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Finite-temperature dynamic structure factor of the spin-1 XXZ chain with single-ion anisotropy
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Improving matrix-product state techniques based on the purification of the density matrix, we are able to
accurately calculate the finite-temperature dynamic response of the infinite spin-1 XXZ chain with single-ion
anisotropy in the Haldane, large-D, and antiferromagnetic phases. Distinct thermally activated scattering processes
make a significant contribution to the spectral weight in all cases. In the Haldane phase, intraband magnon
scattering is prominent, and the on-site anisotropy causes the magnon to split into singlet and doublet branches.
In the large-D phase response, the intraband signal is separated from an exciton-antiexciton continuum. In the
antiferromagnetic phase, holons are the lowest-lying excitations, with a gap that closes at the transition to the
Haldane state. At finite temperatures, scattering between domain-wall excitations becomes especially important
and strongly enhances the spectral weight for momentum transfer π .
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is perhaps the most fundamental model in the study of low-
dimensional magnetism. Here, the experimentally quite often
realized and, regarding the nature of the excitations, very
different casesS = 1/2 andS = 1 are of particular importance.
Haldane’s conjecture [1] states that, at the isotropic point,
the ground state of a chain with integer spin is gapped
while that of a half-integer spin chain is gapless. Motivated
by this, there has been a continued interest in the distinct
properties of the spin-1 chain. Unlike its spin-1/2 counterpart,
however, for which numerous exact results can be obtained
via the Bethe ansatz, the spin-1 chain is not integrable and
one often has to rely on numerical calculations. Nevertheless,
the ground-state phase diagram of the spin-1 chain is now
well established. For an antiferromagnetic interaction (Jz >

0) and when taking an additional single-ion anisotropy into
account, the model exhibits Haldane, large-D, and antiferro-
magnetic (Néel) phases. These phases are realized by different
compounds with Ni2+ ions, opening up the possibility to
directly compare the theoretical predictions with experimental
data. Examples are Ni(C2H8N2)2NO2(ClO4) (the so-called
NENP) [2,3] and SrNi2V2O8 [4,5] for the Haldane phase,
NiCl24SC(NH2)2 (DTN) [6,7] for the large-D phase, and
NiCl3C6H5CH2CH2NH3 [8] for the antiferromagnetic phase.
Inelastic neutron scattering provides maybe the most com-
prehensive experimental characterization of such materials. In
this case, the measured quantity is the dynamic spin structure
factor which contains detailed information about the systems’
excitation spectrum.

From the theory side, a very reliable calculation of the
magnetic response of one-dimensional spin systems can be
performed, at zero temperature, by means of the numeri-
cal density-matrix renormalization group technique [9,10].

However, to more closely approximate the conditions in real
experiments, it is desirable to take finite-temperature effects
into account, such as the shift and broadening of spectral
lines or the intraband scattering recently predicted for the
Haldane chain with Jz/J = 1 [11]. A standard approach for the
calculation of finite-temperature dynamics is based on evolving
the purification of the density matrix in real time [12,13].
The main limitation of this method is the reachable time
scale because of the entanglement growth out of equilibrium.
A partial remedy for this is given by using time-translation
invariance [14] and a backwards time evolution on the auxiliary
sites [15].

In this Rapid Communication, we combine these techniques
with the infinite boundary conditions (IBCs) originally in-
troduced for zero-temperature calculations [16–18], to obtain
the finite-temperature, momentum- and energy-resolved spin
structure factor of the anisotropic spin-1 chain directly in the
thermodynamic limit. An improved scheme for the evaluation
of the time-dependent correlation functions thereby allows us
to significantly reduce the numerical effort when exploiting
time-translation invariance.

Hereinafter, we will first recapitulate the main previous
results for the antiferromagnetic spin-1 chain with single-ion
anisotropy. Then our numerical approach will be outlined, and
finally we will present and discuss our findings for the dynamic
spin structure factor in three different parameter regimes,
corresponding to the Haldane, large-D, and antiferromagnetic
quantum phases.

