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Thermodynamic entanglement of magnonic condensates
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Over the past decade, significant progress has been achieved to create Bose-Einstein condensates (BECs) of
magnetic excitations, i.e., magnons, at room temperature, which is a novel quantum many-body system with a
strong spin-spin correlation, and contains potential applications in magnonic spintronics. For quantum information
science, the magnonic condensates can become an attractive source of quantum entanglement, which plays a
central role in most of the quantum information processing tasks. Here we theoretically study the entanglement
properties of a magnon gas above and below the condensation temperature. We show that the thermodynamic
entanglement of the spins is a manifestation of the off-diagonal long-range order; the entanglement of the
condensate does not vanish, even if the spins are separated by an infinitely long distance, which is fundamentally
distinct from the normal magnetic ordering below the Curie temperature. In addition, the phase-transition point
occurs when the derivative of the entanglement changes abruptly. These results provide a theoretical foundation
for a future investigation of the magnon BEC in terms of quantum entanglement.
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Introduction. Magnons are the quanta of elementary ex-
citations in magnetically ordered systems and behave like
bosonic quasiparticles. Information can be encoded in the
excited magnons and be transported through the magnonic
spin current. This emerging field, known as magnonic spin-
tronics or magnonics [1–3], finds attractive applications in
information processing due to the zero ohmic loss of magnon
current and long coherence time of magnons in low damping
magnetic insulators [4]. The traditional proposals in magnonics
mainly benefit from the wave nature of magnons [2,5–8],
such as microwave filters, delay lines, and phase conjugators.
However, the quantum nature of magnons has not been fully
explored. The technological challenge in creating a magnon
Bose-Einstein condensate (BEC) is that the magnon number
decreases rapidly as the temperature decreases, and the magnon
density in the ground state is very small. However, several
important experimental progresses have been achieved over
the past decade. In 2000, the BEC of dilute magnons was
proposed to explain the field-induced Néel ordering in the spin-
gap magnetic compound TlCuCl3 [9,10]. In 2006, a magnon
BEC was experimentally realized by parametrically pumping
magnons into a magnetic insulator yttrium iron garnet using a
microwave [11] where the magnon-magnon interaction relaxes
much faster than the magnon-lattice interaction; consequently,
there is a transient time of magnon number conservation, which
provides a prerequisite for magnon BEC. In 2011, a low-
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temperature BEC of magnons was experimentally observed
in gadolinium nanoparticles [12].

Besides, it has been proposed [13,14] that magnon con-
densates can be created through electronic pumping in a
FM/normal metal bilayer where the ground state can maintain
a macroscopic number of strongly correlated magnons. This
system may serve as an excellent platform for studying the
quantum properties of the system, such as spin-spin entangle-
ment [15], which motivates our Rapid Communication.

Entanglement is a measure of quantum correlation between
two or more quantum systems, which has attracted signifi-
cant attention due to its intriguing applications in quantum
information science [16–22]. The studies of entanglement
in condensed-matter physics have become fruitful, covering
many physical aspects. For example, the scaling behavior
of entanglement in the vicinity of the transition point of a
magnetic system [23,24], the entanglement area law in the
superfluid phase of helium-3 [25,26], and the quantification of
entanglement in cold atom many-body systems [27]. However,
entanglement is usually a very fragile quantum property, which
would be eliminated through decoherence, i.e., the interaction
with the environment [28,29].

In this Rapid Communication, we focus on the spin-spin
entanglement in a many-body magnetic system around the
transition temperature of the magnon BEC. We show that the
spin particles can still be entangled in a magnon condensate
even if the spins are separated far apart in the condensate.
This property is a manifestation of the long-range order of the
magnon BEC, and it is very different from the entanglement in
normal condensed systems that decays within the length scale
of the Fermi wavelength [30,31].
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Methodology. Let us start with a group of interacting spins
described by the following Hamiltonian:

H = −J
∑
〈ij〉

Si · Sj −
∑

i

Si · B + Hani, (1)

where Si is the spin operator on the ith site, J is the exchange
constant, and B is an external field. The first term captures the
exchange energy, and the sum is taken for nearest neighbors;
the second term represents the Zeeman energy, and the third
term Hani denotes the anisotropy of the system. The ground
state of Hamiltonian (1) is a ferromagnetic domain where all
the spins align along the direction of the magnetic field.

To take a step further, let us assume that the magnon excita-
tions are dilute, which means that the low-energy excitation can
be described by the bosonic Hamiltonian: H = ∑

q h̄ωqa
†
qaq ,

where h̄ is the Planck constant, ωq is the magnon frequency,
a
†
q, aq are the creation and annihilation operators for magnons

with wave-vector q; they obey the bosonic commutation
relations [aq,a

†
q ′ ] = δqq ′ .

