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Quasitopological rotational waves in mechanical granular graphene
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Granular crystals are periodic structures of elastic beads arranged in crystal lattices. One important feature of
granular crystals is that the interactions between beads can take place via noncentral contact forces, leading to
the propagation of rotational and coupled rotational-translational waves. Here, we theoretically demonstrate the
topological properties of these mechanical rotational waves in a granular graphene, a two-dimensional monolayer
honeycomb granular crystal with Dirac dispersion at the center of the Brillouin zone. Around the Dirac point,
effective spin, helicity, and effective spin-orbit coupling are illustrated in the mechanical granular system. Finally,
quasitopological transport, where the rotational edge waves are nearly topologically protected, is observed on the
interface.
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Recently, the study of topology in materials/metastructures
has attracted increasing attention [1–12]. One of the fascinating
features of those materials is that boundaries or interfaces sup-
port the topological transport of edge waves that are immune to
backscattering when traveling through defects. Such an appeal-
ing property has inspired the development of various types of
schemes with topological phases in photonic and phononic sys-
tems. On the one hand, in analogy with the quantum Hall effect,
topological transport can be achieved by breaking the time-
reversal symmetry. Examples include photonic crystals with
a magnetic field [13], and phononic crystals with circulating
fluids [14]. On the other hand, based on the idea of the quantum
spin Hall effect (QSHE), topological wave propagation in
the presence of time-reversal symmetry (TRS) also has been
proposed [15–24]. In this case, a pair of spin-polarized edge
states appear on the boundary/interface, giving rise to a topo-
logical insulator of Z2 category [15–17]. Several approaches
to Z2 topological insulator analogies in optics, acoustics, and
elastodynamics have been exploited, including bianisotropic
photonic crystals [18,19], photonic/phononic crystals with a
pseudo-time-reversal symmetry [20–23], and elastic metama-
terials with effective spin-orbit coupling (SOC) [24].

There also has been a growing interest in investigating the
topology in discrete mechanical spring-mass systems [25–30].
Examples include metamaterials with rotating gyroscopes
[25,26], mechanical structures subjected to a Coriolis force
caused by permanent rotation of the system [27], and coupled
pendula systems exhibiting QSHE [28]. In those proposals,
the systems either require an external rotating bias to break
time-reversal symmetry [25–27] or need to be sophisticatedly
designed in order to induce couplings between pendula [28].
In addition, the role of rotational degrees of freedom of
individual masses has seldom been evaluated [29]. Due to
the existence of noncentral forces, which can initiate the
rotation of individual mass particles, rotations become crucial
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in wave propagation in discrete mechanical systems [31,32].
Especially in granular crystals, the interactions between beads
can take place via transverse rigidities of contacts [31–41],
leading to the propagation of rotational elastic waves. Previous
investigations have theoretically and experimentally revealed
the existence of rotational-translational bulk waves [33–36],
rotational edge/surface waves [37,38], etc. Therefore, the
rotation of individual particles should be taken into account
when exploiting the topological order in granular crystals.

In this Rapid Communication, we study the topological
properties of rotational edge waves in a granular graphene
(GG) with TRS. It has been reported that a topological wave
effect can be achieved with TRS in analogy to the quantum
valley Hall effect [10,11,30], whereas our strategy is based
on an analogy with QSHE. The GG, a honeycomb granular
monolayer consisting of three-dimensional (3D) elastic par-
ticles, is shown in Fig. 1(a). Although the beads are 3D in
nature, the dynamics in the structure is two dimensional (2D).
We consider the out-of-plane motion, which activates in-plane
rotations with angles ϕ,φ relative to the axes in the x and
y directions, respectively, and the out-of-plane displacement
u along the z axis [Fig. 1(b)]. The movements of individual
particles can induce three types of forces and/or moments
between the particles [36,37]: (1) transverse forces controlled
by an effective shear rigidity ξs [Fig. 1(c)], (2) torsional forces
characterized by an effective torsional rigidity ξt [Fig. 1(d)],
and (3) bending forces characterized by an effective bending
rigidity ξb [Fig. 1(e)]. By analyzing the motions in one unit cell
and the interactions with its neighbors, the dynamical equation
of bulk waves is given by

