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We introduce a local order metric (LOM) that measures the degree of order in the neighborhood of an atomic
or molecular site in a condensed medium. The LOM maximizes the overlap between the spatial distribution
of sites belonging to that neighborhood and the corresponding distribution in a suitable reference system. The
LOM takes a value tending to zero for completely disordered environments and tending to one for environments
that perfectly match the reference. The site-averaged LOM and its standard deviation define two scalar order
parameters, S and δS, that characterize with excellent resolution crystals, liquids, and amorphous materials. We
show with molecular dynamics simulations that S, δS, and the LOM provide very insightful information in the
study of structural transformations, such as those occurring when ice spontaneously nucleates from supercooled
water or when a supercooled water sample becomes amorphous upon progressive cooling.
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I. INTRODUCTION

There is great interest in understanding the atomic-scale
transformations in processes such as crystallization, melting,
amorphization, and crystal phase transitions. These processes
occur via concerted motions of the atoms, which are accessible,
in principle, from molecular dynamics simulations but are
often difficult to visualize in view of their complexity. To
gain physical insight in these situations, it is common practice
to map the many-body transformations onto some space of
reduced dimensionality by means of functions of the atomic
coordinates called order parameters (OPs), which measure the
degree of order in a material.

Widely used OPs are the bond order parameters Ql [1] that
measure the global orientational order of a multiatomic system
from the sample average of the spherical harmonics Ylm(r̂)
associated to the bond directions r̂ between neighboring atomic
sites, typically the nearest neighbors. The set of l spherical
harmonics defines an orthonormal basis spanning the (2l + 1)-
dimensional representation of the rotation group SO(3) relating
the irreducible representation of SO(3) and the symmetries
of crystalline structures. The average spherical harmonics
Ȳlm ≡ 〈Ylm(r̂)〉 depend on the choice of the reference frame
but the bond order parameters Ql ≡ [ 4π

2l+1

∑l
m=−l |Ȳlm|2]1/2

are rotationally invariant and encode an intrinsic property of
the medium. The Ql’s take characteristic nonzero values for
crystalline structures, and distinguish unambiguously crystals
from liquids and glasses. In fact, the Ql’s vanish in the
thermodynamic limit for all liquids and glasses, i.e., systems
that lack long-range order and are macroscopically isotropic.
Liquids and glasses, however, can differ among themselves in
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the short- and/or intermediate-range order. Some substances,
such as, e.g., water, exhibit polyamorphism, which means that
they can exist in different amorphous forms depending on the
preparation protocol. In these cases we would need either a
measure of the local order or a measure of the global order that
could recognize different liquids and glasses. A good measure
of the local order is also crucial to analyze heterogeneous
systems, such as, e.g., when different phases coexist in a
nucleation process. Specializing the definition of the bond
order parameters Ql to the local environment of a site j is
straightforward: it simply involves restricting the calculation
of the average spherical harmonics to the environment of
j , obtaining in this way local bond order parameters called
ql(j ) [2]. However, the ql(j )’s have limited resolution and
liquid environments often possess a high degree of local
order that make them rather similar to disordered crystalline
environments [3]. Several approaches have been devised to
improve the resolution of the measures of the local order
[2,4–9]. For example, it has been suggested using combinations
of two or more local OPs [6,8,10–14], but these approaches
may still have difficulties in distinguishing crystalline poly-
morphs such as, e.g., cubic (Ic) and hexagonal (Ih) ices [13]. In
these situations additional analyses may be needed or one may
resort to especially tailored OPs [15]. Examples of the latter
in the context of tetrahedral network forming systems are the
local structure index (LSI) [16,17] and the tetrahedral order
parameter qth [18–20]. The LSI provides the extent to which
the first and the second shells of neighbors of a tagged particle j

are well separated. The qth measures the angles between four
nearest neighbors of a tagged particle j , and compare them
with the angle of an ideal tetrahedron, providing a measure of
the distortion in the first shell of neighbors.

Recently, an alternative approach to measure the local order
in materials has been discussed in the literature, inspired by
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computer science algorithms known as “shape matching” [21].
In these schemes the similarity between an environment and
a reference is gauged by a similarity kernel, or similarity
matrix [22,23], which is often represented in terms of spherical
harmonic expansions that measure angular correlations, in a
way independent of the reference frame. General theories of
the similarity kernel in the context of structure classification
in materials science have been presented in Refs. [23,24].
Approaches based on similarity kernels have been applied
successfully to a number of problems, including studies of
the icosahedral order in polymer-tethered nanospheres [22],
studies of the morphology of nanoparticles [23], models of
self-assembly [21], studies of quasicrystalline and crystalline
phases of densely packed tetrahedra [25], and the prediction of
the atomization energies of small organic molecules [24,26].

The approach that we introduce here belongs to this general
class of methods and is based on a similarity kernel of the
Gaussian type [24] to measure the overlap between a local
structure and an ideal reference. In our scheme, the similarity
kernel is not represented in terms of basis functions like the
spherical harmonics, but is globally maximized by rotating
the local reference after finding an optimal correspondence
between the site indices of the environment and those of the
reference. Specifically, we consider the configurations, i.e., the
site coordinates, of a system of N identical atoms. The M

neighbors of each site define a set of local patterns. The M

corresponding sites of an ideal crystal lattice constitute the
local reference. Typically, we take M equal to the number
of the first and/or the second neighbors at each site. Each
pattern defines not only a set of directions, but also a set of
intersite distances. Under equilibrium conditions the average
nearest-neighbor distance takes the same value, d, throughout
the sample and we set the nearest-neighbor distance in the
reference equal to d. The maximal overlap of pattern and
reference at each site j constitutes our local order metric
(LOM) S(j ).

