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Field-induced coexistence of s++ and s± superconducting states in dirty multiband superconductors
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In multiband systems, such as iron-based superconductors, the superconducting states with locking and
antilocking of the interband phase differences are usually considered as mutually exclusive. For example, a dirty
two-band system with interband impurity scattering undergoes a sharp crossover between the s± state (which
favors phase antilocking) and the s++ state (which favors phase locking). We discuss here that the situation can
be much more complex in the presence of an external field or superconducting currents. In an external applied
magnetic field, dirty two-band superconductors do not feature a sharp s± → s++ crossover but rather a washed-out
crossover to a finite region in the parameter space where both s± and s++ states can coexist for example as a lattice
or a microemulsion of inclusions of different states. The current-carrying regions such as the regions near vortex
cores can exhibit an s± state while it is the s++ state that is favored in the bulk. This coexistence of both states can
even be realized in the Meissner state at the domain’s boundaries featuring Meissner currents. We demonstrate
that there is a magnetic-field-driven crossover between the pure s± and the s++ states.
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I. INTRODUCTION

It is widely accepted that in iron-based superconductors, the
pairing between electrons is produced by interband electron-
electron repulsion [1–3]. In such a situation, the supercon-
ducting state, which features a sign inversion between the two
s-wave gap functions, is called s±, in contrast to the s++ state,
which has no sign inversion. The presence of disorder is known
to potentially lead to a crossover from the s± to the s++ state
[4]. In the absence of an external magnetic field, the crossover
is sharp and has basically no thermodynamic features. It
was however recently demonstrated that the crossover line is
accompanied by a nontrivial transition in the core structure
of vortices [5]. More precisely the vortices, in the vicinity of
the crossover line, can acquire a circular nodal line around the
singular point in one of the superconducting components [5].
This singular nodal line, which in three dimensions extends to
a cylindrical nodal surface surrounding the vortex line, results
in the formation of a peculiar “moat”-like profile in the sub-
dominant component of the superconducting gap. As a result,
the inner region of the vortex core shows a π relative phase
between the gaps while it is zero in the outer region. This means
that these moat-core vortices consist of an s± phase inclusion
in the vortex core, which is separated from the bulk s++ phase
by the nodal line. Here we investigate the consequences of
that physics on the phase diagram of such dirty two-band
superconductors, in an external magnetic field. In a low applied
external field the lattices and liquids of such moat-core vortices
represent a phase coexistence or a mircoemulsion of such s± in-
clusions inside the bulk s++ state. At elevated fields this results
in a field-induced transition between the s± and s++ states.

We start our investigation, in Sec. II, by deriving a
two-band Ginzburg-Landau model (including the gradient
terms) from the microscopic Usadel theory of dirty two-band

superconductors and discuss the essential properties of the
phase diagram. Next, Sec. III is devoted to the investigation
of the physical properties of the elementary topological ex-
citations (the vortices) and their core structure in that model.
There, we show that across the s±/s++ crossover line there is a
structural transition in the core of topological excitations, and
we further construct the diagram where such solutions occur, as
a function of the system’s microscopic parameters. In Sec. IV
we investigate the consequences for the phase diagram in an
applied external magnetic field, and finally our conclusions are
presented in Sec. V.

II. THEORETICAL FRAMEWORK

Within a weak-coupling approximation, two-band super-
conductors with a high concentration of impurities can be
described by a system of two Usadel equations, coupled by
interband impurity-scattering terms (see, e.g., [6]):

ωnfi = Di

2
(gi�

2fi − fi∇2gi) + �igi

+
∑
j �=i

γij (gifj − gjfi). (1)

Here ωn = (2n + 1)πT (with n ∈ Z) are the Matsubara fre-
quencies. T is the temperature, Di are the electron diffusivities,
and γij are the interband scattering rates. The quasiclassical
propagators fi and gi are respectively the anomalous and
normal Green’s functions in each band, which obey the
normalization condition |fi |2 + g2

i = 1. The components of
the order parameter �j = |�j |eiθj are determined by the
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self-consistency equations