Dv = �2v, (1)

where � = ω
√

M/ξs is the normalized frequency, ω is
the cyclic frequency, M is the mass of particles, and v =
[uA; �A; �A; uB ; �B ; �B] with � = Rϕ, � = Rφ (R is the
radius of particles). D is a 6 × 6 dynamical matrix [42].
Equation (1) gives the � − k dispersion relation, which is
controlled by three parameters, the factor P = MR2/I (I
is the inertia of beads) and the normalized bending and
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FIG. 1. (a) Granular graphene: The red dashed box marks the
unit cell containing two particles, A and B. Movements of individual
particles in (b) can generate shear forces (c), torsional forces (d),
and bending forces (e). The band structures for ηb = ηt = 0.5 and
P = 1.55 are shown when perturbation η′ = 0 in (f) and η′ = +0.1
in (g). The red branches in (f) are dominated by d modes, and the
blue ones by p modes. The black (red) bonds in the insets of (f) [(g)]
indicate that the bending and torsional rigidities between particles are
unmodified (modified).

torsional rigidities ηb,t = ξb,t /ξs . The existence of topological
edge waves preserving TRS requires a degenerate Dirac cone
(double Dirac cone) in the absence of perturbation and a
complete band gap in the presence of perturbation [24]. Thus,
we analyze the GG with P = 1.55 and ηb = ηt = 0.5. The
dispersion is shown in Fig. 1(f), where a double Dirac cone
appears at the Dirac frequency �D = √

3P in the center of the
Brillouin zone (BZ). Adding a perturbation η′ to ηb and ηt ,
the Dirac cone disappears and a complete band gap appears.
Figure 1(g) shows the case when ηb and ηt are perturbed by
η′ = +0.1, namely, ηb = ηt = 0.6.

Due to the existence of noncentral transverse forces,
rotational-translational coupled modes exist in the GG.
However, around the Dirac point, the blue and red branches
support modes dominated by rotation. The contribution of
translation (u components) is very small compared to the
rotational ones [42]. This allows us to approximate the
6 × 6 eigenvalue problem by a 4 × 4 one in the vicinity
of the Dirac point (at 
 point), namely, for a small wave
vector �k = (�kx,�ky) and for �� � �D . In addition,
we alter the original basis into the circular polarized basis
p = [p↑; ip↓] = [�A + i�A; i(�B − i�B)]/

√
2 and d =

[d↑; id↓] = [−(�B + i�B); i(�A − i�A)]/
√

2, where “↑↓”
denote the left/right circular polarizations. As shown in
Fig. 2(a), under the new basis, the GG exhibits a pair of
“spin” states in the mechanical system which physically are
the rotations of a particle with left/right circular polarizations
(the rotation vector is circulating left/right handed with time).
In the vicinity of the Dirac point, Eq. (1) can be approximated
by the following equation,[

H (�k) mσz

mσz H (�k)

]
ψ(�k) = δ�ψ(�k), (2)

FIG. 2. (a) Possible mechanical spin states in the GG. The left
(right) circular polarization of rotation is the spin ↑ (↓) state. The red
(blue) arrow represents the rotation vector of particleA (B). Projection
of helical modes with perturbation (b) η′ = 0 and (c) η′ = 0.1 on k
space. The arrow denotes the axis of spin projection. The “currents”
in the upper branches are outgoing (right handed) while in the lower
branches they are incoming (left handed). The color in the background
represents the eigenfrequency. The eigenmodes of the 
 point are also
shown in (b) when η′ = 0 and in (c) when η′ = 0.1.

where m = η′�D/2 denotes the “effective mass” due to pertur-
bation η′, δ� = � − �D − m, H (�k) = VDσ · �k is a 2 × 2
Dirac Hamiltonian with the Dirac velocity VD = �DR/4 and
the Pauli matrices σ = (σx,σy,σz), while the four-component
spinor ψ(�k) is composed of the two-component spinors p,d,
namely, ψ = [ p; d]. In the absence of perturbation, η′ = 0, the
zero off-diagonal blocks in Eq. (2) suggest that the p and d
spinors are uncoupled. Consequently, the double Dirac cone is
the degeneracy of the Dirac cones of p (blue lines) and d (red
lines) spinor subsystems at the Dirac frequency �D , as marked
in Fig. 1(f). It is worth noting that the effective Hamiltonian of
2D Dirac matter [43] in Eq. (2) can be also derived from the
band theory of electronic topological insulators [15–17].

