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Neutron scattering study of yttrium iron garnet

Shin-ichi Shamoto,1,* Takashi U. Ito,1 Hiroaki Onishi,1 Hiroki Yamauchi,2 Yasuhiro Inamura,3 Masato Matsuura,4

Mitsuhiro Akatsu,5 Katsuaki Kodama,2 Akiko Nakao,4 Taketo Moyoshi,4 Koji Munakata,4 Takashi Ohhara,3

Mitsutaka Nakamura,3 Seiko Ohira-Kawamura,3 Yuichi Nemoto,6 and Kaoru Shibata3

1Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195, Japan
2Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195, Japan

3J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
4Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Naka,

Ibaraki 319-1106, Japan
5Department of Physics, Niigata University, Niigata, Niigata 950-2181, Japan

6Graduate School of Science and Technology Niigata University, Niigata, Niigata 950-2181, Japan

(Received 8 May 2017; revised manuscript received 11 December 2017; published 26 February 2018)

The nuclear and magnetic structure and full magnon dispersions of yttrium iron garnet Y3Fe5O12 have been
studied using neutron scattering. The refined nuclear structure is distorted to a trigonal space group of R3̄. The
highest-energy dispersion extends up to 86 meV. The observed dispersions are reproduced by a simple model with
three nearest-neighbor-exchange integrals between 16a (octahedral) and 24d (tetrahedral) sites, Jaa , Jad , and Jdd ,
which are estimated to be 0.00 ± 0.05, −2.90 ± 0.07, and −0.35 ± 0.08 meV, respectively. The lowest-energy
dispersion below 14 meV exhibits a quadratic dispersion as expected from ferromagnetic magnons. The imaginary
part of q-integrated dynamical spin susceptibility χ ′′(E) exhibits a square-root energy dependence at low energies.
The magnon density of state is estimated from χ ′′(E) obtained on an absolute scale. The value is consistent with
the single chirality mode for the magnon branch expected theoretically.
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I. INTRODUCTION

Yttrium iron garnet (YIG) with a chemical composition of
Y3Fe5O12 is a well-known ferrimagnetic insulator for various
applications, recently expanding to spintronic devices [1,2].
The spin current is excited as a flow of spin-angular momentum
of magnon thermally depending on the magnon dispersion.
The spin current produces a voltage on an attached electrode
such as platinum via the inverse spin Hall effect [3]. This
phenomenon is called the spin Seebeck effect [4]. Especially,
a sample configuration of the ferromagnetic material and
the electrode with a thermal gradient along the longitudinal
direction is called a longitudinal spin Seebeck effect (LSSE)
[5]. A recent detailed study of LSSE on YIG showed that
the magnetic field dependence has good agreement with
that expected from bulk-YIG magnon dispersion [5,6]. The
magnetic field produces a gap in the ferromagnetic dispersion,
resulting in the reduction of thermally excited spin current. The
theoretical model is based on basic magnon parameters of YIG,
which are the quadratic magnon dispersion and the magnon
density of states (MDOS) DM . The magnon dispersons have
been measured by inelastic neutron scattering (INS) [7,8].
Theoretical studies [9,10] suggest that the splitting of two
types of modes, χ ′′

xy and χ ′′
yx , plays an important role for

the LSSE. They correspond to negative and positive chirality
(polarization) modes, respectively [10]. In a subunit cell with
five Fe spins of this ferrimagnet, as shown in Fig. 1, there are
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three up spins and two down spins, corresponding to the three
positive and two negative chirality modes, respectively. One
of the mode carries one directional spin current, whereas the
other does the opposite direction. Therefore, mixing of two
modes cancels the spin current, resulting in a reduction of the
spin Seebeck effect. This mechanism is theoretically proposed
to play an important role for the degradation of LSSE at high
temperatures [10].

As for the basic properties of YIG, there have been plenty
of reports [11]. The nuclear and magnetic structure, however,
has been studied so far only by using a powder sample [12].
According to a study under a magnetic field, the nuclear
structure is distorted from a cubic to a trigonal space group.
Under a magnetic field, a single-crystal measurement is suit-
able to remove the magnetic domain walls homogeneously
for the precise nuclear and magnetic structure determination.
In addition, even the magnon dispersions have never been
studied above 55 meV due to a technological limitation in INS
measurements [8]. The exchange integrals of YIG have been
estimated under the limitation [7,8,11]. Current high-efficiency
INS spectrometers at pulsed-neutron sources enable us to
access high energy E above 55 meV even with a small crystal.
According to the theory of YIG magnons [10], the mode mixing
for the lowest-E branch becomes important for LSSE. For an
antiferromagnet, the lowest-E dispersion is known to have
doubly degenerate modes. On the other hand, the lowest-E
dispersion of YIG is theoretically predicted to have only a
single mode of positive chirality [10]. It is challenging for us
to check the mode number from the MDOS on an absolute
scale due to various factors such as neutron absorption in a
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FIG. 1. Fe spins in a subunit cell, which is 1/8 of a cubic unit
cell (Ia3̄d) with 40 Fe spins. Blue and brown arrows are spins at 16a