�i = 2πT

Nd∑
n=0

∑
j

λijfj (ωn), (2)

for the Green’s functions that satisfy Eq. (1). Here, Nd =
�d/(2πT ) is the summation cutoff at Debye frequency �d .
The diagonal elements λii of the coupling matrix λ̂ in the self-
consistency equation (2) describe the intraband pairing, while
the interband interaction is determined by the off-diagonal
terms λij (j �= i). The interband coupling parameters and
impurity scattering amplitudes satisfy the symmetry relation
[6]

λij = −λJ /Ni with j �= i, and γij = 	Nj , (3)

where λJ ,	 > 0, and N1,2 are the partial densities of states in
the two bands.

In order to investigate the physical properties of dirty
two-band superconductors in the external field, we consider
a Ginzburg-Landau (GL) model that is derived from the
microscopic Usadel theory of dirty superconductors. The
Ginzburg-Landau free energy functional for multiband models
is obtained as an expansion in several small parameters: small
gaps and gradients (not to be confused with a symmetry-
based GL expansion that uses a single small parameter τ ; see
also remark [7]). The resulting expression, including gradient
terms, reads as [5]

F
F0

=
2∑

j=1

(
kjj

2
|��j |2 + ajj |�j |2 + bjj

2
|�j |4

)
(4a)

+ k12

2
[(��1)∗��2 + (��2)∗��1] (4b)

+ 2(a12 + c11|�1|2 + c22|�2|2)Re(�∗
1�2) (4c)

+ (b12 + c12 cos 2θ12)|�1|2|�2|2 + B2

2
. (4d)

Here, the complex fields�j = |�j |eiθj represent the supercon-
ducting gaps in the different bands, and θ12 = θ2 − θ1 stands
for the relative phase between them. The two gaps in the
different bands are electromagnetically coupled by the vector
potential A of the magnetic field B = ∇ × A, through the
gauge derivative � ≡ ∇ + iq A, and the coupling constant q

parametrizes the penetration depth of the magnetic field.
The coefficients of the Ginzburg-Landau functional aij , bij ,

cij , and kij are calculated from a given set of input parameters
λij , Di , T , and 	 of the microscopic self-consistent equation.
First, the coefficients of gradient terms are given by [5]

kii = 2πT Ni

Nd∑
n=0

Di(ωn + γji)2 + γij γjiDj

ω2
n(ωn + γij + γji)2

, (5a)

kij = 2πT Niγij

Nd∑
n=0

Di(ωn + γji) + Dj (ωn + γij )

ω2
n(ωn + γij + γji)2

, (5b)

with j �= i. Next, the coefficients of the potential terms are

aii = Niλjj

det(λ̂)
− 2πT

Nd∑
n=0

(ωn + γji)Ni

ωn(ωn + γij + γji)
, (6a)

aij = − Niλij

det(λ̂)
− 2πT

Nd∑
n=0

γijNi

ωn(ωn + γij + γji)
. (6b)

The other parameters read as

bii = πT Ni

Nd∑
n=0

(ωn + γji)4

ω3
n(ωn + γij + γji)4

+πT Ni

Nd∑
n=0

γij (ωn + γji)
(
ω2

n + 3ωnγji + γ 2
ji

)
ω3

n(ωn + γij + γji)4
, (7a)

bij = −πT Ni

Nd∑
n=0

γij

(ωn + γij + γji)4
+ πT Ni

×
Nd∑
n=0

γij (γij + γji)[ωn(γij + γji) + 2γij γji]

ω3
n(ωn + γij + γji)4

, (7b)

and

cii = πT Ni

Nd∑
n=0

γij (ωn + γji)
[
ω2

n + (ωn + γji)(γij + γji)
]

