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Dynamical topological invariant after a quantum quench
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We show how to define a dynamical topological invariant for one-dimensional two-band topological systems
after a quantum quench. By analyzing general two-band models of topological insulators, we demonstrate that
the reduced momentum-time manifold can be viewed as a series of submanifolds S2, and thus we are able to
define a dynamical topological invariant on each of the spheres. We also unveil the intrinsic relation between
the dynamical topological invariant and the difference in the topological invariant of the initial and final static
Hamiltonian. By considering some concrete examples, we illustrate the calculation of the dynamical topological
invariant and its geometrical meaning explicitly.
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Introduction. In the last decade, the study of topolog-
ical quantum matter is one of the most attractive topics
in condensed matter physics [1–5], and our knowledge of
topological properties for various quantum systems has been
widely expanded. In contrast to equilibrium systems, what we
know about topological quantum matter out of equilibrium is
quite rare [6]. Topology properties far from equilibrium have
been studied in different ways, such as the dynamics of edge
states [7–9], dynamical quantum phase transitions [10–12],
Floquet topological states [13–15], etc. The rapid development
of cold atom experiments provides a powerful tool to study the
dynamics far from equilibrium [16–19], and the evolution of
a quantum state can be visualized with the method of Bloch
state tomography [20–22].

A typical example of dynamics far from equilibrium is the
quantum quench. Initially, the state is prepared in the ground
state of Hamiltonian Hi , and then a quench to the system
is carried out by suddenly changing a physical parameter,
denoted by a new Hamiltonian Hf . It is known that the
topological invariant will remain unchanged because the time
evolution operator is unitary [23–25], and the topology of
the final Hamiltonian does not influence the topology of the
time-evolved state. However, the nonequilibrium topological
response is found to exhibit some novel properties with no
equilibrium analog [26–29]. Also, it has recently been shown
that the topology of the final Hamiltonian can be reflected
by the Hopf invariant in a two-dimensional (2D) Chern in-
sulator [25,30,31], which gives a first example in defining the
topological invariant far from equilibrium. It is still a challenge
to understand how to explore the nontrivial topology properties
of a dynamic system in a general way.

In this Rapid Communication, we study general two-
band nonequilibrium systems in one dimension (1D), and
extract a dynamical topological invariant defined on the
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momentum-time manifold. A 2D torus T 2 composed of mo-
mentum and time can be reduced into a series of spheres (S2),
and a dynamical Chern number is achieved from each of the
spheres. This Chern number measures how many times the
Bloch sphere is covered when the time-evolved Bloch vector
winds over the corresponding sphere. We also analyze the
intrinsic relation between the dynamical topological invariant
and the topology of Hi and Hf in equilibrium and give some
examples to explain our results. At last, we point out that a dy-
namical topological invariant can be visualized experimentally.

Model and quench dynamics. We consider a general 1D
two-band tight-binding model, and at each momentum k the
Hamiltonian is described by

h(k) = d0(k)I + d(k) · σ , (1)

where I is the 2 × 2 identity matrix and σ = (σx,σy,σz) are
Pauli matrices acting on a (pseudo) spin-1/2 space. This model
can be used to describe a variety of topological insulators
and superconductors, for example, the Su-Schrieffer-Hegger
(SSH) model [32] and the p-wave Kitaev chain [33]. The
eigenvalues are given by

ε±(k) = d0(k) ± |d(k)|, (2)

and we denote the eigenvectors as |ψ±(k)〉. For convenience,
we use the corresponding density matrices instead of the state
vectors, which read

ρ̂±(k) = |ψ±(k)〉〈ψ±(k)| = 1
2 [1 ± d̂(k) · σ ], (3)

where d̂(k) = d(k)
|d(k)| is the normalized vector localized on the

Bloch sphere S2. The topological invariant of the system can
be calculated with the information of d̂(k) for both Z and Z2

types in one dimension [5].
Now, we study the dynamical properties of the system far

from equilibrium. By preparing the system in the ground state
of the initial Hamiltonian hi , i.e., ρi(k) = 1