The Hamilton operator of the spin-1 XXZ chain with single-
ion anisotropy D is

Ĥ = ĤXXZ + D
∑

j

(
Ŝz

j

)2
. (2)

Assuming a positive exchange parameter J > 0, the ground-
state phase diagram of the model (2) for Jz/J > 0 consists
of three gapped phases [19]. At the isotropic point (D =
0, Jz/J = 1), the ground state belongs to the symmetry-
protected topological Haldane phase [20,21]. A transition
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to the topologically trivial large-D phase that includes the
product state with Sz = 0 at every site takes place for strong
on-site positive anisotropy D/J . Lastly, a long-range ordered
antiferromagnetic phase exists at negative D/J or exchange
anisotropy Jz > J .

Tackling (2) at finite temperatures T = 1/β, within the
so-called purification method, the density matrix ρ of the
system is regarded as the reduced density matrix of a pure
state |ψ〉 in an enlarged Hilbert space with twice as many
sites, ρ = TrQ|ψ〉〈ψ〉, where trace is taken over the space
Q spanned by the auxiliary sites. To obtain the equilibrium
density matrix at T , one first constructs a matrix-product state
(MPS) representation of a state |ψ∞〉 corresponding to the
infinite-temperature density matrix and then carries out an
imaginary time evolution |ψβ〉 = e−βĤ/2|ψ∞〉 on the physical
subsystem. A possible choice for |ψ∞〉 in the grand canonical
ensemble is a state where each physical site is in a maximally
entangled state with an auxiliary site. When the physical and
auxiliary sites are arranged alternately, such a state has a simple
MPS representation that can be easily constructed. Then, for
any nearest-neighbor Hamiltonian, the time evolution can be
carried out with, for example, a Suzuki-Trotter decomposition
and swap gates [22].

To avoid boundary effects, the purification method can be
applied directly in the thermodynamic limit by using infinite
MPS (iMPS) that are invariant under the translation by a
unit cell. This also reduces the number of MPS parameters
since only a small unit cell is needed. For the time evolution,
one can employ the infinite time-evolving block decimation
method [23,24]. However, since the imaginary time evolution
is not unitary, the canonical form of the iMPS is lost after
each time step, which leads to a rapidly growing error due
to large truncations. One should therefore make use of a
reorthogonalization procedure [25] to restore the canonical
form.

Dynamic properties can be calculated similarly to the T = 0
case by switching to real-time evolution, but a fast growth
of the entanglement usually restricts the simulations to short
time scales. Several methods have been devised to extend
the range of the simulations. A significant improvement is
achieved evolving the auxiliary system in reverse time to
slow down the entanglement growth [15]. Additionally, time-
translation invariance can be used to spread the time evolution
to two MPS and increase the simulated time approximately
by a factor of 2 [14,15]. In equilibrium, the reverse time
evolution on the auxiliary system completely cancels the effect
of the physical time evolution for any inverse temperature
β. When a local perturbation is applied to |ψβ〉, only the
tensors of the MPS in the region over which the perturbation
has spread need to be updated during the time evolution. It
is therefore possible to use IBCs to avoid finite-size effects
in the calculation of dynamic correlation functions. IBCs are
also advantageous when calculating correlation functions by
using time-translation invariance. In that case, both operators
are fixed so that a separate simulation would be necessary for
each distance if open boundary conditions are used. For IBCs,
however, we can exploit the spatial translation invariance to
shift both states relative to each other and obtain the correlation
function at arbitrary distance. An MPS with IBCs can be

FIG. 1. Graphical representation of Eq. (4). The blue symbols
represent the tensors in the finite window that distinguishes between
|ψA〉 and |ψB〉 while the gray tensors represent the iMPS unit cell.

written as

|ψ〉 =
∑

σ

· · · ��σ0A[1]σ1 · · ·A[N]σN �σN+1� · · · |σ 〉, (3)

where σj labels the basis states of the local Hilbert space at site
j . The infinitely repeated iMPS unit cell is defined by � and �,
and only the tensors A[j ] in a finite window are updated during
the time evolution. For two different states |ψA〉 and |ψB〉 with
tensors A[j ] and B[j ], respectively, and the same iMPS unit
cell, we have