Since the overlap is maximized with respect to both ro-
tations of the reference and permutations of the site indices,
the LOM is an intrinsic property of each local environment
and is independent of the reference frame. The LOM ap-
proaches its minimum value of zero for completely disordered
environments and approaches its maximum value of one for
environments that perfectly match the reference. The LOM is
an accurate measure of the local order at each site. It allows us
to grade the local environments on a scale of ascending order
defined by the maximal overlap of each environment with the
reference. In terms of the LOM we define two novel global
OPs: the average score S, i.e., the site-averaged LOM, and its
standard deviation δS. S and δS are scalar OPs that characterize
ordered and disordered phases with excellent resolving power.

In the following, we give a quantitative definition of the
LOM and report an algorithm for calculating it. We demon-
strate that this algorithm maximizes the overlap between
pattern and reference in a number of important test cases. Then,
we illustrate how S and δS can be used to characterize solid
and liquid phases of prototypical two- and three-dimensional
Yukawa systems, and of three-dimensional Lennard-Jones
systems. Next, we consider some more complex applications.
In one of them we monitor the structural fluctuations of super-
cooled water at different thermodynamic conditions within the

ST2 model for the intermolecular interactions [27]. In another
we report a molecular dynamics study of the spontaneous
crystallization of supercooled water adopting the mW model
potential for the intermolecular interactions [28], showing that
the LOM and the two global OPs S and δS provide a more
accurate description of the nucleation process than standard
OPs. Finally, we report a molecular dynamics study of the glass
transition in supercooled water within the TIP4P/2005 model
for the intermolecular interactions [29]. This study shows that
the new OPs can detect the environmental signatures of the
freezing of the translational and of the rotational motions of
the molecules.

The paper is organized as follows. In Sec. II we present the
method. Section III reports application to solid-liquid phase
transition. In Sec. IV we apply the method to characterize the
local order in water phases. Crystallization and amorphization
of supercooled water are discussed in Sec. V. Our conclusions
and final remarks are presented in Sec. VI. In the Appendix we
show an extension of our method to a continuous form.

II. METHOD

The local environment of an atomic site j in a snapshot
of a molecular dynamics or Monte Carlo simulation defines a
local pattern formed by M neighboring sites. Typically these
include the first and/or the second neighbors of the site j .
There are N local patterns, one for each atomic site j in
the system. Indicating by Pj

i (i = 1,M) the position vectors
in the laboratory frame of the M neighbors of site j , their
centroid is given by Pj

c ≡ 1
M

∑M
i=1 Pj

i . In the following we refer
the positions of the sites of the pattern to their centroid, i.e.,
Pj

i − Pj
c → Pj

i . The local reference is the set of the same M

neighboring sites in an ideal lattice of choice, the spatial scale
of which is fixed by setting its nearest-neighbor distance equal
to d, the average equilibrium value in the system of interest.
For each atomic site j the centroid of the reference is set to
coincide with the centroid of the pattern, but otherwise the
reference’s orientation is arbitrary. The sites of the pattern and
of the reference are labeled by the indices i of the position
vectors. While the indices of the reference sites are fixed,
any permutation of the indices of the pattern sites is allowed.
We denote by iP the permuted indices of the pattern sites
corresponding to the permutation P (if P is the identical
permutation the pattern indices coincide with those of the
reference). For a given orientation of the reference and a given
permutation of the pattern indices we define the overlap O(j )
between pattern and reference in the j neighborhood by

O(j )[θ,φ,ψ ;P] =
M∏
i=1

exp

(
−

∣∣Pj

iP
− Rj

i

∣∣2

2σ 2M

)
. (1)

Here θ,φ,ψ are Euler angles, and σ is a parameter that controls
the spread of the Gaussian functions. Intuitively, σ should be
of the order of, but smaller than, d for the overlap function to be
able to recognize different environments. In our applications
we adopted the choice σ = d/4, as we found, in several test
cases, that the results are essentially independent of σ when
this belongs to the interval d/4 � σ � d/2. The LOM S(j )
at site j is the maximum of the overlap function O(j ) with
respect to the orientation of the reference and the permutation
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of the pattern indices, i.e.,

S(j ) = max
θ,φ,ψ ;P

O(j )[θ,φ,ψ ;P]. (2)

The LOM is an intrinsic property of the local environment at
variance with the overlap function O(j ) that depends on the
orientation of the reference and on the ordering of the sites in
the pattern. The LOM satisfies the inequalities 0 � S(j ) � 1.
The two limits correspond, respectively, to a completely disor-
dered local pattern [S(j ) → 0] and to an ordered local pattern
perfectly matching the reference [S(j ) → 1]. The LOM grades
each local environment on an increasing scale of local order
from almost zero to one. As a consequence of the point
symmetry of the reference the overlap function defined in
Eq. (1) has multiple equivalent maxima. We present in Sec. II
an effective optimization algorithm to compute S(j ). We define
two global order parameters based on S(j ). One is the average
score S or site-averaged LOM:

S = 1

N

N∑
j=1

S(j ). (3)

The other is the standard deviation of the score that we indicate
by δS:

δS =
√√√√ 1

N

N∑
j=1

[S(j ) − S]2. (4)

In the following sections of the paper we show with numerical
examples that the score S has excellent resolution and is ca-
pable of characterizing with good accuracy the global order of
both crystalline and liquid/amorphous samples. The standard
deviation of the score, δS, provides useful complementary
information and can enhance the sensitivity of the measure
of the global order in the context of structural transformations.

Optimization algorithm

The overlap function O(j ) defined in Eq. (1) has L equiva-
lent maxima. Here L is the number of proper point symmetry
operations of the reference. If a maximum corresponds to the
permutation P̄ of the pattern indices and to the Euler angles
(θ̄ ,φ̄,ψ̄), all the other distinct but equivalent maxima can be
obtained from the known maximum by rotating the reference
from the direction (θ̄ ,φ̄,ψ̄) with the L − 1 point symmetry
operations different from the identity, and by updating corre-
spondingly the permutations of the pattern indices. To compute
S(j ) [Eq. (2)] it is sufficient to locate only one of these maxima.
In view of the point symmetry of the reference, it is sufficient
for that to explore only a fraction 1/L of the Euler angle domain
�, which we may call �/L, the irreducible domain of the Euler
angles. We also notice that O(j ) in Eq. (1) decays rapidly to
zero when the distance between any one of the pattern sites and
the corresponding reference site is sufficiently larger than σ .