2 [1 − d̂i(k) · σ ], and

2469-9950/2018/97(6)/060304(5) 060304-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.060304&domain=pdf&date_stamp=2018-02-26
https://doi.org/10.1103/PhysRevB.97.060304


CHAO YANG, LINHU LI, AND SHU CHEN PHYSICAL REVIEW B 97, 060304(R) (2018)

k t
1k k=

2k k=

1 2k k π= +

FIG. 1. Scheme of the momentum-time manifold. In the left
figure, for any fixed momentum k, the cross section can be viewed
as a circle S1 where the azimuthal angle represents the time t .
After gluing k = 0 and k = 2π (saffron circles), the topology of the
momentum-time manifold becomes T 2. If there are two fixed points
k = k1 and k2, the corresponding circle contracts to a point, then the
momentum-time manifold can be reduced to a series of spheres S2.

then performing a sudden quench to the final Hamiltonian hf ,
the evolution of density matrices can be written as

ρ(k,t) = 1
2 [1 − d̂(k,t) · σ ], (4)

with d̂(k,t) achieved from the Liouville–von Neumann equa-
tion,

d̂(k,t) = d̂i cos(2|df |t) + 2d̂f
(
d̂i · d̂f

)
sin2(|df |t)

+ d̂i × d̂f sin(2|df |t), (5)

where d̂i and d̂f are Bloch vectors of the initial and final
Hamiltonians [34], both of them being functions of momentum
k. Equation (5) can be interpreted as the winding of d̂ from
the initial vector d̂i around the axis d̂f on the Bloch sphere
during the evolution process. The Berry phase of the time-
dependent wave function does not change after taking a global
quench due to the evolution being unitary [23], hence it cannot
characterize the topological difference between Hi and Hf .
In the following, we shall explore how to define a unique
topological quantity to characterize topologically different
quench dynamics.

General definition of dynamical topological invariant. To
unveil the dynamical properties after a sudden quench, we first
study a manifold composed of momentum and time. In general,
the 1D Brillouin zone (BZ) has a topology S1. Furthermore,
it can be seen from Eq. (5) that the time evolution of density
matrices has a periodicity π

|df | for each momentum k. After
rescaling the time t ′ = t

|df | , the topology of time can be viewed

as S1, hence the total momentum-time manifold has a topology
T 2, as shown in the left column of Fig. 1.

However, the momentum-time manifold is more com-
plicated for topologically nontrivial 1D systems. Suppose
that there exist some momenta, at which di(k) are parallel
or antiparallel to df (k), then the Bloch vectors d̂(k,t) will

remain at the initial points di(k) according to Eq. (5), and the
corresponding eigenvectors |ψ−(k)〉 will not evolve with time
apart from a global phase. For topologically nontrivial systems,
there must exist some “fixed points,” which are ensured by
symmetries protecting the 1D topological state, as will be
further clarified later in specific cases belonging to different
symmetry classes. In the right column in Fig. 1, we assume
k = k1 and k2 are fixed points, at which the time axis can be
contracted to a point as the Bloch vectors keep still during
the time evolution. Therefore, the topology of the momentum-
time manifold is reduced to two spheres [35]. In general, if
there are N fixed points in a BZ, the momentum-time manifold
T 2 can be reduced to N submanifolds, each of them having a
topology S2.

Now, we naturally have a map from each momentum-time
submanifold to the Bloch vector d̂(k,t), which is S2 → S2, and
then we can define a Chern number,

Cm
dyn = 1

4π

∫ km+1

km

dk

∫ π

0
dt ′(d̂ × ∂t ′ d̂) · ∂k,d̂, (6)

where m = 1,2, . . . ,N denotes the mth submanifold, km de-
notes the mth fixed point, and kN+1 = k1 + 2π is the same
point modulo 2π . Hence the integral is an integer and it
measures how many times the Bloch vectors cover the unit
sphere.