(octahedral) and 24d (tetrahedral) sites for Ia3̄d , respectively. Three
nearest-neighbor-exchange integrals between 16a and 24d sites, Jaa ,
Jad , and Jdd , are shown by red, blue, and orange lines, respectively.

sample. Because of the difficulties, there has been no report of
absolute MDOS for YIG.

Here, we study all these important issues by using neutron
scattering. As for the MDOS estimation, we introduce an ap-
proximated dynamical structure factor and effective reciprocal
space volume to simplify the absolute estimation in addition to
the numerical calculation of absorption coefficients. The INS
probability on a magnet can be expressed by Fermi’s golden
rule, which includes the MDOS of the final states. This is the
same as the phonon density of states for the phonon case, which
is often revealed by INS. Based on this method, the MDOS
of YIG was estimated from the observed scattering intensity.
So far, the sum rule of the q-integrated scattering function
S(E) after energy integration is well known to be proportional
to S(S + 1) [13]. Therefore, the q-integrated dynamical spin
susceptibility χ ′′(E) normalized by g2μ2

BS(S + 1) becomes
the MDOS at T = 0 K, where the energy integration results
in unity. To check the validity of our estimation, the simple
quadratic dispersion model [5] is used to estimate the MDOS.
In the low energies below 14 meV, the magnon dispersion
is well described by a simple quadratic function of the wave
vector. The observed lowest-E dispersion is fitted by the simple
quadratic dispersion with a stiffness constant D. In addition,
D is also checked by the exchange integrals obtained from the
whole magnon spectrum in our experiment. Then the relation
between the MDOS and χ ′′(E) is discussed quantitatively
based on the stiffness constant D.

II. EXPERIMENTAL PROCEDURES

Single crystals of YIG were grown using a traveling-solvent
floating-zone furnace [14] with four halogen lamps (FZ-T-
4000-H-II-S-TS, Crystal Systems Co.) at a rate of 0.6–1.0
mm/h under air flow of 2 L/min. The typical crystal size was
5.5 mm in diameter and 47 mm in length with a weight of 5.8 g.
The mosaic spreads of both of the crystal ends were about 1.5◦
based on x-ray Laue measurement.

All magnon excitations of YIG in a wide E range from
0.05 to 86 meV were observed by INS measurements with
three different types of time-of-flight spectrometers, 4D-
Space Access Neutron Spectromete (4SEASONS) (BL01) [15]

and Cold-neutron disk-chopper spectrometer (AMATERAS)
(BL14) [16] and Biomolecular Dynamics Spectrometer (DNA)
(BL02) [17] at the Japan Proton Accelerator Research Complex
(J-PARC) Materials and Life Science Experimental Facil-
ity. Based on the magnon excitations, the nearest-neighbor-
exchange integrals were estimated using SPINW software [18]
based on the linear spin-wave theory with Holstein-Primakoff
approximation. The observed scattering patterns were simu-
lated using HORACE [19] and SPINW software. On the other
hand, the magnetic Bragg peak intensities were measured by
Extreme Environment Single Crystal Neutron Diffractometer
(SENJU) [20]. The collected data were processed with the
software STARGAZER [21]. Their intensities were analyzed
using FULLPROF [22]. The nuclear and magnetic structures
were generated by VESTA [23]. Errors in the magnetic structure
section are shown in parentheses by the corresponding digits.