In the following, we first illustrate the theory to deal with
the two-spin entanglement in a spin system containing purely
thermal magnons then generalize the theory to a system with
both thermal and condensed magnons.

A. Thermal magnons. The quantum state of two spins at
the ith and j th cites of the magnetic system can be described
in terms of the reduced density-matrix ρij obtained by tracing
over all the other spins in the ground state. In the standard
basis, (|↑↑〉,|↑↓〉,|↓↑〉,|↓↓〉), the two-spin density matrix can
be written as

ρij =

⎛
⎜⎜⎜⎝

〈κ+
i κ−

j 〉 〈κ+
i σ−

j 〉 〈σ−
i κ+

j 〉 〈σ−
i σ−

j 〉
〈κ+

i σ−
j 〉 〈κ+

i κ−
j 〉 〈σ−

i σ+
j 〉 〈σ−

i κ+
j 〉

〈σ+
i κ+

j 〉 〈σ+
i σ−

j 〉 〈κ−
i κ+

j 〉 〈κ−
i σ−

j 〉
〈σ+

i σ+
j 〉 〈σ+

i κ+
j 〉 〈κ−

i σ+
j 〉 〈κ−

i κ−
j 〉

⎞
⎟⎟⎟⎠, (2)

where κ±
i = 1

2 (1 ± σ z
i ), σ±

i = 1
2 (σx

i ± iσ
y

i ), and σx
i ,σ

y

i ,σ z
i

are the Pauli matrices describing the ith spin. To simplify the
density matrix, we consider the ground state that all the spins
align along the direction of the external field (the z axis) and
the system has a rotational symmetry around the z axis. Then
the density matrix could be simplified as [32,33]

ρij =

⎛
⎜⎝

�00 0 0 0
0 �11 �12 0
0 �12 �22 0
0 0 0 �33

⎞
⎟⎠, (3)

where �00,�11,�12,�22, and �33 are the corresponding ma-
trix elements in matrix (2). The amount of entanglement
between the ith spin and the j th spin can be quantified by
calculating the Wooters’ concurrence defined as [33]

Cij = max(0,λ1 − λ2 − λ3 − λ4), (4)

where λ1,λ2,λ3, and λ4 are the square root of the eigen-
values of ρij [(σy ⊗ σy)ρ∗

ij (σy ⊗ σy)] in a nonincreasing or-
der. Here λ1,2 = √

�11�22 ± |�12|, λ3,4 = √
�00�33, and the

concurrence is given by [34]

Cij = 1

2
max

[
0,

∣∣〈σx
i σ x

j + σ
y

i σ
y

j

〉∣∣
−

√(
1 + 〈

σ z
i σ z

j

〉)2 − 〈
σ z

i + σ z
j

〉2]
. (5)

This expression was consistent with the bispin entanglement
in literature [35].

Now, applying the Holstein-Primakoff transformation
(HPT) for converting spin operators to bosonic oper-

ators [36], S+
i =

√
2S − a

†
i aiai, S−

i = a
†
i

√
2S − a

†
i ai, Sz

i =
S − a

†
i ai , where S±

i = σ±
i /2, Sz

i = σ z
i /2 and ai,a

†
i are the

magnon creation and annihilation operators in real space that
obey bosonic commutation relations, the concurrence can be
reduced to the one-particle reduced density matrix (1-RDM)
of the system [37,38], i.e., Cij = 2〈a†

i aj 〉 (see the Appendix
for details). Here we have assumed that the average magnon
density is very small (〈a†

i ai〉 
 2S) such that it is reasonable
to expand the HPT to the linear order of the magnon creation
(annihilation) operator. Since this approximation is valid for a
magnetic system well below the Curie temperature (Tc), our
results presented below are applicable at this regime. However,
for systems with a strong anisotropy and/or strong applied
fields, the spin-wave gap becomes sufficiently large, limiting
the number of thermal magnons; our results can become
applicable at higher temperatures.