It is clear that the presence of perturbation induces hy-
bridization between the p and d spinors. To simplify further
Eq. (2), we can diagonalize it by an appropriate unitary trans-
formation [42]. Under the new spinor ψ ′ = [S↑

+; S↓
+; S↑

−; S↓
−] =

[p↑ + d↑; i(p↓ + d↓); p↑ − d↑; i(p↓ − d↓)]/
√

2, Eq. (2) can
be rewritten as two decoupled equations H±(�k)S± = δ�S±
with the Hamiltonian,

H±(�k) = VDσ · �k ± mσz. (3)

The second term in Eq. (3) describes the hybridization of p and
d spinor subsystems, which can be regarded as the effective
spin-orbit coupling in the GG. The signs “±” determine the
nature of the eigenmodes to be S+ or S− types. H± predicts
the helicity-locking property of the bulk modes. The helicity
in this mechanical system is defined as ĥ = σ · e (̂h commutes
with H±) with a unit vector e = (VD�kx/λ,VD�ky/λ,m/λ)
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FIG. 3. (a) Dispersion of the edge wave along the y direction. The gray lines correspond to the bulk modes and color lines to the edge modes.
(b) Zooms of different edge branches. The green lines represent topologically trivial edge modes. (c) Schematics to reveal the spin nature of
modes in the cyan and magenta branches in (b). The arrow in red (blue) in the unit cell represents the rotation direction of particle A (B). Time
evolution simulations for the Su edge wave in (d) and the Sd edge wave in (e). The green stars highlight the positions of source. (f) The same
configuration as (c) except that there is a hole close to the interface. The color scale is the magnitude of the total rotation normalized to the
maximum. The movement of a bead marked by the circle is monitored to compare with the case in (e). (g) Rotation signals at the monitored
bead.

and λ =
√

V 2
D�k2 + m2 . The helicity matrix ĥ gives two

eigenvalues ±1, which determine the eigenmodes to be right-
handed (+1) or left-handed (−1) helical states [42]. For
right-handed helical states, the helicity is aligned in the same
direction as e, while it is the opposite for the left-handed helical
states. Thus, the directions of the helicity vectors are given
by (±VD�kx/λ,±VD�ky/λ,±m/λ) for the right-handed and
left-handed helical states, respectively. The helicity patterns
(namely, the projection of the helicity in k space) of the
eigenmodes around the 
 point in the upper and lower S±
branches are shown by arrows in Figs. 2(b) and 2(c). In the
absence of perturbation, η′ = 0, the arrows keep the same
length, as shown in Fig. 2(b). The upper Dirac cones support the
right-handed helical modes, exhibiting the outgoing “currents”
[left of Fig. 2(b)], while the lower Dirac cones support the
left-handed helical modes, showing the incoming “currents”
[right of Fig. 2(b)]. In the presence of perturbation, η′ = +0.1,
as depicted in Fig. 2(c), the “currents” of the upper and lower
branches remain in patterns similar to those of the unperturbed
case, while the lengths of the arrows become shorter when
approaching the 
 point. At the 
 point, the in-plane arrows
vanish, indicating a vector e pointing exactly along the z axis.
The eigenmodes of the 
 point are also shown in Fig. 2(b)
when η′ = 0 and in Fig. 2(c) when η′ = +0.1. It shows that
the eigenmodes in Fig. 2(c) are the combinations of the ones
in Fig. 2(b), confirming the existence of hybridization of the p
and d states.