Here, we define the scattering wave vector Q as Q = q +
G, where Q = Qa(2, − 1, − 1) + Qb(1,1,1) + Qc(0, − 1,1),
q = qa(2, − 1, − 1) + qb(1,1,1) + qc(0, − 1,1) is defined in
the crystal-setting Brillouin zone, and G is a reciprocal lattice
vector such as (220) for a cubic unit cell of Ia3̄d with a lattice
parameter a = 12.36 Å. Qa , Qb, Qc, qa , qb, and qc are in
reciprocal lattice units (r.l.u.). The horizontal scattering plane
was set in the (Qa,Qb,0) zone. Note that this crystal-setting
Brillouin zone with 1 r.l.u.3 is 6 times larger than the original
Brillouin zone. Incident energies Ei of the multi-Ei mode [24]
were 12.5, 21.5, 45.3, and 150.0 meV at 4SEASONS, whereas
it was 15.0 meV at AMATERAS. The incoherent E widths
of FWHM at E = 0 meV were 0.67 ± 0.04, 1.30 ± 0.06,
3.9 ± 0.1, 20.0 ± 0.2, and 1.07 ± 0.02 meV, respectively. As
for the INS measurement at DNA, the horizontal scattering
plane was set in the (0,Qb,Qc) zone. The final energy Ef

of DNA was 2.08 meV. The incoherent E width of FWHM
was 3.44 ± 0.02 μeV at E = 0 meV (Q = 1.44 Å

−1
). The

INS measurements were carried out at T ≈ 20 K. It typically
took about 1 day for one measurement under a proton beam
power of about 300 kW at J-PARC. The neutron absorption
coefficients A∗ of our YIG single crystal were estimated based
on our numerical calculation and were typically 0.67 and 0.54
for 4SEASONS/AMATERAS and DNA, respectively.

III. RESULTS AND DISCUSSION

1. Nuclear and magnetic structure

The nuclear structure of YIG is reported to distort from
cubic to trigonal symmetries under a magnetic field along
[111]cubic [12]. In order to check the trigonal distortion, the
nuclear and magnetic structure of YIG was studied using a
single crystal at about 295 K under a magnetic field (B ≈
0.1 T) along [111]cubic with a pair of permanent magnets to
remove the magnetic domain walls. The magnetic field at
the sample position was measured by a Hall effect sensor.
Intensities of 727 reflections (with the conditions I > 3σI

and sin θ/λ < 0.85 Å) were well refined with a trigonal space
group (R3̄, No. 148: hexagonal setting) [12] with lattice param-
eters a = 17.50227(55) Å and c = 10.73395(29) Å. Observed
nuclear and magnetic Bragg peak intensities are shown in
Fig. 2 as a function of calculated intensities. All the magnetic
moments align along the [001]hexagonal ([111]cubic) direction
parallel to B. the obtained nuclear and magnetic structure is
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FIG. 2. Observed nuclear and magnetic Bragg peak intensities as
a function of calculated intensities with a trigonal space group (R3̄).

shown in Fig. 3. The refined crystallographic parameters with
reliability factors RF 2 = 9.85% and RF = 7.07% are listed
in Table 1. They were almost consistent with the reported
values [12]. Note that the occupancy g of O718f was fixed
because the g value exceeded 1.00 slightly within the error
during the refinement. The chemical composition of the present
YIG crystal was Y2.84(9)Fe5O11.57(21). The deficiency of the Y3+
ion is almost compensated by the oxygen deficiency for the
Fe valence of +3 within the error. The obtained magnetic
moments were 3.50μB ± 0.17μB and 3.37μB ± 0.17μB at
octahedral and tetrahedral sites, respectively, where μB is the
Bohr magneton. The total magnetization of 3.1(6)μB/f.u. is
consistent with the magnetization 3.05μB/f.u. under B = 1 T,
although the obtained magnetic moments under B ≈ 0.1
T are smaller than 4.47μB ± 0.04μB and 4.02μB ± 0.05μB

FIG. 3. Obtained nuclear and magnetic structure of YIG in a
trigonal unit cell of R3̄. Blue and brown arrows are iron spins for
octahedral and tetrahedral sites, respectively, small pink spheres are
oxygen, and pale blue spheres are yttrium.

[12]. These discrepancies can be attributed to the remaining
magnetic domain walls of the powder sample in the previous
study [12]. The slightly larger trigonal lattice distortions
observed here compared with the previous ones reduce the
observed magnetic moments in the present analysis due to the
overlapping of Bragg peaks. In this sense, it is very important
to determine the nuclear structure of YIG precisely for the
estimation of the magnetic moments. Although the atomic
distortions from cubic to trigonal symmetries are observed,
the following magnon dispersions are discussed in the cubic
symmetry of Ia3̄d for simplicity.