Through a Fourier transform of the magnon operators, i.e.,
ai = 1/

√
Ns

∑
q e−iq·Ri aq , the concurrence is recast in the

following form:

Cij = 2

Ns

∣∣∣∣∣
∑

q

eiq·Rij nq

∣∣∣∣∣, (6)

where Ns is the total number of spins in the system, nq =
〈a†

qaq〉 is the density of magnons with wave-vector q, and
Rij = Rj − Ri is the relative distance between the ith spin
and the j th spin. Translational symmetry of the system is used
in the derivation such that the concurrence only depends on the
relative distance between the two spins. If only one-magnon
excitation is considered nq = 1, then the sum gives zero
entanglement of two different spins in the thermal dynamic
limit, which is qualitatively consistent with the literature [39].
Generally, the magnon distribution obeys the Bose-Einstein
statistics nq = 1/(eh̄ωq/kBT − 1) where the dispersion relation
ωq/γ = Hexq

2 + B + Han, Hex is the exchange field, Han is
the anisotropy field, γ is the gyromagnetic ratio, and kB is the
Boltzmann constant.

In the continuum limit, the sum in Eq. (6) could be replaced
by integral in the momentum space, i.e.,

∑
q → V

∫
4πq2dq.

Given that nq is an even function of q due to the q2 terms in
ωq , the concurrence becomes

Cr = 1

π2r

∣∣∣∣
∫ ∞

0

p sin rp

z0ebp2 − 1
dp

∣∣∣∣, (7)

where p = qd, d is a lattice constant, r = |Rij |, z0 =
exp[h̄γ (B + Han)/(kBT )], b = γHex/(kBT ) = Tc/T , and
Tc = γHex/kB is the approximated Curie temperature. For
small fields and weak anisotropy z0 ≈ 1, the integral can be
evaluated analytically by only considering the excitation of
long-wavelength magnons such that ebp2 ≈ bp2 + b2p4/2,

Cr = 1

2πr

T

Tc

(1 − e−r/ξe ), (8)
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FIG. 1. Concurrence as a function of temperature for r = d (the
blue line), 2d (the yellow line), and 3d (the red line), respectively. The
dashed line represents the reduced number of magnons as a function
of T . The inset shows the concurrence as a function of the distance
between the two spins for T = 0.05Tc (the blue line), 0.10Tc (the
yellow line), and 0.15Tc (the red line), respectively. (b) Concurrence
of nearest spins as a function of temperature for external fields B = 0
(the blue line), 0.001Hex (the yellow line), and 0.01Hex (the red line),
respectively.

where ξe = d
√

Tc/2T is defined as the entanglement length of
the system.

Figure 1 visualizes the temperature dependence of concur-
rence for r = d, 2d, and 3d, respectively. Regardless of the
distance between the two spins, the concurrence is zero at 0 K
and then increases monotonically as the temperature increases.
This is because the spins are perfectly aligned along the z

axis and the bispin state is a separable state |↑↑〉 when T =
0 K. At finite temperatures, the magnons are excited, and the
weighted sum of magnon density gives the amount of two-spin
entanglement as indicated by Eq. (6). According to the Bose-
Einstein statistics, the magnon number decays exponentially
with the magnon energy, then the higher-energy terms gives
a negligible contribution to the concurrence. For low-energy
magnons, the cosine factor in Eq. (6) is almost equal to 1,
and the concurrence is equivalent to the magnon density.
The higher the temperature, the larger the density of low-
energy magnons, hence the larger the two-spin entanglement.
This argument naturally gives an estimate of the concurrence
Cij ≈ 2/N

∑
q nq as shown by a dashed line in Fig. 1(a).

This line roughly captures the temperature dependence of the
entanglement between two nearest spins.

For external fields comparable with kBT /γ, z0 > 1, the
temperature dependence of concurrence could be derived
by calculating the integral Eq. (7) numerically as shown in
Fig. 1(b). The general trend of Cr vs T is not qualitatively al-
tered by the finite fields. Nevertheless, as the field increases, the

entanglement of the two spins decreases and finally approaches
zero for infinitely large fields. This is because the magnon gap
(γB) keeps increasing with the field and it becomes harder
to excite magnons for larger fields, then the two-spin state
approaches a separable state |↑↑〉 with zero entanglement.

B. Condensed magnons. Up to this stage, our theory is
restricted to the magnon’s gas without magnon number con-
servation. To achieve magnon BEC, it is essential to produce
a magnon gas with conserved number of magnons, at least,
temporarily. This may be realized by tuning the magnetic field,
lowering the temperature in some special materials [9,10], and
parametric pumping [11]. To describe a magnon gas with a
fixed magnon number, the Hamiltonian should be modified as
H = ∑

q(h̄ωq − μ)a†
qaq = ∑

q(h̄γHexq
2 − μeff )a

†
qaq , where

μ is the chemical potential and μeff ≡ μ − h̄γ (B + Han) is
the effective potential that subtracts the bottom of the magnon
band. Similar to the BEC of atoms, the number of magnons
in the spin system can be written as the sum of the magnon
number in the ground state and the excited state, i.e. [40],

N = N0 + (4πb)−3/2Nsg3/2(z), (9)

where N0 is the magnon number in the ground state, z =
exp(−μeff ) is the fugacity, and g3/2(z) = ∑∞

k=1 zkk−3/2 is the
Bose-Einstein integral.

