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Current-phase relation and flux-dependent thermoelectricity in Andreev interferometers
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We predict a novel current-phase relation in multiterminal Andreev interferometers that emerges from an
interplay between long-range quantum coherence and nonequilibrium effects. Under nonzero bias V the current-
phase relation IS(φ) resembles that of a φ0 junction differing from the latter due to a nonzero average I0(V ) =
〈IS(φ)〉φ . The flux-dependent thermopower S(�) of the system has a similar form to that of the current-phase
relation and in certain limits it can reduce to an either odd or even function of � in agreement with a number of
experimental observations.
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I. INTRODUCTION

Multiterminal heterostructures composed of interconnected
superconducting (S) and normal (N) terminals (frequently
called Andreev interferometers) are known to exhibit nontrivial
behavior provided the quasiparticle distribution function inside
the system is driven out of equilibrium. For instance, it was
demonstrated both theoretically [1–3] and experimentally [4]
that biasing two N terminals in a four-terminal NS config-
uration by an external voltage V one can control both the
magnitude and the phase dependence of the supercurrent
flowing between two S terminals and—in particular—provide
switching between zero- and π -junction states at certain values
of V . In other words, a π -junction state in SNS structures can
be induced simply by driving electrons in the N metal out of
equilibrium.

Another way to generate nonequilibrium electron states
in Andreev interferometers is to expose the system to a
temperature gradient. As a result, an electric current (and/or
voltage) response occurs in the system which is the essence
of the thermoelectric effect [5]. Usually the magnitude of this
effect in both normal metals and superconductors is small in
the ratio between temperature and the Fermi energy T/εF � 1;
however, it can increase dramatically in the presence of
electron-hole asymmetry. The symmetry between electrons
and holes in superconducting structures can be lifted for a num-
ber of reasons, such as, e.g., spin-dependent electron scattering
(for instance, at magnetic impurities [6], spin-active interfaces
[7], or superconductor-ferromagnet boundaries [8]) or Andreev
reflection at different NS interfaces in an SNS structure with a
nonzero phase difference between two superconductors [9,10]
(see also [11]). The latter mechanism could be responsible for
the large thermoelectric signal observed in various types of
Andreev interferometers [12–16].

Yet another important feature of some of the above obser-
vations is that the detected thermopower was found to oscillate
as a function of the applied magnetic flux � with the period
equal to the flux quantum �0 = πc/e, thus indicating that

the thermoelectric effect essentially depends on the phase
of electrons in the interferometer. The symmetry of such
thermopower oscillations was observed to be either odd or
even in � depending on the sample topology [12]. Also,
with increasing bias voltage these oscillations were found to
vanish and then reappear at yet higher voltages with the phase
shifted by π [14]. Despite subsequent attempts to attribute the
results [12] to charge imbalance effects [17] or mesoscopic
fluctuations [18] no unified and consistent explanation for the
observations [12–16] has been offered so far.

In this paper we address the properties of SNS junctions
embedded in multiterminal configurations with both bias volt-
age and thermal gradient applied to different normal terminals.
For the configuration depicted in Fig. 1 we will demonstrate
that at low enough temperatures and with no thermal gradient
the corresponding SNS structure exhibits characteristic fea-
tures of what we will denote as the (I0,φ0)-junction state: The
current IS flowing through the superconducting contour of our
setup (as shown in Fig. 1) is predicted to have the form

IS = I0(V ) + I1(V,φ + φ0(V )), (1)

where I0 = 〈IS〉φ and I1(V,φ) is a 2π -periodic function of
the superconducting phase difference φ = 2π�/�0 across our
SNS junction. At zero bias V → 0 both I0 and φ0 vanish and
the term I1 reduces to the equilibrium supercurrent in diffusive
SNS structures [19,20]. At low enough V the contribution
I1 essentially coincides with the voltage-controlled Josephson
current [2] (with φ0 jumping from zero to π with increasing V ),
while at higher voltages with a good accuracy we have
I1 � ĨC(V ) sin(φ + φ0) with nonzero phase shift φ0(V ) which
tends to π/2 in the limit of large V . This behavior resembles
that of an equilibrium φ0 junction which develops nonvanish-
ing supercurrent at φ = 0. In contrast to the latter situation,
however, here we drive electrons out of equilibrium, thereby
generating extra current I0(V ) along with the phase shift φ0(V ).
Remarkably, also a thermoelectric signal does not vanish at
φ = 0 for nonzero V , as it will be demonstrated below.
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FIG. 1. A four-terminal structure consisting of five diffusive
normal wires of lengths lc, lN,1,2, and lS,1,2 and cross sections Ac,
AN,1,2, and AS,1,2 connecting two normal terminals biased with a
constant voltage V = V2 − V1 and two superconducting terminals
embedded in a superconducting loop encircling the magnetic flux
�. We also indicate the currents IS and IN flowing, respectively, in
superconducting and normal contours of our setup.