For a given reference site i, we define n(i) as the number of
pattern sites whose distance to i is within d/2. Since the pair
distances between reference sites are at least d, the spheres
with radii d/2 centered at each reference site defines a disjoint
set of domains. If n(i) = 1, there exists only one pattern site
k for which dki < d/2. In this case, both i and k are labeled
settled, otherwise both are unsettled.

In order to optimize the overlap function O(j ), we proceed
with the following steps:

(1) We pick at random with uniform probability a point in
the irreducible Euler domain α ∈ �/L. We obtain a permuta-
tion P by the following resorting process: (a) Select a random
index ordering for the pattern sites for the resorting process.
(b) Follow the random index order generated in (a) and assign
the closest unassigned reference site to each subsequent pattern
site. (c) Use the stored correspondence between the reference
and pattern sites in (b) to construct the overall permutation P .

We check for the number of settled sites MP in the reference
by computing the distances between reference and pattern sites.
We then perform conjugate gradient (CG) optimization with
permutation P to obtain a maximum Sj (MP ) with γ being
the corresponding Euler angles. In the case that MP = M , the
permutation is optimized, and Sj (MP ) from CG optimization
therefore gives the global maximum. We store γ , P , and MP
for further comparison.

(2) We pick a new permutation P ′ with the resorting
algorithm and a new point in the irreducible Euler domain
α′ ∈ �/L. We check for the number of settled sites MP ′ in
the reference. (i) If MP ′ < MP , we discard the choice of P ′
and of α′ and repeat step (2). (ii) If MP ′ > MP , we perform
CG and optimize the orientation at γ ′ to reach maximum at
Sj (MP ′). If Sj (MP ′) < Sj (MP ) we discard the choice of P ′
and γ ′. Otherwise, we update them with the current values
[P = P ′, γ = γ ′, and Sj (MP ) = Sj (MP ′)] and in both cases
repeat step (2). (iii) If MP ′ = MP , we check if the set of MP ′

settled indices is the same as the set composing MP . If they
are the same, convergence is achieved. Otherwise, we perform
CG and evaluate Sj (MP ′). If Sj (MP ′) < Sj (MP ) we discard
the choice of γ ′, P ′, and Sj (MP ′), and go back to step (2).
Otherwise, we store them (P = P ′ and γ = γ ′) and go to
step (2).

In our applications involving crystalline phases, we found
that the convergence typically takes five iterations in the
random choice of initial Euler angles, while in liquid cases,
one typically needs around 30 Euler angle choices. On average,
eight CG steps are required to achieve convergence in each
angular optimization, and the execution time is comparable
with a classical MD time step.

To check that the algorithm leads correctly to the maximum
ofO(j ) we made several tests. In some of them we considered a
perfect crystalline environment (at zero temperature) and chose
a reference based on the same crystalline structure. In this
case S(j ) should take the value S(j ) = 1. We found that this
was always the case when starting from random permutations
of the pattern sites and random orientations of the reference.
In other tests we calculated the global maximum for a two-
dimensional liquid. We computed all possible permutations
and selected the one which gives the global maximum, finding
that S(j ) converged always to the global maximum within
the tolerance of the convergence criterion. In other tests we
considered disordered three-dimensional crystalline and liquid
environments at different temperatures. In these cases the
exact values of S(j ) are not known a priori. However, in
all the cases we found that S(j ) converged always to the
same value within the tolerance of the convergence criterion,
independently of the initial random values chosen for the
permutation of the pattern indices and for the orientation of
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FIG. 1. Schematic representation of our approach in an applica-
tion to a 2D Yukawa crystal at kBT /V0 = 0.001. (a) The red spheres
indicate the second shell of neighbors of site j (yellow sphere).
(b) The six blue spheres are the vertices of the reference hexagon. The
green shaded areas represent the Gaussian domains. (c) Optimized
overlay of reference and local patterns.

the reference. In Fig. 1 a two-dimensional crystal with Yukawa
pair interactions is used to illustrate the method. The system
has been equilibrated at finite temperature. As reference we
choose the six sites associated to the second shell of neighbors
in the ideal triangular lattice. The six sites are the vertices of
a regular hexagon. The picture shows (a) a local environment,
(b) the corresponding reference with shaded areas representing
the regions in the neighborhood of the reference selected by σ ,
and (c) the optimal overlap between pattern and reference for
the local environment depicted in (a).

III. APPLICATIONS TO SIMPLE SYSTEMS

As a first application we use the new OPs to analyze
simulations of simple condensed-phase systems at varying
temperature. Initially the temperature is low and the systems
are in the solid state. When the temperature exceeds a certain
threshold, the solid loses mechanical stability and the atomic
dynamics becomes diffusive signaling a transition to the liquid
state. We have considered, in particular, the following systems:
a two-dimensional (2D) system of identical particles with
Yukawa pair interactions, a three-dimensional (3D) system
of identical particles with Yukawa pair interactions, and a
3D system of identical particles with Lennard-Jones pair
interactions. In all cases we find that the new OPs signal the
transition to the liquid state with sensitivity equivalent to that
of popular OPs, like Q6 and its two-dimensional specialization
�6 [30].

FIG. 2. (a) 2D Yukawa system. Profile of S (black dots) and of �6

(red squares) as a function of kBT /V0. The blue dashed lines delimit
the region of instability of the solid phase in the simulation. (b) 2D
Yukawa system. Profile of δS as a function of kBT /V0.