ω3
n(ωn + γij + γji)4

,

(8a)

cij = πT Ni

Nd∑
n=0

γij (ωn + γji)(ωn + γij )(γij + γji)

ω3
n(ωn + γij + γji)4

. (8b)

In Eq. (5), the coefficients of the gradient terms depend on
electronic diffusivity coefficients D1 and D2. The parameter
space can be reduced by absorbing one of the electronic
diffusivity coefficients in the gradient term. Without loss
of generality, we choose D1 to be the largest diffusivity
coefficient (D1 > D2). Thus, in the dimensionless units, the
coefficients of the gradient term depend only on the ratio of
diffusivities, or diffusivity imbalance rd = D2/D1 < 1. We
define the dimensionless variables by normalizing the gaps
by Tc and the lengths by ξ0 = √

D1/Tc. The magnetic field
by is scaled B0 = Tc

√
4πN1, where N1 is the density of

states in the first band, and the free energy F0 = B2
0/4π .

The electromagnetic coupling constant is q = 2πB0ξ
2
0 /�0.

In these units, the London penetration length λL is given by
λ−2

L = q2(kii�
2
i0 + 2k12�10�20), where �i0 is the bulk value

of the dimensionless gap.
It was demonstrated in Ref. [9] that, within its range of

applicability, the two-band Ginzburg-Landau formalism (4)
indeed produces phase diagrams that match those of the
microscopic theory even at temperatures substantially lower
than the critical temperature Tc of the superconducting phase
transition. Figure 1 shows such a phase diagram in the case
of a two-band superconductor with nearly degenerate bands
(λ11 = 0.29 and λ22 = 0.3), and intermediate repulsive in-
terband pairing interaction (λ12 = λ21 = −0.05). The regions
of different ground state relative phases clearly identify the
different phases. This illustrates that the presence of disorder
leads to a crossover from the s± to the s++ state. In the absence
of an external magnetic field, the crossover is sharp as can be
seen by the solid black line that shows the crossover between
s± and s++ states, where the subdominant gap �1 vanishes.
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FIG. 1. Example of a phase diagram of the Ginzburg-Landau free
energy describing two-band superconductors with interband impurity
scattering. It shows the values of the lowest-energy state relative phase
θ12 = θ2 − θ1 between the two components of the order parameter,
as a function of temperature and interband scattering amplitude 	.
The coupling matrix λ̂ corresponds to λ11 = 0.29 and λ22 = 0.3
with intermediate λ12 = λ21 = −0.05 repulsive interband pairing
interaction. The solid black line shows the zero of the subdominant
gap �1, which is the crossover between s± and s++ states. The vertical
line shows a field-cooling path realized later for a simulation in the
external field.

Another interesting transition between the s++ and the
s± phases is possible. Indeed, as a results of the presence
of impurities, a possibility for an additional phase appears.
This extra phase, where the interband phase difference θ12 =
θ2 − θ1 is neither zero nor π , is termed the s + is state. The fact
that the interband phase difference can be such that θ12 �= 0,π

follows from the existence of phase-locking terms ∝ cos θ in
(4c) and the others that are ∝ cos 2θ in (4c). The competition
between those terms is responsible for the existence of the
impurity-induced s + is state [10]. The s-wave states that
spontaneously break the time-reversal symmetry have been
a subject of much interest in recent years; see, e.g., [9–17].
In this work, we focus on the physics of the direct s± to the
s++ impurity-induced crossover in an external magnetic field
(denoted by the solid black line on Fig. 1). Although the physics
of vortices in, and in the vicinity of, the s + is is very rich, it
is beyond the scope of the current work and its detailed study
will be addressed in a subsequent work [18].

Below, we discuss that in an external applied magnetic
field, dirty two-band superconductors do not feature a sharp
s± → s++ crossover but there appears a finite region in the
parameter space where both s± and s++ states can coexist in a
peculiar way.