2. Magnon dispersions

A magnon excitation in YIG is observed at q in a reciprocal
space deviating from the � point at a finite-energy transfer E.
It forms a three-dimensional (3D) q spherical shell at E due

TABLE I. The parameters of the nuclear and magnetic structure of YIG at about 295 K under B ≈ 0.1 T in the space group R3̄. Errors are
shown in parentheses by the corresponding digits. The occupancies g of Fe and O718f were fixed (as indicated by “fix”).

Fractional coordinates
B μz

Atoms x y z (Å
2
) g (units of μB)

Y118f 0.1255 (3) 0.0005 (3) 0.2497 (2) 0.245 (53) 0.943(22)
Y218f 0.2911 (3) 0.3333 (3) 0.5834 (2) 0.245 (53) 0.948(22)
Fe3a 0 0 0 0.243 (27) 1.00(fix) 3.50(17)
Fe3b 0 0 0.5 0.243 (27) 1.00(fix) 3.50(17)
Fe9d 0 0.5 0.5 0.243 (27) 1.00(fix) 3.50(17)
Fe9e 0.5 0 0 0.243 (27) 1.00(fix) 3.50(17)
Fe118f 0.2084(2) 0.1672(2) 0.4166(2) 0.315 (28) 1.00(fix) −3.37(17)
Fe218f 0.2912(2) −0.1670(2) 0.5832(2) 0.315 (28) 1.00(fix) −3.37(17)
O118f 0.0877 (3) 0.0920 (4) 0.1210 (2) 0.344 (28) 0.993(18)
O218f 0.2622 (4) 0.1158 (4) 0.3230 (3) 0.344 (28) 0.941(17)
O318f −0.4212 (3) −0.3721 (4) 0.5444 (2) 0.344 (28) 0.991(20)
O418f 0.4867 (4) 0.0953(4) 0.4188 (3) 0.344 (28) 0.940(17)
O518f −0.0042 (4) −0.0904 (4) 0.3798 (3) 0.344 (28) 0.963(18)
O618f 0.1453 (4) −0.1154 (4) 0.1773 (3) 0.344 (28) 0.940(18)
O718f −0.0490 (3) 0.3717 (4) −0.0451 (2) 0.344 (28) 1.00(fix)
O818f 0.3899 (4) −0.0967 (4) 0.0809 (3) 0.344 (28) 0.933(17)
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FIG. 4. One of the magnon excitations of YIG at (220) [(Qa,Qb,Qc) = (1/3,4/3, − 1)] in the E range from 5 to 20 meV measured by
Ei = 45.3 meV. (a) Qa-Qb contour map of −1.05 < Qc < −0.95. (b) Qc-Qb contour map of 0.3 < Qa < 0.4. (c) Qa-Qc contour map of
1.3 < Qb < 1.4. White areas are no-detector regions. The color bars are in units of mbarn sr−1 meV−1 r.l.u.−3.

to the 3D interactions of localized spins, as shown in Fig. 4,
where the measured magnetic excitations were extracted as a
two-dimensional slice from the INS data set. The normalized
intensities CIobs(Q,E) at around (220) thinly sliced along Qa ,
Qb, and Qc at E ≈ 12 meV are shown in Fig. 5. The averaged
integrated intensities CIobs(Q,E) (�VQ = 0.01) along Qa ,
Qb, and Qc were 0.87 ± 0.12, 1.40 ± 0.14, and 1.92 ± 0.20,
respectively. The peak positions from (220) along qa , qb, and

qc were 0.35 ± 0.01, 0.343 ± 0.003, and 0.332 ± 0.004 Å
−1

,
respectively. These positions suggest that the magnon disper-
sion is nearly isotropic.

The q positions of magnetic excitations were determined
by the fittings of Gaussian functions for thinly sliced Q scans,
as shown in Fig. 5. On the other hand, q-integrated magnon
intensity was obtained through the integration of one 3D
spherical-shell excitation. See the Appendix for the details of
our absolute intensity estimation.

The magnons of YIG extended up to 86 meV, as shown in
Fig. 6. Phonons were not apparently observed in this low-Q
region. The strong high-E magnetic excitations were observed
as nearly Q independent dispersions at about 73 and 86 meV. In
the middle-E range below 55 meV, many dispersions overlap
each other, leading to a broad band down to 30 meV. Three
nearest-neighbor-exchange integrals, Jaa , Jad , and Jdd , were
estimated step by step based on the simulation with gS = 5μB

using SPINW software [18] as follows. The subscripts a and d

refer to the Fe 16a (octahedral) and 24d (tetrahedral) sites in
the cubic symmetry Ia3̄d, respectively.