A. Yukawa system in 2D

Here we perform Brownian dynamics simulations of par-
ticles with repulsive pair interactions given by the Yukawa
potential V (r) = V0 exp(−κr)/κr , where r denotes the in-
terparticle separation, and κ is the inverse screening length.
The strength of the interaction is set by the amplitude V0. We
consider a system of 9180 particles in the NV T ensemble with
periodic boundary conditions. We start the simulations from a
perfect triangular lattice. We analyze the degree of local order
as a function of kBT /V0 at the fixed reduced screening length
ρ/κ2 = 0.21, where ρ is the 2D number density. Without loss
of generality we hereby use V0 = 1. Pattern sites comprise
the second shell of neighbors and are compared with the
reference in Fig. 1 for a representative snapshot of the solid at
kBT /V0 = 0.001. Panel (a) of Fig. 2 compares the global OPs
S (black dots) and �6 (red squares). As expected, both S and �6

for the perfect crystal take the value of 1. As T increases, both S

and �6 decrease. In correspondence with the blue dashed lines,
signaling instability of the crystal, both OPs show a quick drop.
In the liquid phase, �6 � 0, as expected, while S keeps a finite
value of S � 0.4, which slightly decreases as the temperature is
further increased. Therefore, both S and �6 identify the phase
transition, but only S is able to quantify the degree of order
remaining in the liquid phase.

The behavior of δS in panel (b) gives further insight on
the solid-liquid transition. δS takes the maximum value in the
crystal at the highest temperature and drops substantially in the
liquid phase. This behavior follows from the nonlinear nature
of the LOM. The liquid phase has more strongly disordered
local patterns with sites often belonging to the tails of the
Gaussian domains in Eq. (1). Site fluctuations in the liquid
weigh less than fluctuations in the solid, where pattern sites
are closer to the centers of the Gaussian domains.

We have observed the same behavior of δS in all the solid-
liquid transitions that we have investigated, namely, δS takes
its maximum value in the hot crystal before the occurrence of
the dynamical instability that signals melting. It is tempting
to notice the similarity of this behavior with Lindemann’s
melting criterion [31], according to which melting occurs when
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FIG. 3. (a) S computed with ideal bcc crystal reference (black
dots), Q6 (red squares), and S computed with fcc reference (green
diamonds), as a function of kBT /V0 for a 3D Yukawa system. (b) δS

corresponding to S with bcc reference for the same Yukawa system.
(c) S (black dots) and Q6 (red squares) as a function of T for a
Lennard-Jones system. (d) δS for the same Lennard-Jones system.
The vertical blue dashed lines delimit the regions of crystal instability
in the simulations.

the average atomic displacement exceeds some fraction of the
interatomic distance. In our approach the dynamic instability
is associated to the largest fluctuation of S.

B. Yukawa and Lennard-Jones systems in 3D

In Fig. 3 we report S and Q6 as a function of the temperature
for a 3D system of identical particles with Yukawa pair
interactions [panels (a) and (b)] and for a 3D system of identical
particles with Lennard-Jones pair interactions [panels (c) and
(d)]. At low temperature the Yukawa system is in the bcc
crystalline phase, whereas the Lennard-Jones system is in
the fcc crystalline phase. In the Yukawa system we use the
pairwise interactions introduced in Sec. III A. We sample the
NV T ensemble with Brownian dynamics. The simulation cell
contains 4394 particles with periodic boundary conditions. The
reference includes the first and the second shell of neighbors
of a perfect bcc lattice for a total of 14 sites. Panel (a) shows
S (black dots) and Q6 (red squares) versus temperature. At

FIG. 4. Local environments in solid and liquid Lennard-Jonesium
at different temperatures. The notation is the same as in Fig. 1.
Neighboring reference sites have been connected by thin lines to
emphasize the structure of the anticuboctahedron.

very low temperatures, S � 1 because reference and pattern
overlap almost perfectly. Increasing the temperature, both OPs
show a quick drop in correspondence with the phase transition
with Q6 → 0 as expected in the liquid phase, and S taking
a value S � 0.4. Like in 2D, both order parameters are able
to identify the phase transition, but S provides quantitative
information on the order present in the liquid, whereas Q6 takes
zero value in all liquids in the thermodynamic limit. It is worth
recalling that local OPs, such as the ql(j ), have difficulties in
identifying the bcc symmetry of hot crystals before melting
[32], because both bcc and fcc have the same point group. Our
approach uses a nonlinear LOM, which can unambiguously
distinguish distorted local bcc structures from distorted local
fcc or hcp structures. To illustrate this statement we report in
the temperature range of crystalline stability in Fig. 3(a) the
profile of S (green diamonds) obtained by using as reference
the first shell of neighbors of the fcc lattice. We notice that
S(bcc) and S(fcc) are well separated in the solid phase even
at the highest temperatures. This result also shows that an a
priori knowledge of the crystalline symmetry is not necessary
in order to discern between different crystals. Panel (b) shows
δS. As in 2D, δS takes its maximum value in the solid phase
before the onset of crystalline instability in the simulation.

In panels (c) and (d) we report the same data for a 3D
system of identical particles interacting with the Lennard-
Jones potential with parameters appropriate to Argon [33]. In
this case we perform Monte Carlo simulations in the NpT

ensemble with a periodic box containing 1372 particles. We
choose as reference the anticuboctahedron, which has 12
vertices, and corresponds to the first shell of neighbors in
the ideal fcc lattice. The temperature variation of S (black
circles) and Q6 (red squares) is shown in panel (c). At very
low temperature, S � 1 due to the nearly perfect overlap of
patterns and reference. S and Q6 are able to distinguish the
crystalline solid from the liquid, and show a substantial drop
in correspondence with the dashed vertical blue lines. In the
liquid, Q6 → 0 as expected, while S remains finite with a value
close to 0.2. Similarly, δS in panel (d) takes its maximum value
in the crystal at the highest temperature.

