is spread out rapidly, which results in a similar variation of
the binding energy with F0 as shown in Fig. 2. Moreover, an
opposite trend of the localization of the ground state with f is
also observed in Figs. 6(e)–6(h) in the region away from ωc,
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FIG. 5. The widths of the wave function for the 1s ground state
in the x-y plane and in the z direction in units of a0 as function
of the laser field intensity at fixed magnetic field for different laser
field frequencies as indicated. In (e)–(h) the small width regions of
(a)–(d) are enlarged, respectively. The dashed horizontal lines depict
the widths associated with the considered impurity states in the
absence of the ITLFs.

which is the reason why we have a nonmonotonic trend of the
binding energy with f in Figs. 3(a) and 3(b).

In the vicinity of ωc, more interestingly, both rρ and rz

exhibit a peak at ωc except for the case when γ = 3 and
F0 = 0.1 kV/cm where a pronounced dip appears at ωc as
shown in Figs. 6(f) and 6(h). That is to say, the ground state
is more spread out at ωc except for that particular case where
the electron wave function becomes more localized, leading
to two distinct opposite behaviors of the binding energy in
Fig. 3. Moreover, rz exhibits a plateau in the high-F0 limit in
Figs. 5(c) and 5(d), which is due to the fact that the shallow
impurity exhibits a Landau-like state [53] due to the weakness
of the LdCP and F0 has no direct effect on rz.

By comparing Figs. 2–6, one can see that the dependence
of the binding energy on the ITLFs is physically consistent
with the variation of the LdCP and the widths rρ and rz

(i.e., the localization of the shallow-impurity states) with the
ITLFs, namely, these behaviors of the binding energy can be
reasonably understood in terms of the electron-localization
properties in bulk semiconductors which is effectively adjusted

FIG. 6. The widths of the wave function for the ground state in
the x-y plane and in the z direction in units of a0 and as function
of the laser field frequency at fixed magnetic field for different laser
field intensities as indicated. In (e)–(h) the small width regions of
(a)–(d) are enlarged. ωc is shown to indicate the position of the
cyclotron frequency, and the dashed horizontal lines indicate the
widths associated with the considered impurity states in the absence
of the ITLFs.

by the ITLFs through the LdCP. Increasing the LdCP leads to
a decrease of the widths rρ and rz and, correspondingly, to an
increase of the impurity-electron localization and, therefore,
to an increase of the binding energy.

B. Magnetic field effect on the binding energy
of the shallow-impurity states

The binding energy associated with shallow-impurity states
is displayed in Fig. 7 as a function of the magnetic field and
for several values of the laser field intensity at fixed laser
field frequency. It should be pointed out that, when F0 is
low enough (i.e., F0 = 10−5 kV/cm for f = 0.1 THz and
F0 = 10−3 kV/cm for f = 1 THz), the binding energy is
equal to the static one since the effects of the ITLFs can be
neglected in this case. Note that the applied magnetic field
not only influences the LdCP via the field parameter a =
|r0|[(1 + η2)/2]1/2 ∝ F0/|ω2 − ω2

c |, which is similar to the
effect of the laser field frequency on the LdCP, but also results
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FIG. 7. The variation of the binding energy for the 1s ground and
excited 2s, 2p±, 2pz, 3d−2, and 4f −3 states in GaAs semiconductors
as a function of the magnetic field at fixed f = 0.1 THz (top figure)
and f = 1 THz (bottom figure) for different laser field intensities as
indicated. Here, ωc indicates the position of the cyclotron frequency.

in an additional lateral electron confinement, as reflected in
Eq. (14). Consequently, the influence of the magnetic field on
the binding energy is more complicated. Therefore, the widths
rρ and rz for the 1s and 2pz states are displayed in Fig. 8 as
a function of the magnetic field for several values of F0 at
fixed f . Here, we also do not plot the widths for the other
shallow-impurity states since they have similar behaviors as
these two typical states as seen in Fig. 7.