Above the critical temperature Tb, the magnon population
in the ground state is neglectable such that N0 
 N , then
N/Ns = (4πb)−3/2g3/2(z). Below Tb, the effective chemical
potential is zero (z = 1), and the occupancy of the ground
state is comparable with the total number of magnons where
the condensation temperature is determined by the equality
N/Ns = (4πbT =Tb

)−3/2g3/2(1). Combining the two limits, the
chemical potential can be readily determined from a set of
self-consistent equations,

μeff = kBT ln z, T = Tb[g3/2(1)/g3/2(z)]2/3, (10)

where the first equation is the definition of fugacity and the
second relation is obtained from the consistent calculation
of magnon density below and above Tb. Once the chemical
potential is determined, the entanglement of two spins could
be calculated through the integral similar to Eq. (7) for T > Tb,

Cr = 1

π2r

∣∣∣∣
∫ ∞

0

p sin rp

z−1ebp2 − 1
dp

∣∣∣∣. (11)

Below Tb, this integral fails since significant numbers of
spins are in the ground state and they have to be considered
separately from the magnons in the excited state. By separating
the magnon number in the ground state from Eq. (11), we obtain

Cr =
∣∣∣∣2N0

Ns

+ 1

π2r

∫ ∞

0+

p sin rp

ebp2 − 1
dp

∣∣∣∣, (12)

where the magnon number in the ground state is N0 = N [1 −
(T/Tb)3/2]. Figure 2 shows the concurrence as a function of
temperature in a system with Tb/Tc = 0.08 (the blue line)
and 0.1 (the yellow line), respectively. The concurrence keeps
decreasing as the temperature increases, and this is a result
of the interplay between thermal and condensed magnons
around the critical temperature and it is quite different from
the magnon gas with unconserved numbers as shown in Fig. 1.
For T < Tb, the condensed magnon density N0/V decreases
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FIG. 2. (a) Concurrence as a function of temperature (the left
axis) for Tb/Tc = 0.08 (the blue line), 0.1 (the yellow line), and
the corresponding slopes of the curve are indicated as dashed
lines. The black dashed lines indicate the position of condensation
temperature (Tb).

with the increase in temperature and results in a decreasing
temperature dependence of concurrence as indicated in the
first term of Eq. (12) whereas the excited magnon density
contributes negatively. The two types of magnons compete
with each other in determining the two-spin entanglement.
The decreasing trend illustrated in Fig. 2 suggests that the
condensed magnons dominate the contribution to concurrence.
For T > Tb, only thermal magnons exist in the system. In this
regime, gν(z) ≈ z, the solution of Eq. (10) gives z−1 ≈ T 3/2

and nq = 1/(z−1ebp2 − 1) ≈ T −1/2, then the magnon density
nq will decrease as temperature increases, and the bispin
entanglement decreases accordingly.

Different from the case of thermal magnons, the entangle-
ment does not disappear when T → 0 for condensed magnons
due to the existence of a finite magnon density under the
influence of external pumping. Furthermore, the temperature
dependence of −dCr/dT is shown as dashed lines in Fig. 2.
It takes on a maximum value at the condensation temperature,
hence the second-order derivative −dC2

r /dT 2 is discontinuous
at Tb. This provides an alternative way to characterize phase
transition between the normal phase and the condensed phase.

Interestingly, the phase transition between the normal phase
and the condensed phase can be also interpreted in terms of
off-diagonal long-range order (ODLRO). Figure 3 shows the
two-spin entanglement/1-RDM (Cij = 2〈a†

i aj 〉) as a function
of the distance between two spins. For T < Tb, the 1-RDM
first decays and then saturates at a finite value as r → ∞.
This behavior testifies to the existence of ODRLO and further
suggests that all the spins become long-range correlated in the
condensed phase. This phenomenon is very similar to the Bose-
Einstein atom condensate and superfluid [38]. For T > Tb,
the 1-RDM approaches zero as r → ∞, hence there is no
ODLRO, and the spins are only correlated in a short range
in the normal phase.