By a straightforward calculation [34], the dynamical topo-
logical invariant can be written as

Cm
dyn = 1

2

(
cos θk=km

− cos θk=km+1

)
, (7)

where θk is the included angle between d̂i(k) and d̂f (k). This
invariant only contains the information about the fixed points
k = km and k = km+1, and depends only on the included angle
of the initial and final Hamiltonian. Exchanging the initial and
final parameters di(f ) → df (i) will not affect the dynamical
topological invariant. On the other hand, the included angle θkm

can only take a value 0 or π as di(k) is parallel or antiparallel
to df (k), hence the dynamical topological invariant can only
be Cm

dyn = 0 for θkm
= θkm+1 , or Cm

dyn = ±1 for θkm
= θkm+1 +

π (mod 2π ).
For any m ∈ 1,2, . . . ,N , the mapping from the correspond-

ing momentum-time submanifold to the Bloch vectors induces
a dynamical topological invariant Cm

dyn, and Cm
dyn = 0 (±1)

indicates that the mapping is trivial (nontrivial). The number
of nontrivial mappings is related to the topological properties
of the initial and final systems. In the following, we will unveil
these relations by studying specific topological classes of the
tenfold way symmetry classification [36,37]. According to this
classification, for 1D two-band systems with no internal spin
degree, only three types, i.e., classes of BDI, AIII, and D, are
topologically nontrivial.

Class BDI and AIII. In 1D, systems of class BDI and AIII
preserve chiral symmetry, hence the topological invariants are
characterized by the winding number, and the relation between
the number of nontrivial mappings M and the winding numbers
in equilibrium is given by the following theorem.

Theorem 1. In class BDI and AIII, the number of nontrivial
mappings M from momentum-time submanifolds to Bloch
vectors has a lower bound 2|ni − nf |, with ni and nf being
the winding numbers of Hi and Hf , respectively.
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See the Supplemental Material [34] for the proof and
details. Note that M can reflect the difference in wind-
ing numbers between the initial and final Hamiltonians. If
ni �= nf , the nontrivial mappings cannot be removed simul-
taneously under continuous deformation because the winding
number in equilibrium is protected by symmetry. In most of
the examples which we have seen there are only two fixed
points, so it can be found from Eq. (7) that the dynamical
topological invariants satisfy C1

dyn = −C2
dyn, and then we only

need to know the m = 1 submanifold; we therefore have the
following corollary from Theorem 1.

Corollary 1. Consider a Hamiltonian in class BDI and AIII,
suppose that there are only two fixed points, and then the
dynamical topological invariant C1

dyn = ±1 if Hi and Hf lie
in different topological phases.

From Corollary 1 we find that the dynamical topological
invariant C1

dyn is closely related to the topological properties
of both Hi and Hf . To see it clearly, next we study a concrete
example by considering the famous SSH model [32,38], which
belongs to the class BDI and is described by the Hamiltonian

H =
∑

i

[(t + δ)ĉ†A,i ĉB,i + (t − δ)ĉ†A,i+1ĉB,i] + H.c., (8)

where ĉ
†
A(B),i is the creation operator of the fermion on the

ith A (or B) sublattice. After the Fourier transformation
ĉs,j = 1√

L

∑
k eikj ĉk,s with s = A(B) and setting t = 1, the

Hamiltonian can be written as

H =
∑

k

ψ
†
kh(k)ψk, (9)

where ψ
†
k = (ĉ†k,A,ĉ

†
k,B) and h(k) = dxσx + dyσy , with dx =

(1 + δ) + (1 − δ) cos k and dy = (1 − δ) sin k. For δ > 0, the
half-filled system is topologically trivial, whereas for δ < 0 the
system is topological. It can be seen for any δi and δf that there
are only two fixed points k1 = 0 and k2 = π , corresponding to
two high-symmetry points [39], and the total Brillouin zone
is reduced to two spheres denoted by m = 1,2 with k ∈ (0,π )
and k ∈ (π,2π ), respectively.