From Fig. 7 it is apparent that the binding energy is an
increasing function of the magnetic field both in the absence
and the presence of the ITLFs, except in the vicinity of ωc

where the binding energy exhibits a appreciable dip at ωc

FIG. 8. The widths of the wave function for the 1s ground and
2pz excited states in the x-y plane and in the z direction in units of
a0 as function of the magnetic field at fixed f = 0.1 THz (top figure)
and f = 1 THz (bottom figure) for different laser field intensities as
indicated. The small width region is enlarged in the insets and ωc

indicates the position of the cyclotron frequency.

and its amplitude increases with increasing F0. The reason
is that both the additional lateral confinement and the LdCP
remarkably increase with increasing magnetic field when it
moves away from ωc, but they rapidly decrease when the
magnetic field moves towards ωc or with further increase of
F0, leading to a nonmonotonic variation of the widths rρ and
rz with f as seen in Fig. 8 and, therefore, to a behavior of the
binding energy as shown in Fig. 7.

From the bottom of Fig. 7, at relatively low radiation levels,
that is, when F0 � 1 kV/cm, the binding energy is smaller
than the static binding energy in the region with small γ and
becomes larger than the static one in the region with large
value of γ . When the radiation field is intense enough (i.e.,
F0 � 50 kV/cm), the binding energy is much smaller than
the static binding energy. Interestingly, at the intermediate
radiation levels (i.e., when 1 kV/cm < F0 < 50 kV/cm), the
binding energy for the 1s and 2s states is smaller than the
static one in the whole range of γ while that for the 2pz, 2p±,
3d−2, and 4f −3 states is smaller in the region with small γ
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FIG. 9. Shifts of the energy levels due to the electron LO phonon
interaction vs the magnetic field for a shallow impurity in GaAs
semiconductors at fixed f = 1 THz for different laser field intensities
as indicated. Here, ωc and αh̄ωLO indicate the position of the cyclotron
frequency and the polaron shift of a free electron in the field-free case,
respectively. Insets: the regions with small γ are enlarged.

and becomes larger in the region with large value of γ with
respect to the static binding energy. In contrast to the bottom of
Fig. 8, these behaviors of the binding energy can be reasonably
explained in terms of the electron-localization properties in our
systems since the change of the binding energy with magnetic
field is also physically consistent with the variation of the
widths with B. In addition, a similar behavior of the binding
energy is also observed in the top of Fig. 7.

C. Magnetopolaron correction

In order to investigate the dependence of the MPC on
the magnetic field, we have used Eq. (27) for the 2p+ state
and Eq. (26) for the other states. For simplicity, we only
consider the case of f = 1 THz with single-photon process
as a representative example.

The MPC to the 1s, 2s, 2p−, 2pz, 3d−2, and 4f −3 states
in low magnetic fields are depicted in Fig. 9 as a function of
the magnetic field for several values of laser field intensity
when f = 1 THz, where the polaron shift of a free electron in
the field-free case, namely, αh̄ωLO as reflected in Eq. (25), is
indicated for reference. As a general feature, |�Ei | � αh̄ωLO

which can be easily proven from Eq. (25). This is due to
the fact that the localization of the wave functions is greatly

FIG. 10. Shifts of the energy levels associated with the 2p+ state
with (green curve) and without (blue curve) single-photon process vs
the magnetic field for a shallow impurity in GaAs at fixed f = 1 THz
for different laser field intensities as indicated. Here, ωc and αh̄ωLO

are shown to indicate the position of the cyclotron frequency and the
polaron shift of a free electron in the field-free case, respectively.

enhanced by the two external applied fields, resulting in a
larger MPC. Significantly, when F0 = 10−3 kV/cm the MPC
is equal to the static one obtained in the absence of ITLF,
which indicates that the effects of the ITLFs on the MPC can
be neglected in this case.

From Fig. 9, it is clear that the MPC is an increasing function
of the magnetic field in the region away from ωc. This is due to
the fact that both the localization of the impurity states and the
interaction strength of the LdIP for e-p coupling increase with
increasing magnetic field when it moves away from ωc. On the
contrary, they rapidly decrease when the magnetic field moves
towards ωc, so that a pronounced dip is observed at ωc in Fig. 9.
However, this dip gradually disappears with increasing F0. The
reason is that at relatively high radiation levels, namely, when
F0 > 1 kV/cm, the difference of the binding energy between
different laser field intensities at ωc decreases with increasing
F0 as shown in the bottom of Fig. 7. Meanwhile, the laser field
intensity plays a more and more important role in determining
the LdIP for e-p interaction with increasing F0, so that the IdIP
is insensitive to the magnetic field in the high-F0 limit, leading
to the same LdIP seen from the electron in this laser-driven
system. In this way, the dip gradually decreases with F0 and
disappears when F0 = 50 kV/cm as seen in Fig. 9.