III. STRUCTURAL TRANSITION OF VORTEX CORES

When going from the s++ to s± state, there is a transition
in the vortex core structure: the vortices there can develop an
additional circular nodal line around the singular point in one
of the superconducting components [5]. Thus these vortices
consist of an s± phase inclusion in the vortex core, which is
separated from the bulk s++ phase by the nodal line.

FIG. 2. Vortex configurations in the vicinity of the impurity
induced crossover line of a two-band superconductor. The temperature
here is T/Tc = 0.95, q = 0.5, and tuning the strength of the interband
impurity scattering drives the ground state from bulk s++ to bulk s±.
The different lines respectively display the magnetic field B and the
majority (�2) and minority (�1) gap components. The last line shows
the relative phase θ12 that specifies whether the superconducting
ground state is s++ or s±. In the vicinity of the impurity induced
crossover line, the minority component of the order parameter is small,
accounting for a few percent of the total density. The third column
shows a vortex solution that features, in addition to the usual point
singularities, a circular nodal line in the minority component �1.

In order to investigate the properties of single-vortex solu-
tions, the vector potential A and the gap functions �1,2 are
discretized using a finite-element framework [19]. Starting
with an initial configuration where both components have the
same phase winding (i.e., at large distances �i ∝ eiθ where θ

is the polar angle relative to the vortex center), the Ginzburg-
Landau free energy (4) is then minimized using a nonlinear
conjugate gradient algorithm. We begin by simulating the
vortex solutions in zero external field. For that purpose, the vor-
tices are induced only by the initial configuration of the
phase winding. For further details on the numerical methods
employed here, see for example the related discussion in [20].

Figure 2 shows the numerically calculated (isolated) vortex
solutions in the vicinity of the impurity-induced crossover, in
the case of a two-band superconductor with nearly degenerate
bands and weak repulsive interband pairing interaction. Deep
in the s++ and s± regimes (in the first and fourth column),
the vortices have multicore structure where both components
exhibit a vortex profile with different sizes of conventional
cores, determined by the fundamental length scales. The vortex
profiles of the minority component �1 become very different
when approaching the crossover line. On the s± side of the
crossover, the minority component exhibits a strong overshoot
near the core. The density overshoot effect, although much
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smaller, was also reported in the microscopic model with one
clean and one dirty band [21].

The very unconventional feature of vortices in this model
of dirty two-band superconductors is the appearance of an
additional circular nodal line of the minority component in
addition to the usual point singularity at the center of the vortex
[5]. While the bulk relative phase is zero (the s++ state) far
from the vortex center, due to the competition between gradient
and potential terms, it is more favorable to achieve a θ12 = π

relative phase (s± state) in the vicinity of the core singularity.
The transition between the “core” states with θ12 = π and
the asymptotic state θ12 = 0 is realized by nullifying the
minority component at a given distance of the core, when the
potential terms dominate over the gradient term. This can be
seen in the third column of Fig. 2. Analytical explanation of
such behavior was given in the previous work Ref. [5]. The
existence of the circular nodal line results in the formation of a
peculiar “moat”-like profile in the subdominant component of
the superconducting gap. Note that the total superconducting
order parameter does not vanish there; rather it is only the
subdominant gap (here �1) that vanishes exactly at this nodal
line. Indeed, since it separates regions with θ12 = π from
regions with zero phase difference, it has to be exactly zero
somewhere. This can be viewed as a real-space counterpart of
the crossover on the phase diagram. Namely, the line of direct
crossover that separates the s++ state from the s± phase is that
where the subdominant gap vanishes.