〈ψB |T̂−r |ψA〉 =
∑
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(4)

where T̂r is the translation operator for a shift by r sites and
N is the number of sites in the window. Graphically, this can
be represented as shown in Fig. 1. To calculate the dynamic
correlation function for some operator Ô, one can identify
|ψA〉 = e−i(t/2)Ĥ Ôj |ψβ〉 and |ψB〉 = e+i(t/2)Ĥ Ôj |ψβ〉 so that
Eq. (4) gives 〈Ô†

j+r (t)Ôj (0)〉, provided one also applies the
auxiliary time evolution. In our simulations, the expectation
values are taken in the grand canonical ensemble. While we
restrict ourselves to gapped phases, the purification method
can be applied to gapless phases as well. In that case, the bond
dimension required to approximate the equilibrium density
matrix with a fixed accuracy would scale polynomially with
the inverse temperature β instead of saturating at large β as for
gapped phases [26].

The longitudinal and transversal dynamic spin structures
factors we are interested in are defined as

Szz(k,ω) =
∫ ∞

−∞
dt

∑
r

ei(kr−ωt)
〈
Ŝz

j+r (t)Ŝz
j (0)

〉
, (5)

S+−(k,ω) = 1

2

∫ ∞

−∞
dt

∑
r

ei(kr−ωt)〈Ŝ+
j+r (t)Ŝ−

j (0)〉. (6)

We calculate the time-dependent correlation functions in
Eqs. (5) and (6) with the method described above and, to reach
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FIG. 2. Finite-temperature dynamic structure factor in the Hal-
dane phase (Jz = J ) in units of J −1. The temperature T/J = 0.4; the
on-site anisotropy D/J = −0.04 in (a), (b) and D/J = 0.2 in (c),
(d). All spectral functions are convoluted with a Gaussian of width
0.1J .

a higher resolution, extrapolate the data to larger times using
linear prediction [10]. The MPS simulations usually take a
couple of days to finish on a modern cluster when using a
parallel time-evolving block decimation implementation.

For the Haldane phase, we assume an isotropic ex-
change (Jz/J = 1) and two realistic values of the single-ion
anisotropy, D/J = −0.04 and D/J = 0.2, corresponding to
the compounds SrNi2V2O8 [5] and NENP [27], respectively.
Since these values are close to the isotropic point already
studied in Ref. [11], we restrict ourselves to a single inter-
mediate temperature T/J = 0.4. Figure 2 gives the results for
the dynamic structure factors (5) and (6) (see also Ref. [28] for
constant-momentum cuts). The on-site anisotropy causes the
magnon to split into a singlet branch (Sz = 0) and a doublet
branch (Sz = ±1), which show up in Szz(k,ω) and S+−(k,ω),
respectively. For positive D, the singlet gap is larger than the
doublet gap, while the situation is reversed for negative D. At
finite temperature, there is an additional spectral weight below
the magnon bands, which in the longitudinal (transversal)
structure factor is caused by intraband (interband) scattering.
The splitting of the magnon branch shifts the position of
the interband signal in S+−(k,ω) compared to the intraband
response seen in Szz(k,ω), so that the spectral weight for zero
momentum transfer is centered at a small finite energy. For
the considered D values we find only a small effect of the
anisotropy and essentially reproduce the result of Ref. [11]
with the system size L = 32 and open boundary conditions.
Note, however, that the edge-state modes of Ref. [11] are absent
because our simulations are done in the thermodynamic limit.

We now choose an anisotropy D/J = 2 strong enough for
the system to be in the topologically trivial large-D phase
(see Fig. 3). The lowest-lying excitations in the large-D phase
can be viewed as single up or down spins that move in a

FIG. 3. Dynamic spin structure factor in the large-D phase for
D/J = 2. Again, Jz/J = 1. (a), (b) Zero-temperature data obtained
by pure-state MPS techniques are contrasted with the results for (c),
(d) T/J = 0.4 and (e), (f) 1.