Figure 9 also shows that the MPC can be effectively adjusted
by the laser field intensity to be red- and blue-shifted with
respect to the static MPC, which is similar to the behaviors
of the binding energy as shown in the bottom of Fig. 7.
However, the quantity of the red- and blue-shift of the MPC
is much smaller than that of the binding energy, which is
due to the fact that the interaction strength of the LdIP for
e-p coupling decreases with increasing F0. In addition, the
influences of F0 on the MPC for the 3d−2 and 4f −3 states
can be almost neglected when F0 � 10 kV/cm as seen in
Figs. 9(e) and 9(f).

Figure 10 shows the explicit dependence of the MPC for
the 2p+ state with (green curve) and without (blue curve) the
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single-photon process on the magnetic field for several values
of the laser field intensity when f = 1 THz. From Fig. 10(a)
it is apparent that the MPC for the 2p+ state without photon
process exhibits a behavior similar to that of the other states
as shown in Fig. 9, which rapidly increases with the magnetic
field for γ > 1.5 since the 2p+ state approaches a resonance
in this case [30].

Moreover, the MPC for the 2p+ state with single-photon
process is equal to that without photon process when F0 =
10−3 kV/cm, which implies that the effects of the photon pro-
cess on the MPC for the 2p+ state can be reasonably neglected
at low F0. With further increase of F0, the MPC, including the
effects of the single-photon process, becomes larger than that
without photon process with increasing magnetic field since a
new channel for the MPC has been opened up by taking into
account the single-photon process.

More interestingly, a pronounced peak appears at ωc and
becomes more and more significant with increasing F0, espe-
cially when F0 � 10 kV/cm as shown in Fig. 10(b). Because in
this case the binding energies for the different impurity states
begin to approach each other in the vicinity of ωc as shown in
the bottom of Fig. 7, so that the polaron resonant region shifts
towards the lower magnetic field by considering the effects of
the photon process as shown in Fig. 10(b). In this way, the new
opened channels play a more predominant role in determining
the MPC for the 2p+ state in the vicinity of ωc with increasing
F0, as reflected in Eq. (27). This explains why we have a
peculiar behavior of the MPC for the 2p+ state in the vicinity of
ωc, which in turn suggests that the action of the photon process
on the MPC of the 2p+ state could be detected in this case.

D. Resonant magnetopolaron effect

The calculated results for the transition energy of 1s → 2s,
2p±, 2pz, 3d−2, and 4f −3 including the effects of the polaron,
single-photon process, and band nonparabolicity (solid curve)
are displayed in Figs. 11–13 as a function of the magnetic
field at fixed f = 1 THz for different laser field intensities, in
which the transition energy only with single-photon process
is indicated by the thin dashed lines as a reference. For
comparison, the results for the transition energies with the
effects of polaron and band nonparabolicity (short dotted-
dashed curve) and with the effects of polaron and single-photon
process (short dotted curve) are also presented in these figures,
respectively. In Figs. 11–13, h̄�± = h̄ωLO ± h̄ω corresponds
to the RMPE accompanied by the absorption (region III)
and emission (region I) of photons and region II corresponds
to the RMPE accompanied by elastic-photon scattering. For
differentiation, moreover, different branches of the 1s → 2p+
transition are marked with different colors in the same region.

From Fig. 11(a) it is clear that, without considering the
effects of single-photon process, near resonance only five
branches of the 1s → 2p+ transition are observed which are
a consequence of the lifting of the E

(0)
2p+ and E

(0)
i + h̄ωLO

(i = 1s, 2p−, 3d−2, 4f −3, 2pz) degeneracies, which is similar
to previous results [30]. In contrast, by including the effects of
single-photon process near resonance, 10 additional branches
of the 1s → 2p+ transition are observed which descend
from the lifting of the E

(0)
2p+ and E

(0)
i + h̄�± (i = 1s, 2p−,

3d−2, 4f −3, 2pz) degeneracies, leading to an appreciable
change of the energy levels of the shallow-impurity states
in the resonant region as shown in Fig. 11(b). Moreover, the
additional branches of the 1s → 2p+ transition can be tuned
to be far away from the reststrahlen band by changing the
radiation frequency.