In order to understand how generic are such solutions,
we further investigate numerically their existence on various
phase diagrams. We find that the existence of these kinds of
“moat-core” vortices does not depend on the specific values
of the pairing coefficients. By that statement we mean that
for the various different coupling matrices λ̂ we investigated,
we have been able to identify regions of the (T ,	) diagram
where “moat-core” vortices do form. This can be heuristically
addressed with the following criterion that the condition for the
transition of the vortex core structure is that the mixed-gradient
energy (4b) dominates the Josephson energy (4c). This was
discussed analytically in Ref. [5]. The investigation of the
vortex solutions, for various parameter sets, rather shows that
the moat-core is a common feature in the vicinity of the
crossover line. The region of their existence is shown in Fig. 3.
It is is clearly visible that the region with moat-core vortex
solutions shrinks close to Tc and is eventually suppressed
[panel (a) and (b)]. This is to be expected because near
critical temperature, the solutions are dominated by a critical
mode (see corresponding analytical estimates in [5]). For the
investigated regimes, the width (in terms of impurities δ	)
of the regions where moat-core vortices exist increases with
increasing the band disparity λii [compare for example panels
(b) and (d)]. By comparing panels (a), (b), and (c), it can also
be seen that the width of the moat “region” increases with the
interband coupling λ12.

IV. PHASE COEXISTENCE IN EXTERNAL FIELD AND
MAGNETIC-FIELD-DRIVEN CROSSOVER

In this section, we consider the effect in the presence of
intervortex interactions and its implication for states of dirty
two-band superconductors in an external magnetic field. First

FIG. 3. Phase diagrams of the Ginzburg-Landau free energy
(4) describing two-band superconductors with interband impurity
scattering. These show the values of the lowest-energy state relative
phase θ12 = θ2 − θ1 between the components of the order parameter,
and the regions of existence of moat-core vortices, as functions of
the temperature and interband scattering 	. In addition to the ground
state properties, these diagrams shows the domains of existence of
(isolated) moat-core vortices that feature a nodal line singularity
surrounding the point singularity of the core. The different panels
correspond to different values of the coupling matrix λ̂. Panels (a),
(b), and (c) respectively correspond to nearly degenerate bands with
λ11 = 0.29 and λ22 = 0.3 with weak λ12 = λ21 = −0.01, interme-
diate λ12 = λ21 = −0.05, and strong λ12 = λ21 = −0.1 repulsive
interband pairing interaction. The last panel (d) describes the case
of intermediate band disparity λ11 = 0.25 and λ22 = 0.3 with inter-
mediate λ12 = λ21 = −0.05 repulsive interband pairing interaction.
The solid black line shows the zero of �2, which is the crossover
between s± and s++ states. It is clear here that (isolated) vortices
with nodal zero line are quite generic solutions in the vicinity of the
crossover line.

of all the existence of these moat-core vortices, where both s±
and s++ phases coexist, implies that a lattice of such vortices
would represent a special kind of phase coexistence and that,
in an external field, the sharp crossover found in the ground
state is rather washed out to a finite region in the parameter
space.

In order to investigate the response to an applied external
magnetic field H = Hzez, perpendicular to the plane, the
Gibbs free energy G = F − B · H is minimized, with requir-
ing that ∇ × A = Bext on the boundary (for details, see a
related discussion in Ref. [20]).

Figure 4 demonstrates the external-magnetic-field-driven
crossover between the s± and s++ states. The coupling param-
eters are those of Fig. 2, and the temperature and the strength of
the interband impurity scattering place the system in the bulk
s++ state, close to the crossover line. The computations are thus
performed for parameters where the single-vortex solutions
have a circular nodal line similar to that shown in the third
column in Fig. 2. In zero and low external fields, the preferred
phase locking in the bulk is θ12 = 0 (the s++ state). Upon
increasing the external field, vortices start to enter the domain,
introducing small inclusions of state with θ12 = π in their
core. When the density of vortices becomes significant, the
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FIG. 4. Magnetization process of a dirty two-band superconductor. The coupling parameters are those of Fig. 2, the temperature is T/Tc =
0.9, q = 0.5, and the strength of the interband impurity scattering 	 = 0.7625 places the system in the bulk s++ state, in the vicinity of the
crossover line. That choice of parameters gives single-vortex solutions with the circular nodal line similar to that of the third column in Fig. 2.
The different lines respectively display the magnetic field B and the majority (�2) and minority (�1) gap components. The last line shows
the relative phase θ12 that specifies whether the superconducting ground state is s++ or s±. The preferred phase locking in the bulk is θ12 = 0
(the s++ state). Upon increasing external field, vortices start to enter the system, introducing small blobs of θ12 = π in their moat core. When
the density of vortices becomes significant, the cores of the subdominant component start to overlap. As can be seen in the third column, at
intermediate vortex densities there appear regions where blobs of the θ12 = π phase merge. When the field is increased further the whole system
shows a θ12 = π phase locking everywhere. Note that on the last line the system has the s++ state in the bulk but s± state near the boundary. By
contrast at elevated fields the system becomes an s± superconductor in the bulk, while a layer of s++ forms close to a boundary.