Suppose that both δi and δf lie in the same phase, either
topologically nontrivial or trivial, and the Bloch vectors sat-
isfy d̂i(0) = d̂f (0) and d̂i(π ) = d̂f (π ). According to Eq. (7),
we have C1

dyn = C2
dyn = 0, hence the number of nontrivial

mappings is zero, which equals the difference in the winding
numbers between the initial and final Hamiltonians. On the
other hand, if δi and δf are in different phases, we find
d̂i(0) = d̂f (0) and d̂i(π ) = −d̂f (π ). The dynamical topologi-
cal invariants are C1

dyn = −1 and C2
dyn = 1, indicating that both

of the mappings are topologically nontrivial. Our results show
that the number of nontrivial mappings in the SSH model is
M = 2|ni − nf |, in accordance with Theorem 1.

Because there are only two fix points in the Hamiltonian,
it is sufficient to study the submanifold m = 1 from Corollary
1. In order to get an intuitive understanding of the geometrical
meaning of the dynamical Chern number, in Fig. 2 we show the
evolution of Bloch vectors for different choices of the initial
and final parameters for the submanifold m = 1. Each solid
loop represents the trajectory of a definite mode in a period.
After collecting all trajectories for k ∈ (0,π ) into the Bloch
sphere, the topological properties can be directly obtained. In

FIG. 2. The evolution of the Bloch vector for different momenta in
a period, with (a) δi = −0.7 and δf = −0.3; (b) δi = −0.7 and δf =
0.3; (c) δi = 0.4 and δf = 0.2; and (d) δi = 0.4 and δf = −0.2. The
black dotted loop represents the distribution of initial Bloch vectors
d̂i(k), corresponding to topological cases in (a) and (b) and trivial
cases in (c) and (d). The black stars at the crossing points represent
the initial points at t = 0 of each loop.

Figs. 2(a) and 2(c), both δi and δf lie in the same phase, and
the trajectories of different Bloch vectors cancel each other out,
giving rise to the dynamical Chern number C1

dyn = 0; however,
in Figs. 2(b) and 2(d), δi and δf lie in different phases, and the
trajectories for the Bloch vectors of k ∈ (0,π ) cover the whole
Bloch sphere, corresponding to C1

dyn = −1.
Class D. In class D, the particle-hole symmetry constrains

the direction of the Bloch vector d̂(k) lying on the z axis
at k = 0 and k = π [33], hence they are fixed points and
the momentum-time submanifolds are reduced to two spheres
denoted by m = 1,2. The Z2 topological invariant for static
1D systems in class D can be defined as n = sgn[dz(0)dz(π )],
where n = −1 for the topological phase and n = 1 for the
trivial phase. Similar to class BDI and AIII, we can prove [34]
the following theorem.

Theorem 2. Consider a Hamiltonian in class D. The dy-
namical topological invariant C1

dyn = 0 if Hi and Hf lie in
the same phase; in contrast, C1

dyn = ±1 if Hi and Hf lie in
different phases.

For a system of class D, since there exist solely two
fixed points k = 0 and π , protected by particle-hole sym-
metry, thus we only need to calculate the dynamical topo-
logical invariant of submanifold m = 1. A simple exam-
ple of a D class system is the extended version of the
1D Kitaev model described by Hamiltonian (1) with d0 =
0, dx = 
2 sin φ sin 2k, dy = 
1 sin k + 
2 cos φ sin 2k, and
dz = −t1 cos k − t2 cos 2k + μ [33,40], where t1 and t2 rep-
resent the nearest-neighbor (NN) and next-nearest-neighbor
(NNN) hopping amplitudes, 
1 and 
2 the NN and NNN
pairing parameters, φ denotes the phase difference of the
two pairing parameters, and μ the chemical potential.
For simplicity, we take μ = 1, 
1 = t1 = 0.5, φ = π

2 , and

2 = t2 ≡ 
. It was shown that the system is topological
when 0.5 < 
 < 1.5, with Majorana fermions emerging at
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TABLE I. Dynamical topological invariant for different initial and
final phases. For convenience, we label the interval 
 < 0.5 by I,
0.5 < 
 < 1.5 by II, and 
 > 1.5 by III, hence the interval II is the
topological phase, the intervals I and III are topological trivial phases,
and m = 1,2 label the momentum-time submanifolds.