The paper is organized as follows. In Sec. II we briefly
describe the quasiclassical Green’s-function formalism
employed in our further analysis. The general current-phase
relation for our Andreev interferometer summarized in Eq. (1)
is derived and analyzed in Sec. III. In Sec. IV we elaborate on
the implications of this relation for the flux-dependent ther-
mopower in multiterminal Andreev interferometers thereby
proposing an interpretation for long-standing experimental
puzzles [12,14]. We close with a brief summary of our key
observations in Sec. V.

II. QUASICLASSICAL FORMALISM

In what follows we will employ the quasiclassical Usadel
equations which can be written in the form [21]

iD∇(Ǧ∇Ǧ) = [1̂ ⊗ �̂ + eV (r),Ǧ], Ǧ2 = 1. (2)

Here 4×4 matrix Ǧ represents the Green’s function in the
Keldysh-Nambu space

Ǧ =
(

ĜR ĜK

0 ĜA

)
, �̂ =

(
ε �(r)

−�∗(r) −ε

)
, (3)

D is the diffusion constant, V (r) is the electric potential, ε

is the quasiparticle energy, and �(r) is the superconducting
order parameter equal to |�| exp(iφ1(2)) in the first (second) S
terminal and to zero otherwise. The retarded, advanced, and
Keldysh components of the matrix Ǧ are 2×2 matrices in the
Nambu space

ĜR,A =
(

GR,A FR,A

F̃ R,A −GR,A

)
, ĜK = ĜRf̂ − f̂ ĜA, (4)

where f̂ = fL1̂ + fT τ̂3 is the distribution function matrix and
τ̂3 is the Pauli matrix. The current density j is related to the

matrix Ǧ by means of the formula

j = −σN

8e

∫
Tr[τ̂3(Ǧ∇Ǧ)K ]dε, (5)

where σN is the Drude conductivity of a normal metal.
Resolving Usadel equations (2) for ĜR,A in each of the

normal wires, we evaluate both the spectral current and the
kinetic coefficients [21]:

j ε = 1
4 Trτ̂3(ĜR∇ĜR − ĜA∇ĜA), (6)

DL = 1
2 − 1

4 TrĜRĜA, (7)

DT = 1
2 − 1

4 TrĜRτ̂3Ĝ
Aτ̂3, (8)

Y = 1
4 TrĜRτ̂3Ĝ

A, (9)

which enter the kinetic equations as

∇ jL = 0, jL = DL∇fL − Y∇fT + j εfT , (10)

∇ jT = 0, jT = DT ∇fT + Y∇fL + j εfL. (11)

Equation (5) for the current density can then be cast in the form

j = σN

2e

∫
jT dε. (12)

Analogously one can define the heat current density:

jQ = σN

2e2

∫
jLεdε. (13)

Equations (2) should be supplemented by proper boundary
conditions. Here we only address the limit of transparent
interfaces and continuously match the normal wire Green’s
functions Ǧ to those in the normal terminals,

ĜR
Ni

= −ĜA
Ni

= τ̂3, (14)

fL/T,Ni
= 1

2

[
tanh

ε + eVi

2Ti

± tanh
ε − eVi

2Ti

]
, (15)

and in the superconducting ones:

ĜR,A = ±

(
ε �

−�∗ −ε

)
√

(ε ± iδ)2 − �2
, (16)

ĜK = (ĜR − ĜA) tanh
ε

2T
. (17)

The spectral currents j ε, jT , jL obey the Kirchhoff-like
equations in all nodes of our structure.