cores of the subdominant component start to overlap until the
whole system shows the θ12 = π phase locking everywhere.
Thus the crossover here is driven by the external magnetic
field.

We find that even in a low applied field, below the first
critical field, the Meissner state also exhibits the unusual
property of coexistence of both s++ and s± states. Indeed, the
s± state can be realized near the boundaries while in the bulk, it
is the s++ state. That is, as can be seen from the first column of
Fig. 4, the region carrying Meissner currents shows a θ12 = π

phase locking (thus an s± state near boundaries), while the bulk
is in the s++ state (with θ12 = 0). This current-carrying region
with θ12 = π is separated from the θ12 = 0 bulk by a nodal line
of the subdominant component. That nodal line originates in
the competition between phase-locking kinetic terms favoring
a θ12 = π relative phase in the current-carrying regions, and
potential terms that favor zero phase difference. The reversal of
the phase locking in the current-carrying region is thus in some
sense similar to that occurring in vortex cores in the vicinity
of the crossover [5].

As illustrated in Fig. 4, the magnetization properties in the
vicinity of the s±/s++ crossover are rather unusual. It is also
interesting to consider the case of a field-cooled simulation
close to the impurity-induced crossover. Figure 5 displays a
simulation of a field-cooled experiment at a constant applied

field that starts at temperatures placing the system above the
crossover line in the s± phase, and that ends in the s++ phase.
This field-cooled path is denoted by the vertical line displayed
in the phase diagram of Fig. 1. Sufficiently far from the
crossover, the relative phase corresponds to that of the bulk
properties in zero field, i.e., the s± phase for temperatures
above the crossover line and s++ below the crossover. However,
unlike the zero-field case, there is no sharp crossover between
both states. As can be seen in the third column, after the
crossover, the vortex-carrying regions remain mostly with the
s± phase because the cores of the subdominant component
still overlap. When going away from the crossover, that is,
when further decreasing the temperature, the cores in the
subdominant component �1 do not overlap anymore. Still the
vortices with zero nodal line feature inclusion of the θ12 = π

state while the intervortex spaces have relative phase θ12 = 0.
That situation of a lattice (or liquid) of moat-core vortices
thus represents a phase coexistence or a mircoemulsion of s±
inclusions inside the s++ state.

V. CONCLUSION

We considered a two-band superconducting system that
has an impurity-driven s±/s++ crossover line. We generalize
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FIG. 5. A field-cooled state simulation for a dirty two-band superconductor, in the vicinity of the impurity induced crossover line. The
displayed quantities are the same as in Fig. 4. The preferred phase locking at high temperatures is θ12 = π (the s± state), while it is θ12 = 0
(the s++ state) at low temperatures. Decreasing the temperatures drives the system across the crossover line. After the crossover, vortices still
carry inclusions of θ12 = π in their core. Only far below the crossover temperature, vortices do not carry different phase locking in their core
anymore, and the whole system shows a θ12 = 0 phase locking everywhere.