Representative local environments at different temperatures
around a site indicated by a yellow sphere are shown in Fig. 4:
the environment on the left corresponds to a cold crystal
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(T = 0.2), the one in the middle to a hot crystal (T = 0.6),
and the one on the right to a liquid (T = 1.0). One may notice
the increasing deviation with temperature of the pattern sites
(red spheres) relative to the reference sites (blue spheres). In
the liquid state some of the pattern sites move in the tail region
of the Gaussian domains, causing a drop in both S and δS.

IV. LOCAL STRUCTURES IN WATER PHASES

Molecular systems like water exhibit a rich phase diagram,
with two competitive crystalline phases, cubic (Ic) and hexago-
nal (Ih) ice, respectively, at low pressure. Moreover, metastable
undercooled liquid water transforms continuously with pres-
sure from a low-density form (LDL) to a high-density one
(HDL) [34]. In the following we consider representative Ic and
Ih solids, LDL and HDL liquids at different thermodynamic
conditions.

Water molecules bind together by hydrogen bonds forming
a tetrahedral network connecting neighboring molecules. To
describe this network it is sufficient to consider the molecules
as rigid units centered on the oxygens. The sites that define
the local order are the oxygen sites and application of the
formalism is straightforward. Water structures are dominated
by tetrahedral hydrogen bonds and have similar short-range
order (SRO). The intermediate-range order (IRO) is signifi-
cantly more sensitive to structural changes than the SRO. We
choose, therefore, references associated to the second shell
of neighbors in crystalline ices. In particular, we adopt either
the cuboctahedron (C) or the anticuboctahedron (C̄), both of
which have 12 vertices and correspond to the second shell of
neighbors in cubic and hexagonal ices, respectively. In these
simulations we used the ST2 force field [27] for water with
periodic boundary conditions and adopted the Ewald technique
(with metallic boundaries) to compute the electrostatic sums.

A. Hexagonal and cubic ice

The simulation box for Ic ice is cubic and contains 512
molecules, while that for Ih ice is orthorhombic and con-
tains 768 molecules. We thermally equilibrate both solids via
classical molecular dynamics (MD) simulations in the NpT

ensemble at T = 250 K and p = 1 bar. In panel (a) of Fig. 5
we report the distribution of S with reference C̄ indicated by
SC̄ for cubic (black) and hexagonal (red) ices. In panel (b)
of the same figure, we report the corresponding distributions
of S with reference C indicated by SC . It is clear from
both panels that the distributions based on the two different
references for the same crystal are well separated. Moreover,
the distributions corresponding to the two different crystals are
also well separated irrespective of the reference we use.

One notices in Fig. 5 that the distribution of the order
parameter S is broad when the reference is based on the same
lattice of the pattern, i.e., C̄ for Ih ice and C for Ic ice. The
distribution is instead rather sharp when the C̄ reference is
used to measure Ic patterns or when the C reference is used
to measure Ih patterns. This behavior is a consequence of
the nonlinearity of the LOM. When pattern and reference
correspond to the same crystalline lattice the pattern sites are
closer to the reference sites and small fluctuations in the pattern
cause relatively large variations of the LOM. On the other

FIG. 5. (a) Distribution of S for Ic ice (black) and for Ih ice (red)
with the C̄ reference. (b) Distribution of S for Ic ice (black) and for
Ih ice (red) with the C reference. The C̄ and the C references are
depicted in the upper and in the lower panel, respectively. Spheres
representing oxygen atoms are connected by sticks to emphasize the
cuboctahedron (green) and the anticuboctahedron (blue).

hand, when pattern and reference do not correspond to the same
crystalline lattice, pattern sites deviate more from the reference
sites and small fluctuations in the pattern cause relatively small
variations of the LOM.

B. Low-density and high-density liquid water

We performed MD simulations for water in theNpT ensem-
ble at T = 240 K and p = 1 bar and p = 3 kbar, respectively.
The case with p = 1 bar is representative of a LDL liquid,
while the case with p = 3 kbar is representative of a HDL
liquid. We use a cubic box containing 512 molecules with
periodic boundary conditions.

Resolving the local order in disordered structures, such as
HDL and LDL water, is difficult. Standard local OPs such
as q6(j ) fail in this respect and ad hoc OPs such as the LSI
have been devised for the task. The LSI is sensitive to the
order in the region between the first two coordination shells of
water. In this region the LSI detects the presence of interstitial
molecules, whose population increases as the density or the
pressure increases. While the LSI is an OP especially tailored
for water, S is nonspecific to water but has resolving power
equivalent to that of the LSI in liquid water, as illustrated in
Fig. 6. The two panels in this figure show the distribution
of SC̄ [panel (a)] and of SC [panel (b) for HDL (black) and
LDL (red)]. In both cases the distributions are well separated,
similarly to the LSI distributions shown in the inset in panel (b).
Independently of the adopted reference, S has a higher value in
LDL than in HDL, reflecting the higher degree of order in the
former. By comparing the two panels in Fig. 6 we also see that
both liquids have higher C̄ than C character. Both LDL and
HDL structures are well distinct from the crystalline reference,
and the corresponding broadening of the S distributions is
approximately the same in the two liquids.
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FIG. 6. (a) Distribution of S for HDL water (black) and for LDL
water (red) with the C̄ reference. (b) Distribution of S for HDL water
(black) and for LDL water (red) with the C reference. The C̄ and the
C references are depicted in Fig. 5. The inset shows the distribution
of LSI for HDL water (black) and LDL water (red).

V. CRYSTALLIZATION AND AMORPHIZATION
OF SUPERCOOLED WATER

To further illustrate the power of the LOM and of S and δS

we consider the complex structural rearrangements occurring
in supercooled water during crystallization or when a liquid
sample amorphizes under rapid cooling.