Jad was determined from the whole magnon bandwidth,
whileJdd is determined by the magnon energy atP (∼45 meV),
with positive chirality in the middle-E range. A strong positive
correlation was found between Jad and Jaa , which was sensi-
tive to the second-highest-magnon energy at P (∼70 meV).
The obtained three nearest-neighbor-exchange integrals, Jaa ,
Jad , and Jdd , were 0.00 ± 0.05, −2.90 ± 0.07, and −0.35 ±
0.08 meV, respectively. The minus sign means that the cou-
plings are antiferromagnetic [10]. The errors of integrals were
determined using the largest energy shift up to 2 meV in the
dispersion energies typically at the P point. The calculated
dispersions are shown in Fig. 6. Note that the present three
exchange integrals are nearly consistent with estimated values
(Jaa ∼ 0, Jad = −2.78, Jdd = −0.28 meV) from magnetic
susceptibility above 750 K [25] after taking into account the
temperature dependence of the lattice constant. As discussed
in Ref. [25], Jaa is estimated to be less than −0.03 meV
from the garnet compound Ca3Fe2Si3O12 with Fe3+ occupied
only at the 16a site [26]. In the previous analysis of magnon
dispersions measured below 55 meV in Ref. [7], Jaa , Jad ,
and Jdd were −0.69, −3.43, and −0.69 meV, respectively.
After detailed refinement of the same dispersions, Jaa , Jad , and
Jdd became −0.33, −3.43, and −1.16 meV, respectively [11].
The simulated magnon dispersions with these integrals seem
consistent with those below 55 meV but deviate largely from
observed dispersions above 55 meV. The simulated magnon
dispersions in Ref. [10] also exhibit similar behavior. In order
to check the validity of our exchange integrals, observed and

FIG. 5. Normalized intensity CIobs(Q,E) in Fig. 4 as a function of Q in the E range from 5 to 20 meV. (a) Qa scan of 1.3 < Qb < 1.4 and
−1.05 < Qc < −0.95. (b) Qb scan of 0.3 < Qa < 0.4 and −1.05 < Qc < −0.95. (c) Qc scan of 0.3 < Qa < 0.4 and 1.3 < Qb < 1.4.
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FIG. 6. Wide-E-range magnon dispersions in Qc-E space. Left:
observed pattern as a function of Qc measured by Ei = 150.0 meV
in the range of −0.5 < Qa < 3 and 1 < Qb < 3. Right: magnon
dispersions along the same direction calculated from � to N at (123)
by SPINW with the three nearest-neighbor-exchange integrals esti-
mated here. The brown (blue) coloring denotes the positive (negative)
chirality mode. The color bar is in units of mbarn sr−1 meV−1 r.l.u.−3.

simulated constant-E cuts at various energies are shown in
Fig. 7. They are fairly consistent with each other even in
the middle-E range from 30 to 50 meV, where many modes
overlap with each other. The precise fitting may require more
parameters than ours, as discussed in recent studies [27,28].

As for the lowest-E acoustic magnon dispersion, a quadratic
dispersion is observed from data sets measured at various
spectrometers below 14 meV near the � point, as shown in
Fig. 8. The nearly isotropic low-E dispersion can be written
approximately as follows:

E = Da2q2, (1)

where D is the stiffness constant, q is the magnon wave vector,
and a is the lattice constant. Da2 is estimated to be 633 ±
17 meV Å

2
(3.95 × 10−29 erg cm2 = 3.95 × 10−40 J m2)

based on the fitting below 14 meV in Fig. 8. This value is

slightly smaller than that of 670 meV Å
2

(4.2 × 10−29 erg cm2)
used in Ref. [5]. By using the obtained exchange integrals, the
stiffness constant D can be estimated as follows [11,29]:

D = 5

16
(8Jaa − 5Jad + 3Jdd ). (2)

This equation leads to Da2 = 642 meV Å
2

from our three
exchange integrals. This value is consistent with the stiffness
constant obtained from Eq. (1).