By comparing Figs. 12 and 13 with Fig. 11, it is apparent
that with increasing F0 similar behaviors for the 1s → 2p+
transition are observed in the resonant region and the charac-
teristic anticrossing behaviors for the additional 1s → 2p+
transition becomes more and more significant when F0 �
10 kV/cm, especially for the branch E

(0)
1s + h̄�− where an

appreciable anticrossing gap is expected. Meanwhile, the
energy levels of the shallow-impurity states change apprecia-
bly near resonance, which is due to the fact that not only the
spectra of the shallow-impurity states, but also the LdIP for
e-p coupling are strongly influenced by the ITLFs. However,
Fig. 13 shows that an ambiguous anticrossing behavior for
the 1s → 2p+ transition can be observed in the high-F0 limit
since the branches of the 1s → 2p+ transition are too close
to be distinguished as shown in the inset of Fig. 13. This
indicates that the laser field intensity and frequency may be
properly chosen to generate the desired results concerning the
RMPE accompanied by emission and absorption of photons
in semiconductor systems. Consequently, these phenomena
can be observed experimentally and in turn provide a tool to
measure the e-p interaction in laser-driven systems.

In the vicinity of ωc, moreover, the 1s → 2s, 2p−, 2pz,
3d−2, and 4f −3 transition energies with (solid curve) and
without (thin dashed curve) polaron correction exhibit a pro-
nounced dip at ωc and their amplitude decrease with increasing
F0 as shown in Figs. 12 and 13. This is due to the fact that both
the binding energy and the MPC have a similar dip at ωc and the
amplitude of this dip for the MPC decreases with increasing
F0 and, importantly, in the vicinity of ωc the dependence of
the binding energy for the 1s state on the laser field intensity
is stronger than that of the other states as seen in the bottom of
Fig. 7. For the same reason, the 1s → 2p+ transition energy
with (solid curve) and without (short dashed-dotted curve) the
effects of photon process also present an appreciable dip at ωc

when F0 = 1 kV/cm as shown in Fig. 12(a) since the effects
of the photon process on the MPC for the 2p+ state are not
clearly seen in Fig. 10(a).

More interestingly, with further increase of F0, this dip
disappears at ωc for the 1s → 2p+ transition energy without
the effects of photon process as shown in Figs. 12(b) and
13. The reason is that both the binding energy and the MPC
for the 1s and 2p+ states have almost the same dependence
on the magnetic field in the vicinity of ωc. On the contrary,
the 1s → 2p+ transition energy including the effects of the
single-photon process presents a dip at ωc and its amplitude
increases with increasing F0 as seen in Figs. 12(b) and 13,
which is a consequence of the fact that the MPC with photon
process to the 2p+ state exhibits an appreciable peak at ωc and
its amplitude increases with F0 as shown in Fig. 10(b).

It is worth to note that, in order to obtain quantitative
agreement between theoretical and experimental results, one
needs to take into account the ITLF effects on the shallow-
impurity states under the ITLFs and magnetic fields [17–23].
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case 1
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case 1

case 4
case 3
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FIG. 11. Transition energy as a function of the magnetic field for several major impurity transitions at fixed f = 1 THz and F0 = 10−3 kV/cm
when the RMPE accompanied by (a) the elastic-photon scattering (region II) and (b) the emission (region I) and absorption (region III) of single
photon. For comparison, we consider the following cases: (1) with the effects of single-photon process (thin dashed curve); (2) with the effects
of polaron and band nonparabolicity (short dotted-dashed curve); (3) with the effects of polaron and single-photon process (short dotted curve);
and (4) with the effects of polaron, single-photon process, and band nonparabolicity (solid curve). Here, h̄�± = h̄ωLO ± h̄ω and ωc indicates
the position of the cyclotron frequency.