the zero-field phase diagram to the case where the system is
subjected to external magnetic field. We report that it is a
rather generic feature that on the s++ side of this crossover,
the vortex solutions are unconventional, featuring a circular
nodal line that segregates the s± phase inclusions in the cores
from the bulk s++ phase. Further, we demonstrated that as a
consequence of such vortex solutions, the behavior of dirty
two-band superconductors in the vicinity of the crossover is
also rich in an external field. Indeed, in contrast to the zero-field
picture of a sharp crossover, the lattice and liquids of moat-
core vortices represent a lattice or a “mircoemulsion” of s±
inclusions inside the s++ state. Moreover, as the vortex density
raises in increasing field, there is also a field-induced crossover
from s++ to the s±, which can be resolved in local phase-
sensitive probes [22–24]. We also pointed out that in these
systems in an applied external field, the superconducting state
near the Meissner current carrying boundary can be s± while it
is s++ in the bulk. This result has direct implications for local
probes of superconducting states, such as the one proposed
in Refs. [22–24], and for Josephson junction experiments.
The coexistence state will manifest itself in the existence of
signatures of both the s± and s++ states depending on the
probe’s position. The formation of nodal lines was also found
in a different phenomenological clean three-band model where

it arises for a different reason due to frustrated Josephson
terms [13] rather than originating from competition between
mixed-gradient and potential terms. That suggests that the
phenomenon is rather generic and applies also to other models
featuring a crossover from the s± to s++ state.
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APPENDIX: GINZBURG-LANDAU COEFFICIENTS

Table I shows the actual values of the coefficients entering
the Ginzburg-Landau functional that were used for the various
simulations throughout the paper.
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TABLE I. Coefficients of the Ginzburg-Landau free energy functional (4), which correspond to the various numerical simulations reported
in the main body of the text. They are calculated using the formulas (5), (6), (7), and (8), derived consistently from the microscopic Usadel
theory (1). The last column shows the effective Josephson coupling Jeff = 2(a12 + c11|�1|2 + c22|�2|2). Positive (resp. negative) values of Jeff

denote the s± (resp. s++) phase, while Jeff = 0 exactly at the crossover.

Control k11 = k22 k12 a11 a22 a12 b11 = b22 b12 c11 = c22 c12 Jeff

parameter (×10−1) (×10−1) (×10−2) (×10−2) (×10−3) (×10−1) (×10−3) (×10−2) (×10−3) (×10−2)

	 = 0.253 4.57854 0.373521 3.46285 −2.29089 −0.1615 0.741321 −2.80412 0.329015 0.3137 0.17184
	 = 0.256 4.58081 0.37838 3.46165 −2.29209 −0.86902 0.742242 −2.83503 0.333393 0.321875 0.03220

Fig. 2 	 = 0.257 4.58157 0.380002 3.46123 −2.29251 −1.10501 0.742549 −2.84532 0.334855 0.324627 −0.01427
	 = 0.260 4.58386 0.384875 3.45997 −2.29377 −1.81332 0.743474 −2.87614 0.339251 0.332965 −0.15349

Fig. 4 B/B0 4.45512 1.06235 8.70857 2.95483 −106.676 0.721483 −4.72472 0.884065 2.48617 −19.6283

T/Tc = 0.915 8.94251 3.90581 3.40222 −2.51494 −4.11727 2.89522 −3.8533 6.31571 32.5610 0.29833
T/Tc = 0.905 9.02277 3.96752 3.06348 −2.85368 −6.22441 2.94601 −3.44763 6.47026 33.5801 0.00939

Fig. 5 T/Tc = 0.895 9.10466 4.03077 2.72175 −3.19541 −8.36281 2.99822 −3.01249 6.63016 34.6403 −0.28168
T/Tc = 0.885 9.18824 4.09562 2.37699 −3.54017 −10.5332 3.05192 −2.54593 6.79565 35.7439 −0.57084
T/Tc = 0.865 9.36067 4.23033 1.67808 −4.23908 −14.9731 3.16401 −1.51015 7.14448 38.0905 −1.12672
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