To model crystallization, we consider rigid water molecules
interacting with the mW potential [28]. The mW potential
describes the tetrahedrality of the molecular arrangements,
but does not have charges associated to it missing the
donor/acceptor character of the hydrogen bonds. For that
reason crystallization occurs much faster with mW than with
more realistic potentials that describe more accurately the
hydrogen bonds. At deeply supercooled conditions mW water
crystallizes spontaneously on the time scale of our molecular
dynamics simulations. In spite of the simplified intermolecular
interactions in mW water, ice nucleation is a very complex
process and access to good order parameters is essential to
interpret the simulations.

To model amorphization we adopt the more realistic
TIP4P/2005 potential [29] for the intermolecular interactions.
This potential applies to rigid molecules but takes into account
the charges associated to the hydrogen bonds. This level of
description is important to model the relaxation processes
that occur in a liquid sample undergoing amorphization. The
processes that lead to the freezing of translational and rotational
degrees of freedom in the glass transition are captured well by
our OPs.

A. Crystallization of supercooled water

To study crystallization we performed classical MD sim-
ulations in the NV T ensemble, using 1000 molecules with
interactions described by the mW potential [28] in a par-
allelepipedic box with side length ratios Lz/Lx = 4, Ly/

Lx = 1, and periodic boundary conditions. We set the tem-
perature to T = 200 K and the volume of the box to a
mass density of ρ = 0.98 g/cm3. At these thermodynamic

FIG. 7. Comparison of SC (black), SC̄ (red), and Q6 (green) as
a function of time in the crystallization of 1000 water molecule
interacting via the mW potential. The blue vertical dashed lines
indicate three time frames F1, F2, and F3, respectively.

conditions spontaneous crystal nucleation occurs rapidly in
the mW fluid [28]. The evolution of the water sample starting
from an equilibrated liquid is illustrated in Fig. 7, where we
report the evolution with time of three OPs: Q6 (green line), SC

(black line), and SC̄ (red line), respectively. In this figure we
recognize three time frames separated by the dashed vertical
blue lines and indicated by F1, F2, and F3, respectively. In
F1 the system is liquid but becomes increasingly structured
as indicated by the growth of the three OPs. Microcystallites
keep forming and disappearing. SC and SC̄ are more sensitive
than Q6 to the fluctuations of the local order, as indicated by
the greater fluctuations of the black and red lines relative to
the green line in F1. Interestingly, the liquid has stronger C̄

than C character, in accord with Fig. 6. The relative weight of
the C̄ and C characters reverses as crystallization proceeds. F2
marks the appearance of a stable crystallite that further grows
in the initial stage of F3. This complex kinetics is not captured
by Q6 (green line) which shows only a continuous growth
with time. Instead, both SC and SC̄ identify a plateau in F2, in
correspondence with the formation of a stable crystallite.

The nucleating ice is a mixture of cubic and hexagonal ices,
with a prevalence of the former, as indicated by the larger
overall growth of SC in the simulation. Indeed, during the entire
evolution shown in Fig. 7,SC varies more thanSC̄ . Due toNV T

sampling with periodic boundary conditions, liquid water is
always present in the sample and does not disappear even when
the nucleation process is completed in F3. The residual liquid
water has more C̄ than C character and, therefore, the SC and
the SC̄ profiles should be considered merely as qualitative site-
averaged contours.

More quantitative insight can be extracted from Fig. 8,
where we report the time evolution of the fraction of cubic
and hexagonal sites. This analysis is based on the LOM and
is independent of the reference choice since distributions of
the competing ice and liquid structures in Figs. 5 and 6 do
not overlap. Thus, in the remaining part of this section and
in Sec. V B as well, we use the C reference and omit from S

the corresponding subscript. We introduce two cutoff values,
S1 = 0.6 and S2 = 0.75, to distinguish the local environments.
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FIG. 8. Time evolution during crystallization of mW water of the
relative population of the sites with crystalline Ic character (orange
line) and of the sites with crystalline Ih character, as determined from
the LOM (a) and from q6/w4 (b). See text for a detailed explanation.

If at site j the LOM satisfies Sj < S1 the local environment
is liquidlike, if S1 < Sj < S2 the local environment is ice
hexagonal-like, and if Sj > S2 the local environment is ice
cubiclike. Notice that the results do not depend on the actual
values of the cutoffs S1 and S2 as long as they fall inside
regions where the S distribution has negligible weight. The
time evolution of the fraction of sites with cubic and hexagonal
character resulting from the LOM is reported in panel (a) of
Fig. 8. In the F1 frame both cubic and hexagonal fractions
grow with a slight dominance of the former. This growth is
associated to crystallites that keep forming and disappearing.
In correspondence with the first dashed vertical line the
growth becomes faster for both environments, signaling the
formation of a stable crystalline nucleus with mixed character,
in which Ic and Ih sites are separated by a stacking fault.
At this point hexagonal growth almost entirely stops while
cubic ice continues to grow at a slower pace by incorporating
nearby crystallites with the same character. The stable nucleus
contains approximately 300 out of 1000 sites and takes the
form of a large ice cluster embedded in a dominant liquid
environment. Toward the end of the F2 frame, cubic ice growth
accelerates and, in the early stage of the F3 frame, the size
of the crystalline cluster rapidly reaches the size of the box.
At this point no further growth is possible. In the early stage
of F3 hexagonal growth is significantly less pronounced than
cubic growth and is mainly associated to a visible hump shortly
after the onset of F3. The hump is due to small clusters with
hexagonal character that form on the surface of the large
cubic crystallite, and then rapidly convert to cubic character.
The nucleation ends with the formation of a large crystallite
that spans the size of the box and includes ∼50% of the
available sites. Of the crystalline sites ∼80% have cubic and
∼20% have hexagonal character. The quantitative details of the
nucleation process depend on the MD trajectory. For instance,
the relative fraction of cubic and hexagonal sites changes from
one trajectory to another. Qualitatively, however, the process is
the same in all the 10 trajectories that we have generated. Our
results are quantitatively very similar to a previous analysis