The GG, with the effective Hamiltonian H±, is expected to
exhibit a nonzero Z2 topological invariant. We found that the
spin Chern number around the 
 point is ±1 for the rotational
branches in Fig. 1(g), confirming the nontrivial topology of
the bands [42]. Therefore, it is possible to observe a pair of
topological edge waves on the interface by combining two
GGs with η′ = ±0.1. On the interface, the bonds connecting
the left and right GGs are not modified. To ensure that the
two GGs exhibit overlapping gaps, the mass of beads of the
right GG has been scaled down by a factor f = 0.92. The
dispersion curves in Fig. 3(a) confirm the existence of a pair
of rotational edge waves in the gap. The gray lines correspond
to the bulk modes which are projected to the qy = √

3kyR

direction. The cyan (magenta) lines correspond to upward Su

(downward Sd ) propagating rotational edge waves. The green
lines mark the topologically trivial branches of the edge wave.
The time evolutions of the eigenmodes of the edge waves with
opposite signs of ky are implemented in Fig. 3(c), where a unit
cell of the interface is shown. The arrow in red (blue) represents
the rotation direction of particle A (B), which is circulating
with increasing time. The rotation trajectories of the red and
blue arrows suggest that the edge modes on the cyan (magenta)
branches are left (right) circularly polarized. Therefore, the
cyan/magenta branches (Su/Sd modes) support the propagation
of rotational edge waves with different polarizations. The
spatiotemporal evolution simulations of edge waves are shown
in Figs. 3(d) and 3(e), and an interface unit cell is used to be
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the source (star) to excite the harmonic edge wave A±e−iωt ,
where A± are the eigenmodes of Su and Sd waves [42]. In
Figs. 3(d) and 3(e), upward Su and downward Sd propagating
rotational edge waves are observed, manifesting the one-way
propagation property of the rotational edge wave.

It should be mentioned that only when the edge wave is
gapless can topological transport exist on the interface, where
a pair of spin-polarized edge waves are preserved. However,
the dispersion of the edge waves in the GG is not gapless as
there is a tiny gap [Fig. 3(b)]. The existence of a tiny gap
can lead to the coupling of spin-polarized helical edge states,
resulting in the hybridized Su and Sd rotational edge waves to
be nonperfectly topologically protected. This is confirmed by
the spatiotemporal evolution simulations in Fig. 3(f), where
the interface configuration is identical to Fig. 3(e), except
that a hole is placed close to the interface. We monitor the
particle at the position marked by the circle to see if there is
backreflection. The rotational movements of the particle as a
function of time are shown in Fig. 3(g) both for the cases with
and without the hole. The difference in the two cases shows
that reflection is measured after a certain time, suggesting that
the edge wave is nonperfectly immune to backscattering when
defects are introduced.

The origin of this tiny gap can be physically explained
by analyzing the interface dynamics [42]. When f �= 1, the
changing of the masses on one side of the interface causes
coupling of the two spin-polarized helical edge states, resulting
in a gap for the edge wave. When defects appear, the spin-
polarized states can flip to the others, turning the edge waves
from being perfectly immune to being nonperfectly immune
to defects. Consequently, backscattering can be detected as
shown in Fig. 3(g). However, as can be seen in Fig. 3(b), the
width of the tiny gap is � = 5e−5 when f = 0.92, suggesting
that the hybridization of the spin-polarized helical edge states
is very weak. Therefore, the backscattering is too small, and
the propagation of rotational edge waves can be regarded as
quasitopologically protected. The rotational edge waves in the
GG are still quite robust against defects. As an example, in
Fig. 4(a), a zigzag path with two corners is constructed. The

FIG. 4. Robustness of the quasitopological rotational wave
against defects: a zigzag path containing two corners. (a) Sd edge
wave is launched from the position marked by the green star. For
comparison, a normal edge wave is excited from the same positions
in (b).

same source (star) as in Fig. 3(e) is applied to launch the Sd

edge wave. It can be seen that the Sd wave can turn the corners
and keep propagating without noticeable backscattering. For
comparison, in Fig. 4(b), a normal edge wave with qk = π/3 in
the green branch of Fig. 3(b) is excited from the same position
as Fig. 4(a), showing clearly reflections and diffractions when
the wave meets the corner and no output rotational edge wave
in the end.

In conclusion, the topological properties of rotational edge
waves in a GG in a similar way to the QSHE have been
demonstrated. The mechanical spin, helicity, and the effective
SOC are illustrated in the GG. Quasitopological transport is
observed on an interface constructed by two GGs with different
stiffnesses and masses of particles. The easy construction of
granular crystals, combined with other features such as tunabil-
ity upon external fields/mechanical loading and an enhanced
nonlinear response, make them a perfect testbed for further
fundamental studies in the field of topological mechanics.
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