III. (I0,φ0) JUNCTION

We first consider the symmetric four-terminal setup of Fig. 1
with wire lengths lS(N),1 = lS(N),2 = lS(N), equal cross sections
AS(N),1 = AS(N),2 = Ac = A, and voltages [22] V1/2 = ∓
V/2. The spectral part of the Usadel equation (2) is solved
numerically in a straightforward manner (see, e.g., [2]). This
solution enables us to find the retarded and advanced Green’s
functions ĜR,A and to evaluate the spectral current j ε (6) as
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FIG. 2. The phase dependence of the current IN at T → 0 for
eV = 60ETh. Here we set lS = lN = lc and ETh = 10−3�. The result
for IN (φ) derived from an approximate Eq. (19) is indicated by the
dashed line; the solid line corresponds to our exact numerical solution.
Inset: 〈IN 〉φ as a function of the voltage bias V .

well as the kinetic coefficients (7)–(9). In order to resolve the
kinetic equations and to determine the current-phase relation
for our setup we will adopt the following strategy. We first
obtain a simple approximate analytic solution and then verify
it by a rigorous numerical analysis.

Let us for a moment assume that the phase difference φ

is small as compared to unity and relax this assumption in
the very end of our calculation. In this case one can proceed
perturbatively and resolve the kinetic equations in the first
order in jε ∝ φ. Within the same accuracy, one can drop
the small terms ∼ Y and neglect the energy dependence of
DL ≈ 1. With the aid of Eq. (12) we arrive at the expressions
for the spectral currents IS(N)(ε) = σNjTA/(2e) flowing in
the superconducting (normal) contours of our circuit [23]
(see Fig. 1). We obtain

IS(ε) = σNf 0
LjεA

/
(2e) − f 0

T RT
c

/
N , (18)

IN (ε) = −f 0
T

(
RT

c + 2RT
S

)/
N , (19)

where we defined

N = RT
c

(
RT

S + RT
N

) + 2RT
S RT

N (20)

and the spectral resistances RT
i = (AσN )−1

∫
li
dx/DT,i

(which reduce to that for a normal wire of length li in the normal
state with DT ≡ 1). The distribution functions f 0

L/T are given
by Eq. (15) with Vi → V/2 and Ti → T . Integrating Eqs. (18)
and (19) over energy ε we obtain approximate expressions for
the currents IN and IN .

In addition to the above perturbative analysis we carried out
a rigorous numerical calculation of both IS and IN involving
no approximations. In the low-temperature limit T → 0 the
corresponding results are displayed in Figs. 2 and 3 along with
approximate results derived from Eqs. (18) and (19) in the same
limit. It is satisfactory to observe that our simple perturbative

0 /2 3 /2 2
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FIG. 3. The phase dependence of the current I1 at T → 0 for
eV = 60ETh and 300ETh. Solid lines indicate our exact numerical
solution. Dotted lines correspond to a simple analytic expression for
I1(φ) derived from Eq. (18). The parameters are the same as in Fig. 2.
Inset: The phase shift φ0 as a function of V . Arrows indicate the
voltage values eV = 60ETh and 300ETh.

procedure yields very accurate results for the current IN (φ)
not only for small phases but for all values of φ (see Fig. 2).
This current is an even 2π -periodic function of φ and 〈IN 〉φ ∝
V . Likewise, for the system under consideration we have
I0 = 〈IS〉φ ∝ V .

Below in this section we will mainly concentrate on the
phase dependence of the current IS . Figure 3 demonstrates
that—in agreement with our expectations—our simple analytic
result for IS(φ) derived from Eq. (18) is quantitatively accurate
at sufficiently small phase values or, more generally, at all
phases φ in the vicinity of the points πn. Moreover, even
away from these points Eq. (18) remains qualitatively correct
capturing all essential features obtained within our rigorous
numerical analysis. These considerations yield Eq. (1) which
represents the first key result of our paper.

It is instructive to analyze the above expressions in more
detail. The first term in the right-hand side of Eq. (18) is
a familiar one. In equilibrium it accounts for dc Josephson
current [19,20], while at nonzero bias V and in the limit
lc → 0 [in which the last term in Eq. (18) vanishes] it reduces
to the results [2,3] demonstrating voltage-controlled zero-π
transitions in SNS junctions. In contrast, the last term in
Eq. (18) is a new one being responsible for both I0 and φ0

parts. This term is controlled by the combination DT (φ)∇fT ,
where DT is an even function of φ. Hence, the net current IS(ε)
is no longer an odd function of φ.