in which cubic and hexagonal sites were identified in terms of
eclipsed and staggered local configurations [35–37]. We report
in panel (b) of Fig. 8 an analysis of the same MD trajectory
of panel (a) using a combination of the two orientational OPs
q6(j ) and w4(j ) [15]. In this approach, q6(j ) is extracted from
the nearest neighbors of a site j and serves to determine the
liquid or the crystalline character of the site. If the site j

is crystalline one assigns to it cubic or hexagonal character
depending on the value of w4(j ), whose computation requires
the first and second neighbors of the site j . The w4(j ) is
sensitive to the symmetries at the IRO of Ic and Ih (fcc and
hcp, respectively) but is not sensitive to the IRO in supercooled
water showing large histogram overlaps [13]. In place of w4(j )
other spherical harmonics based OPs can be utilized, like the
ql(j )’s with odd l’s, but they suffer from the same limitation of
w4(j ) in separating supercooled water from the solid phases.
There are important quantitative differences between panel (a)
and panel (b) of Fig. 8. A major difference is already apparent
in the time frame F1: in panel (b) a significant fraction of the
sites that are considered liquid in panel (a) are classified as
crystalline sites since the very beginning of the trajectory. This
is due to the fact that liquid- and crystal-like configurations
overlap in the q6 distribution. Similarly, the relative fractions of
cubic and hexagonal sites of panel (a) at the end of the trajectory
is not reproduced well in panel (b), again because of the overlap
of cubic and hexagonal configurations in the w4 distribution.

B. Amorphization of supercooled water

To study amorphization, we have performed classical MD
simulations for a system composed of 216 molecules interact-
ing via the TIP4P/2005 potential [29] in a cubic simulation
box with periodic boundary conditions. Starting from an
equilibrated liquid at 240 K and p = 1 bar, we performed
isobaric cooling with a rate of 5 K/ns to generate an amor-
phous ice structure. Given the adopted protocol, this structure
should have similarity to experimentally prepared low-density
amorphous ice structures [38]. Our cooling rate is slightly
higher than the one recently adopted in molecular dynamics
simulations for the same water model [39]. However, our goal
is not to generate a high-quality amorphous structure, but rather
to test whether our approach can be used to study the glass
transition in water. In Fig. 9 we report the evolution of S

[panel (a)] and δS [panel (b)] along the cooling protocol. Both
OPs show a sudden, albeit small, change in correspondence
with the vertical dashed blue lines. The sudden increase of S

indicates a sudden increase of the local order relative to that
of the supercooled liquid. At the same time the sudden drop
of δS indicates reduced fluctuations of the local order relative
to the supercooled liquid. The sharp variation of S and δS

is associated to freezing of the translational motions in the
system. This is illustrated in panel (c) of the same figure in
which we report the standard displacement, i.e., the square
root of the mean-square displacement, of the molecules in a
nanosecond time, measured in units of the bond length (the
nearest-neighbor distance between the oxygen sites). While
for T � 205 K the standard displacement is greater than 1,
indicating that each molecule on average moves by more than
one bond length on a nanosecond time scale, for T � 200 K
the standard displacement drops well below 1, indicating
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FIG. 9. Evolution of S [panel (a)] and δS [panel (b)] during the
water cooling protocol (see text). Inset: evolution of the tetrahedral or-
der parameter qth during the water cooling protocol. Panel (c) reports
the corresponding evolution of the standard molecular displacement
in a nanosecond time in units of the bond length. The dashed vertical
lines delimit the glass transition temperature (Tg) of the simulation.
At T = Tg the translational motions freeze.

translational localization of the molecules. The freezing of
the translational degrees of freedom marks the onset of the
glass transition. The corresponding transition temperature, Tg ,
is located, in our simulation, in the interval bounded by the two
dashed vertical lines. It is quite remarkable that a phenomenon
usually associated with dynamics (viz., the freezing of trans-
lational diffusion) has a clear static counterpart, well captured
by the two OPs based on the LOM. The static signature of
the glass transition is also detected by the average tetrahedral
order parameter q̄th shown in the inset of Fig. 9, but in this
case the effect is weaker as the transition is only signaled by a
change of slope in the temperature variation of q̄th. Given that
q̄th weighs the tetrahedral order of the first shell of neighbors
while the LOM focuses on the second shell of neighbors, we
conclude that the second shell of neighbors provides a more
sensitive gauge of the local order.

By further cooling the system below Tg there is an evident
change of slope in the increase of S with temperature when
T is near 175 K. No corresponding effect can be detected
from the behavior of δS, which takes so small values to have
lost sensitivity. This behavior is associated to the freezing

FIG. 10. Time variation of the dipole autocorrelation function
C(t) in the temperature range T ∈ [200,180] K [panel (a)] and in
the temperature range T ∈ [170,140] K [panel (b)]. Each C(t) curve
is obtained by averaging ten trajectories initiating at times separated
by intervals of 100 ps.

of molecular rotations, as demonstrated in Fig. 10, which
reports the time evolution over 1 ns of C(t) = 〈μ(0)μ(t)〉,
the time autocorrelation function of the molecular dipole μ,
averaged over every ten snapshots. The time decay of C(t)
is associated to rotational relaxation. In panel (a) of Fig. 10
one sees that C(t) decays on the nanosecond time scale when
T � 180 K, whereas forT � 170 K no apparent relaxation can
be detected. We infer that freezing of the rotational degrees
of freedom occurs when T is near 175 K in our simulation.
Similar rotational freezing effects have been inferred in recent
experiments [40].