Initial to final phases m = 1 m = 2

I → I 0 0
I → II 1 −1
I → III 0 0
II → II 0 0
II → III −1 1
III → III 0 0

the boundaries, whereas the system is trivial for 
 < 0.5
and 
 > 1.5. The fixed points k = 0 and π are protected by
particle-hole symmetry, and explicitly we have d̂(k = 0) =
[0,0,sgn(0.5 − 
)] and d̂(k = π ) = [0,0,sgn(1.5 − 
)]. By
using formula (7), we can directly calculate the dynamical
topological invariant. Because both the intervals 
 < 0.5
and 
 > 1.5 are topologically trivial, there are more choices
for initial and final parameters. The dynamical topological
invariants are shown in Table I, indicating that the nontrivial
dynamical topological invariant appears only when 
i and 
f

lie in topologically different phases.
To get a geometrical understanding, in Fig. 3 we show the

evolution of Bloch vectors for different choices of 
i and 
f .
In class D, though the initial states (black dotted curve) do
not lie on an orthodrome, and the trajectories seem to be more
complicated, we can always find the Bloch sphere being fully
covered in Figs. 3(b) and 3(d) with 
i and 
f located in
different phases, while all the trajectories cancel each other
out in Figs. 3(a) and 3(c) with 
i and 
f located in the same
phase.

A topologically trivial example. As a comparison, we study
a 1D tight-binding model with alternating chemical potentials
μ and −μ on the A and B sublattice, which is described by
Hamiltonian (9) with dx = 1 + cos k, dy = sin k, and dz = μ.
The system carries out a quantum phase transition at μ = 0,
which is just the gap-closing point. This model describes a
topologically trivial system as it always has no nontrivial
Berry phase [41]. We find that there exists only an accidental
fixed point k = π , and thus the dynamical topological in-
variant should be calculated in the whole BZ. According to
formula (7), the dynamical topological invariant C1

dyn = 0 for
arbitrary μi and μf , suggesting that no nontrivial mappings
from the momentum-time manifold to Bloch vectors exist in
this model.

Finally, we point out that the dynamical topological invari-
ant is in principe measurable in current cold atom experiments.

FIG. 3. The evolution of the Bloch vector for different momenta
in a period, with (a) 
i = 0.2 and 
f = 0.4; (b) 
i = 0.2 and

f = 1.4; (c) 
i = 1.4 and 
f = 1.2; and (d) 
i = 1.4 and 
f =
0.2. The black dotted loop denotes the distribution of initial Bloch
vectors d̂i(k), corresponding to the trivial case in (a) and (b) and the
topological case in (c) and (d). The black stars at the crossing points
represent the initial points at t = 0 of each loop. The middle inset
gives the phase diagram of the static system.

If the energy band of Hf is a flatband, i.e., SSH model with
δf = ±1, all the momenta have the same period. With the
technique of Bloch state tomography [20–22], the evolution of
the state in BZ can be observed in a period. After collecting
the trajectories in a definite momentum-time submanifold m,
the dynamical topological invariant can be measured directly.

Summary. In summary, we have clarified how to properly
define a dynamical topological invariant for a general 1D two-
band insulator system performed by a quantum quench. After
showing that the momentum-time manifold can be reduced to
a series of spheres, a dynamical topological invariant can be
defined for the mapping from each of the spheres to the Bloch
vectors. Then we analyzed the intrinsic relation between the
dynamical topological invariant and the topological invariant
of Hi and Hf in equilibrium. We also gave some visualized
examples to show our results. Finally, we pointed out that the
dynamical topological invariant is experimentally measurable.
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