background of sites with Sz = 0. These excitations have been
called excitons and antiexcitons [29]. At zero temperature, the
longitudinal structure factor Szz(k,ω) consists of an exciton-
antiexciton continuum and possibly a bound state due to the
attractive interaction between opposite spins [29]. For the
parameters taken in Fig. 3, a bound state occurs at momenta k �
π/2. When the temperature is increased, the dynamic structure
factor broadens and the contributions of the bound state and the
continuum become indistinguishable. Similar to the thermal
intraband magnon scattering in the Haldane phase, intraband
scattering of excitons and antiexcitons at finite temperature
produces additional spectral weight at low energies that is
separated from the exciton-antiexciton continuum. When D/J

is lowered, the single-exciton gap decreases, which results in
a smaller distance between the intraband-scattering peak and
the exciton-antiexciton continuum. In the zero-temperature
transversal structure factor S+−(k,ω), most of the spectral
weight is concentrated in the single-exciton branch that lies
below the three-particle continuum. At finite temperature, the
single-exciton line broadens and eventually merges with the
continuum. Since only matrix elements between states whose
total Sz differ by one contribute to S+−(k,ω), no intraband
scattering is observed in the transversal structure factor. For
small momenta k ≈ 0, however, an additional peak appears
slightly below the single-exciton line that is likely caused by
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FIG. 4. Dynamic spin structure factor in the antiferromagnetic
phase. Model parameters are D/J = 0.2 and Jz/J = 2. We use
T/J = 0, 0.4, and 1 as in Fig. 3.

transitions between excitons and exciton-antiexciton bound
states.

For the dynamic magnetic response in the antiferromagnetic
phase, both magnons and domain-wall excitations that connect
two parts of the chain with different antiferromagnetic order
are relevant. Following Ref. [30], we call these domain-wall
states holons and spinons. The spin configuration of a holon
(spinon) state can be schematically written as | · · · + − + σ −
+ − · · · 〉 with σ = 0 (σ = ±1), where 0 denotes a site with
Sz = 0 and ± a site with Sz = ±1. Holons are the lowest-
lying excitations and their energy gap closes at the transition
to the Haldane phase [30]. Scattering between domain-wall

excitations becomes important at finite temperature, similar
to the Villain mode [31] in the antiferromagnetic phase of
spin-1/2 chains. The MPS simulations take states with an odd
number of domain walls into account. In principle, it should be
possible to exclude these states from the calculation by adding
a small staggered magnetic field.

Figure 4 shows the dynamic spin structure factors for
D/J = 0.2 and Jz/J = 2. In the zero-temperature longitu-
dinal structure factor Szz(k,ω), a bound state can be seen for
k � π/2. It merges with the two-holon continuum for higher
momenta. The small spectral weight above the bound state
for k � π/2 corresponds to the two-spinon continuum. At
finite temperatures, additional spectral weight shows up at
low energies, which again can be related to intraband scat-
tering. Holons are expected to provide the largest contribution.
Most strikingly, the thermal intraband scattering leads to a
strong increase of the longitudinal structure factor Szz(k,ω)
around k = π and ω = 0 [see Figs. 4(c) and 4(e)]. When
the temperature is increased, two separate peaks below the
zero-temperature response become visible. From the disper-
sion relations of these excitations, one can deduce that the
upper peak corresponds to holon intraband scattering and the
lower one to either spinon or magnon intraband scattering.
The transversal structure factor S+−(k,ω) at zero temperature
consists primarily of the single-magnon line and the spinon-
holon continuum. Additional low-energy contributions occur
for finite temperature. At low temperatures, the scattering
between holons and spinons should be most significant. The
momentum dependence of the spectral weight is weaker than
for the intraband holon-scattering signal in Szz(k,ω).

To summarize, applying infinite boundary conditions to the
time-dependent density-matrix renormalization group tech-
nique at finite temperatures, the dynamic spin structure factor
has been analyzed for the Haldane, large-D, and antiferro-
magnetic (Néel) phases of the spin-1 XXZ chain with on-site
anisotropy. In each case, the finite-temperature result differs
markedly from the one at zero temperature because of ther-
mally activated scattering processes. Our results reveal that fur-
ther high-resolution inelastic neutron scattering experiments
would be highly desirable to detect the thermally enhanced
spectral weight and prove the differences in the magnetic
response between the various spin-1 chain compounds.

MPS simulations were performed using the ITensor library
[32]. F.L. was supported by Deutsche Forschungsgemeinschaft
through Project No. FE 398/8-1.
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