The physics behind this result is transparent. In the presence
of a nonzero bias V a dissipative current component, which
we will further label as Id (V ), is induced in the normal
wire segments lS,1 and lS,2. At NS interfaces this current
gets converted into extra (V -dependent) supercurrent flowing
across a superconducting loop. Since at low temperatures and
energies electrons in normal wires attached to a superconductor
remain coherent keeping information about the phase φ,
dissipative currents in such wires also become phase (or flux)
dependent demonstrating even inφ Aharonov-Bohm (AB)-like
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oscillations [24–27], i.e., Id (V,φ) = I0(V ) + IAB(V,φ), where
I0(V ) ∝ V . Combining this contribution to the current IS with
a (odd in φ) Josephson current IJ (V,φ) we immediately arrive
at Eq. (1) with I1 = IJ + IAB.

The behavior of the phase shift φ0(V ) displayed in the inset
of Fig. 3 is the result of a tradeoff between Josephson and
Aharonov-Bohm contributions to I1. At low-bias voltages IJ

dominates over IAB, and we have φ0 ≈ 0. Increasing the bias
to values eV ∼ 20ETh, in full agreement with previous results
[2] we observe the transition to the π -junction state implying
the sign change of IJ . Here we defined the Thouless energy
ETh = D/L2 � �, where L = 2lS + lc is the total length of
three wire segments between two S terminals (see Fig. 1). At
even higher-bias voltages both terms IJ and IAB eventually
become of the same order. For v = (eV/2ETh)1/2 � 1 and
at T � ETh we have [2] IJ = IC(V ) sin φ, where for our
geometry

IC(V ) � 128(1 + v−1)

9(3 + 2
√

2)

V

RL

e−v sin(v + v−1). (21)

We also approximate [28] IAB ≈ Im cos φ, where
Im ≈ 0.18ETh/eRL and RL is the normal resistance of
the wire with length L. Hence, for eV � ETh � T we obtain

I1 ≈
√

I 2
C + I 2

m sin(φ + φ0), φ0(V ) = arctan
Im

IC(V )
.

The function φ0(V ) (restricted to the interval 0 � φ0 � π )
shows damped oscillations and saturates to the value φ = π/2
in the limit of large V , as it is also illustrated in the inset of
Fig. 3.

At higher T > ETh the Josephson current decays expo-
nentially with increasing T whereas the Aharonov-Bohm
term shows a much weaker power-law dependence [26,27]
IAB ∝ 1/T , thus dominating the expression for I1 and implying
that φ0 � π/2 at such values of T .

For completeness, we point out that a (I0,φ0)-junction state
is also realized in a crosslike geometry with lc = 0 provided
we set lS,1 �= lS,2 and lN,1 �= lN,2 (see, e.g., Fig. 4 below).
Under these conditions the distribution function fT at the wire
crossing point differs from zero resulting in a nonvanishing
even in φ contribution to IS containing DT (φ)∇fT . However,
if either lS,1 = lS,2 or lN,1 = lN,2 this even in φ contribution
vanishes and we get back to the results [2,3] describing zero-
and π -junction states.

IV. FLUX-DEPENDENT THERMOPOWER

We now turn to the thermoelectric effect. It was argued
[9–11] that in Andreev interferometers this effect may become
large provided the phase differenceφ between superconducting
electrodes differs from πn. Below we will demonstrate that a
large thermopower can be induced by a temperature gradient
even if φ = 0.

To this end let us somewhat modify the setup in Fig. 1 by
setting lc = 0 and attaching two extra normal terminals N3

and N4 as shown in Fig. 4. These terminals are disconnected
from the external circuit and are maintained at different
temperatures T3 and T4, while the temperature of the remaining
four terminals equals to T .

FIG. 4. The temperature dependence of the thermopower
S = VT /δT between the terminals N3 and N4 of the six-terminal setup
schematically illustrated in the inset. Different curves correspond to
different values of φ. Here we set eV = 0.9�, ETh = 10−2� and fix
the wire lengths as lS,1 = 0.2L,lS,2 = 0.8L,lN,1 = 0.3L,lN,2 = 0.7L,
and lN,3 = lN,4 = 0.5L.

We first set φ = 0 and evaluate the thermoelectric voltage
VT = V3 − V4 between N3 and N4 induced by a thermal
gradient δT = T3 − T4. For simplicity, below we consider the
configuration with lN3 = lN4 . As no current can flow into the
terminals N3 and N4, we obtain∫

GT
N (ε)

[
fT,N3 − fT,N4

]
dε = 0, (22)

where GT
N = 1/RT

N3
= 1/RT

N4
is the spectral conductance.