To get further insight into the relaxation processes as-
sociated to the rotational and translational motions of the
molecules, we analyzed the changes of the hydrogen bond net-
work occurring upon cooling by monitoring the corresponding
changes in the distribution P (n) of the n-member rings in the
network. Here n indicates the number of hydrogen bonds in
a ring. We define hydrogen bonds with the Luzar-Chandler
criterion [41] and follow King’s approach [42] for the ring
statistics. We report P (n) at different temperatures in Fig. 11.
We see that P (n) changes with temperature in the supercooled
liquid [panel (a)] and also in the glass in the range of tempera-
tures between Tg and the temperature of rotational freezing
[panel (b)], but below the latter no further changes in the
topology of the network occur [panel (c)]. As the temperature is
lowered in the supercooled liquid, longer member rings with
n � 8 systematically disappear while the population of six-
andseven-member rings increases, with a prevalence of the
former. Longer member rings are associated to more disordered
local environments with interstitial molecules populating the
region between the first and the second shell of neighbors [43].
Such configurations are typical of molecular environments
with higher number density. As the temperature is lowered in
the supercooled liquid at ambient pressure, this continuously
transforms into a liquid with lower density. In the glass, at
temperatures above rotational freezing, network relaxation still
occurs, again with a reduction in the population of rings with
n � 8, but this time this is accompanied by a reduction of the
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FIG. 11. Ring distribution P (n) in the temperature range T ∈
[240,210] K [panel (a)], in the temperature range T ∈ [200,180] K
[panel (b)], and in the temperature range T ∈ [170,140] K [panel (c)].

population of the sixfold rings and an increase of the population
of the sevenfold rings. This is because the only processes that
can change the network topology in absence of diffusion are
bond switches of the kind described in Ref. [44]. In water these
processes can be generated by rotations of the molecules. For
instance, we found that in a frequent process of this kind two
adjacent rings, a sixfold and an eightfold ring sharing a bond,
transform into two adjacent sevenfold rings sharing a bond.
Finally, at temperatures below rotational freezing the network
topology does not change in the time scale of the simulation.
At these temperatures only local vibrational relaxation occurs.
In a classical system, vibrational disorder diminishes with
temperature as reflected in the increase of S at low temperature
in Fig. 9(a).

VI. CONCLUSIONS

We have introduced a LOM based on a simple measure of
the optimal overlap between local configurations and reference
patterns. In systems made of a repeated unit (atom or molecule)
the LOM leads to the definition of two global order parameters,
S and its spread δS, which have high resolving power and
are very useful to analyze structural changes in computer
simulations, as shown by the examples in Secs. III–V. The
water examples show that the LOM can be used to measure
the local order not only at atomic but also at molecular sites.
Systems made by molecular units more complex than water
could also be analyzed with this technique, while further
generalizations could be envisioned for binary and multinary
systems.

As defined, S and δS are not differentiable functions of
the atomic (molecular) coordinates. This nondifferentiability
stems from two reasons: (1) the M neighbors of a site may
change abruptly in a simulation, and (2) the LOM depends
on the permutations of pattern indices, which is a discrete
variable. Thus S and δS could not be used as such to drive
structural transformations in constrained molecular dynamics
simulations. However, they could be used as collective vari-
ables in Monte Carlo simulations adopting enhanced sampling
techniques, such as umbrella sampling [45], metadynamics

[46], replica exchange [47], etc. A generalization which makes
our approach continuous is presented in the Appendix.
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APPENDIX: A CONTINUOUS GENERALIZATION FOR
FREE ENERGY SAMPLING AND CONSTRAINED

DYNAMICS

In this Appendix, we introduce a generalized version of our
method which makes S suitable for free energy sampling and
to drive structural transformations in constrained simulations.
We have successfully employed this version to sample the
free energy landscape of the Lennard-Jones system reported in
Sec. III B [48], and to drive the transformation of boron-nitrate
nanotubes in ab initio simulations [49].

We add to the M reference sites, Mb sites of the next shell
of neighbors in the crystalline reference structure, and which
serve as a buffer. In order to preserve the one-to-one assignment
between reference and pattern sites, we select the same number
M + Mb of sites surrounding a target particle in the pattern.
We then employ a smooth switching function ωσ (dij ) to weight
the pattern neighbor site i with respect to the center site j via
its radial distance dij . The switching function takes the form

ωσ (dij ) = 1

2
erfc

(
dij − rc

δ

)
, (A1)

where rc is a radial distance that lies between the shell defined
by the M sites and the shell defined by the Mb sites, and δ is
the width of the switching function. In our tests on Lennard-
Jonesium, we have employed δ = σ/2. The switching function
defined in Eq. (A1) causes the weights of the pattern sites to
smoothly vanish as they move beyond the outer shell defined
by the Mb sites.

The generalized LOM at a site j can be expressed in terms
of the following weighted geometric mean:

S(j ) = max
[θ,φ,ψ ;P]

[
exp

{
−

∑
i=1,M+Mb

ωσ (dij )
∣∣Pj

iP
− Rj

i

∣∣2

2σ 2
∑

i=1,M+Mb
ωσ (dij )

]}
.

(A2)

The order parameter S is defined as the site average LOM,
S = 1

N

∑
j S(j ).

With respect to the original formulation, the introduction of
a buffer layer allows more flexibility in the optimization of the
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permutation, which results in a slightly higher score in the case
of liquids, while still preserving excellent resolving power.

This procedure removes the discontinuous behavior in the
original formulation caused by the changes in the list of the
M pattern sites occurring at short time intervals. When such
changes occur in the buffer layer, the leaving particles and the
incoming ones weight very little with respect to the others.

On the other hand, the permutations of pattern indices is a
discrete variable which introduces an intrinsic discontinuity
in the first derivative. Such problem is partially overcome by
our optimization procedure, which makes S(j ) a continuous
and piecewise smooth function. Therefore, this generalized
version can be employed to drive structural transformations
in constrained molecular dynamics simulations.
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