Since there are at present no experimental investigations
about the ITLF effects on shallow-impurity states in doped
semiconductors and related nanostructures within the Fara-
day configuration, we are currently not able to compare
our results with experiment. However, the current genera-

tion of FELs can provide intense laser fields in the THz
bandwidth, which makes our theoretical results testable.
We thus hope that the theoretical findings discussed in
this paper can be verified experimentally in the near
future.
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case 1

FIG. 12. Transition energy as a function of the magnetic field for several major impurity transitions at fixed f = 1 THz for (a) F0 = 1 kV/cm
and (b) F0 = 10 kV/cm when the RMPE accompanied by the elastic-photon scattering (region II) and by the emission (region I) and absorption
(region III) of single photon. For comparison, we consider the following cases: (1) with the effects of single-photon process (thin dashed curve);
(2) with the effects of polaron and band nonparabolicity (short dotted-dashed curve); (3) with the effects of polaron and single-photon process
(short dotted curve); and (4) with the effects of polaron, single-photon process, and band nonparabolicity (solid curve). Here, h̄�± = h̄ωLO ± h̄ω

and ωc indicates the position of the cyclotron frequency.

IV. CONCLUSIONS

In this study, within the Faraday configuration, we have
presented a theoretical study of the spectrum of shallow-
impurity states in GaAs semiconductors in the presence of
the ITLFs and magnetic fields. Within the effective-mass and

dipole approximations, the ITLF effects on shallow-impurity
states have been considered within a nonperturbative scheme in
which the ITLF effects are exactly taken into account through
the LdCP for electron-impurity coupling and the LdIP for
e-p coupling. On this basis, we have used the variational
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FIG. 13. The same as Fig. 12 for the laser field intensity F0 =
50 kV/cm. The marked areas are enlarged in the insets.

method to investigate the influence of the external fields on
the energy levels of shallow-impurity states and applied the
TdPT to the theoretical study of the RMPE accompanied by
the emission and absorption of photons. In conjunction with
optical measurements, the binding energy and the internal
transition energy including the effects of polaron, photon
process, and band nonparabolicity have been calculated and
discussed. The main conclusions obtained from this study are
summarized as follows.

We found that the binding energy can be effectively modu-
lated to be larger or smaller than the static binding energy by
changing the ITLF at fixed magnetic field and vice versa, which
is due to the fact that the LdCP can be enhanced or weakened
with an appropriate choice of the two external applied fields,
so that these intriguing behaviors can be understood in terms
of electron-localization properties in this laser-driven systems.
Moreover, a pronounced peak or dip can be observed at ωc with
a proper choice of the laser field intensity. These behaviors
of the binding energy can be only observed in the Faraday
configuration, which stems from the direct mutual coupling
between vector potentials induced by the ITLF and magnetic
field, respectively.

In the nonresonant polaron region, we found that the MPC
to the 1s, 2s, 2p−, 2pz, 3d−2, and 4f −3 states can not only
increase but also decrease with respect to the static MPC by
varying the laser field intensity at fixed laser field frequency,
which is physically consistent with the variation of the binding
energy with magnetic field for different laser field intensities.
On the contrary, the MPC with the effects of single-photon
process to the 2p+ state increases with increasing F0 since
more channels are opened up in this case. Moreover, the MPC
with photon process exhibits a pronounced peak at ωc and its
amplitude increases with increasing F0, which is opposite to
that of the other states.

In the resonant polaron region, 10 additional branches
of the 1s → 2p+ transition were found which stem from
the virtual interaction with the LO phonons accompanied
by the emission and absorption of photons. Moreover, these
additional branches of the 1s → 2p+ transition can be mod-
ulated to be far away from the reststrahlen band by vary-
ing the radiation frequency and an appreciable characteristic
anticrossing behavior can be observed by properly choosing
the laser field intensity and frequency, which indicates that
the RMPE accompanied by the emission and absorption of
photons can be observed experimentally and, in turn, pro-
vides a method to measure the e-p interaction in laser-driven
systems.

The method used in this paper is capable of describing the
correct behavior of shallow impurities in semiconductors and
related nanostructures under the ITLFs and magnetic fields
within the Faraday configuration, which provides a useful tool
to reveal the intriguing properties of semiconductor systems
under the two external applied fields, giving a degree of
freedom that can be used in device applications.
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[32] A. Wysmołek, R. Stȩpniewski, M. Potemski, B. Chwalisz-
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