Equation (22) defines the relation between T3, T4 and the
induced voltages V3, V4. In the first order in δT /T it yields
the thermoelectric voltage in the form

eVT = δT

T

∫ (ε+eVN )GT
N (ε)dε

cosh2[(ε+eVN )/(2T )]∫ GT
N (ε)dε

cosh2[(ε+eVN )/(2T )]

. (23)

Here VN (V ) is the induced electric potential of the terminals
N3 and N4 evaluated at δT = 0. For any nonzero bias V

the voltage VN differs from zero as long as lN,1 �= lN,2. In
this case the thermovoltage VT (23) also remains nonzero as
the spectral conductance GT

N explicitly depends on energy ε

due to the superconducting proximity effect. On the other
hand, in the absence of superconductivity the latter dependence
disappears and the expression (23) vanishes identically even
for nonzero VN . This observation emphasizes a nontrivial
interplay between superconductivity, quantum coherence, and
thermoelectricity in hybrid metallic nanostructures.

In order to recover the phase dependence of the ther-
moelectric voltage we treated the problem numerically. The
corresponding results are displayed in Figs. 4 and 5. Figure 4
demonstrates the temperature dependence of the thermopower
S = VT /δT at different values of φ. In Fig. 5 we present
the thermopower as a function of φ at T = ETh together with
the current-phase relation IS(φ) evaluated for the same setup.
We observe that both functions S(φ) and IS(φ) demonstrate
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FIG. 5. ThermopowerS and current IS as functions of φ evaluated
numerically for the six-terminal setup of Fig. 4 at T = ETh. The
parameters are the same as in Fig. 4.

essentially the same behavior and, hence, in complete analogy
with Eq. (1) we have

S = S0(V ) + S1(V,φ + φ′
0(V )), (24)

where S0 = 〈S(φ)〉φ and S1(V,φ) is a 2π -periodic function of
φ, which at high enough voltages only slightly deviates from
a simple form S1(V,φ) ∝ sin φ (see Fig. 5).

Equations (23) and (24) represent the second key result of
our paper. It allows us to conclude that in general the periodic
dependence of the thermopower S on the magnetic flux in
Andreev interferometers is neither even nor odd in �, but it
can reduce to either one of them depending on the system
topology or, more specifically, on the relation between eV , T ,
and the relevant Thouless energy ETh. The phase shift φ′

0(V )
in Eq. (24) is not strictly identical to φ0(V ) in Eq. (1) [29];
however, both these functions behave similarly. In fact, φ′

0 only
slightly deviates from φ0 (see, e.g., Fig. 5). With increasing V ,
the phase φ′

0 also experiences an abrupt transition from zero to
π and then tends to π/2 in the limit of large voltages and/or
temperatures.

Our findings allow us to naturally interpret the experimental
results [12] where both odd and even dependencies of VT on �

were detected depending on the system topology. Indeed, while
at small enough eV and T we have φ′

0 ≈ 0 andS(φ) remains an
odd function, at larger voltages eV � 200ETh and/or temper-
atures T � ETh the phase shift approaches φ′

0 � π/2 and the
flux dependence of the thermopower S(φ) (24) turns even, just
as it was observed for some of the structures [12]. Furthermore,
as we already discussed, with increasing bias V the phase
φ′

0 jumps from zero to π which is fully consistent with the
observations [14]. Thus, we believe the zero-π transition for
the flux-dependent thermopower S(φ) detected in experiments
[14] has the same physical origin as that predicted [1–3] and
observed [4] earlier for dc Josephson current.

V. SUMMARY

In this paper we have elucidated a nontrivial interplay be-
tween proximity-induced quantum coherence and nonequilib-
rium effects in multiterminal hybrid normal-superconducting
nanostructures. We have demonstrated that applying an ex-
ternal bias one drives the system to the (I0,φ0)-junction state
in Eq. (1) determined by a tradeoff between nonequilibrium
Josephson and Aharonov-Bohm–like contributions. We have
also analyzed the phase-coherent thermopower in such nanos-
tructures which exhibits periodic dependence on the magnetic
flux being in general neither even nor odd in �. Our results
allow us to formulate a clear physical picture explaining a
number of existing experimental observations and calling for
further experimental analysis of the issue.
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