Discussions and Conclusions. First, our results provide
a potential method to access the spin entanglement through
the measurement of magnon density. Previously, the spatial
entanglement of a normal (nonmagnetic) BEC was studied
[41]; there it was proposed that the entanglement can be

FIG. 3. Bispin entanglement as a function of the distance between
two spins at various temperatures T = 0.8Tb (the blue line), 0.9Tb (the
orange line), 1.1Tb (the red line), and 1.3Tb (the cyan line). The dashed
lines indicate the positions of the plateaus for two well-separated
spins.

extracted by interacting with an external probe, which
is inefficient. Here the magnetic degrees of freedom in
the magnon BEC can be directly probed with the current
technology. For example, one can measure the magnon
density in a pumped magnetic system using Brillouin light
scattering [11] or measure the spin-spin entanglement directly
in ultracold systems in an optical lattice [42].

Second, our results should be still valid qualitatively in
the higher temperature for magnetic systems with high Curie
temperature and those materials with large spin-wave gaps
where the excited magnons are still much smaller than the
total number of spins. Then we can predict that the finite
entanglement can survive at the higher temperature and this
may be useful for quantum information science.

In conclusion, we have investigated the two-spin entan-
glement around the critical temperature of a magnon BEC.
The two-spin entanglement could be approximated as the
one-particle reduced density matrix of the system. Under
condensation temperature, the entanglement even exists when
the two spins are separated by an infinitely long distance. This
suggests the existence of ODLRO in the magnon condensate
where the long-range entanglement of spins is determined by
the significant occupation of the ground state. As temperature
increases above the condensation temperature, the ODLRO
vanishes. Around the condensation point, the second-order
derivative of entanglement with temperature takes on a mini-
mum at the condensation temperature, which provides a new
indicator of the phase transition from a normal magnon gas to
a condensed phase.

Note added. Recently, we became aware of a paper [43]
on the study of magnon-magnon entanglement in the magnon
condensates.

Acknowledgments. This Rapid Communication was finan-
cially supported by the National Natural Science Foundation of
China (Grants No. 61704071 and No. 11405093), Natural Sci-
ence Foundation of Guangdong Province (2017B030308003),
the Guangdong Innovative and Entrepreneurial Research

060405-4



THERMODYNAMIC ENTANGLEMENT OF MAGNONIC … PHYSICAL REVIEW B 97, 060405(R) (2018)

Team Program (Grant No. 2016ZT06D348), and the Science
Technology and Innovation Commission of Shenzhen Mu-
nicipality (Grants No. ZDSYS20170303165926217 and No.
JCYJ20170412152620376).

APPENDIX: DERIVATION OF THE
BISPIN ENTANGLEMENT

The bispin entanglement is quantified by the concurrence,

Cij = 1

2
max

(
0,

∣∣〈σx
i σ x

j + σ
y

i σ
y

j

〉∣∣
−

√(
1 + 〈

σ z
i σ z

j

〉)2 − 〈
σ z

i + σ z
j

〉2)
. (A1)

Using the Holstein-Primakoff transformation, S+
i =√

2S − a
†
i aiai ≈ √

2Sai, S−
i =a

†
i

√
2S − a

†
i ai ≈ √

2Sa
†
i , S

z
i =

S − a
†
i ai where long-wave excitation is assumed such that

higher-order terms of ai and a
†
i are disregarded. ai,a

†
i are the

magnon creation and annihilation operators as claimed in the
main text, and we have〈

σx
i σ x

j

〉 = 4
〈
Sx

i S
y

j

〉
= 〈(S†

i + S−
i )(S†

j + S−
j )〉

= 〈(ai + a
†
i )(aj + a

†
j )〉. (A2)

In a similar way, we have

〈
σ

y

i σ
y

j

〉 = −〈(ai − a
†
i )(aj − a

†
j )〉. (A3)

Therefore,

〈
σx

i σ x
j

〉 + 〈
σ

y

i σ
y

j

〉 = 2〈aia
†
j + a

†
i aj 〉. (A4)

Moreover,

(
1 + 〈

σ z
i σ z

j

〉)2 − 〈
σ z

i + σ z
j

〉2
= (1 + 4S2)2 − 4(2S)2 + O(a†

i aia
†
j aj ,a

†
i aia

†
j aja

†
i ai)

= O(a†
i aia

†
j aj ,a

†
i aia

†
j aja

†
i ai)

≈ 0. (A5)

These higher-order terms are not considered in our model
since they are sufficiently small under the long-wave exci-
tation limit as claimed in the main text. Hence, the bispin
entanglement is simplified as Cij ≈ 1

2 (|〈σx
i σ x

j 〉 + 〈σy

i σ
y

j 〉|) =
〈aia

†
j + a

†
i aj 〉 = 2〈aia

†
j 〉 where the symmetry Cij = Cji is

used to guarantee the validity of the last equal sign. This form
is the same as the one-particle density matrix [37].
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