3. Dynamical spin susceptibility

The imaginary part of dynamical spin susceptibility
χ ′′(q,E) is estimated based on the following equation for the
magnetic differential scattering cross section:(

d2σ

d�dE

)
M

= (γ re)2

πg2μ2
B

kf

ki

f 2(Q)t2(Q){1 + (τ̂ · η̂)2}av

× {1 + n(E)}χ ′′(q,E), (3)

where the constant value (γ re)2 = 0.2905 barn sr−1; g is the
Landé g factor; ki and kf are the incident and final wave
vectors; the isotropic magnetic form factor f 2(Q) of Fe3+

at (220) is 0.8059 (Q = 1.44 Å
−1

); the dynamic structure
factor t2(Q) [30] is approximated to be a squared static
magnetic structure factor relative to full moments, i.e., t2(Q) ≈
F 2

M (G)/F 2
M0 = 13/25; τ̂ is a unit vector in the direction of

Q; η̂ is a unit vector in the mean direction of the spins; the
angle-dependent term {1 + (τ̂ · η̂)2}av is 4/3 due to the domain
average without a magnetic field; and n(E) is the Bose factor.

The obtained imaginary part of q-integrated dynamical spin
susceptibility χ ′′(E) is shown in Fig. 9. The E dependence of
χ ′′(E) for a quadratic dispersion case becomes a square-root
function of energy [30]. In the case of a ferromagnet Fe, the
constant-E scan intensity of magnons with a certain E width
is inversely proportional to the slope of dispersion (∝ 1/

√
E)

because the integration in a q range with a certain E width for
the quadratic dispersion is proportional to 1/

√
E [30]. Because

of the magnon dispersion, the excitation at a finite energy E

appears at q positions deviating from the � point, forming a
3D q spherical shell. For the intensity integration of the whole
q spherical shell, the surface area of ∼4πq2 is proportional to
the energy. The multiplication of E by 1/

√
E results in

√
E

for the q-integrated intensity by a constant-E scan. The same
E dependence of χ ′′(E) is expected in this ferrimagnet YIG
at around the � point because of the quadratic dispersion as
follows:

χ ′′(E) = χ ′′
0

√
E. (4)

Although the data are taken under five different conditions,
all the values follow the same trend below 14 meV, which
can be reproduced by Eq. (4) with a single parameter, χ ′′

0 . The
fitted value below 14 meV in Fig. 9 was 88 ± 4μ2

B eV−1.5 Fe−1.
This nice fitting supports the validity of the theoretical model
of LSSE [5] based on the MDOS estimated from the simple
quadratic magnon dispersion only below 14 meV. Under this
condition, the MDOSDM in our simple model can be described
by the stiffness constant D at n(E) = 0. In addition, the MDOS
is also proportional to the normalized χ ′′(E) obtained for the
lowest-E branch as follows:

DM (E) = nmodeD
−3/2

(2π )240

√
E = Aχ ′′

0

g2μ2
BS(S + 1)

√
E, (5)

where nmode is a magnon mode number, A is a constant value,
and 40 is the number of Fe sites in the crystal unit cell with a
cubic lattice parameter a = 12.36 Å. The value g2μ2

BS(S + 1)
is 35μB

2 Fe−1 for Fe3+. In the magnetic unit cell, however,
there are only 20 Fe sites. Note that neither the site number
nor the unit-cell volume changes Eq. (5) because the MDOS is
proportional only to the volume per Fe site. In the calculation
using the SPINW software [18], there are 20 modes in the first
Brillouin zone for 20 Fe sites. Here, we focus on the lowest-E
acoustic branch with positive chirality.

As for the constant value A, it is basically unity in a
single-mode case because of the sum rule for χ ′′(E) in the E

integration at n(E) = 0. Based on our experimentally obtained

stiffness constant of 633 meV Å
2
, the constant value A became

0.94 ± 0.02 at nmode = 1 (a single mode case). Thus, we
confirmed the single mode for the lowest-E magnon branch.
Equation (5) can be regarded as a Debye model of magnons.
The difference of the constant value from unity may be
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FIG. 7. Constant-E cuts of magnon spectra in the Qb-Qc plane with an E width of 10 meV. Left and right plots show observed and simulated
patterns, respectively. The transfer energies are (a) 12, (b) 25, and (c) 33 meV for Ei = 45.3 meV and (d) 40, (e) 50, (f) 60, (g) 70, and (h)
85 meV for Ei = 150.0 meV. The corresponding h values in (2h, − h, − h) are about 0.2, 0.9, 1.7, 0.65, 0.95, 1.25, 1.6, and 1.9, respectively.
The color bars are for observed patterns in units of mbarn sr−1 meV−1 r.l.u.−3.

attributed to the approximation in our simple model in addition
to our experimental errors.

Above 14 meV, however, the magnon dispersion deviates
from the quadratic function, resulting in the upturn of χ ′′(E) in
Fig. 9. It is schematically shown as a dashed line in Fig. 9. For

example, if the dispersion energy becomes proportional to the
wave vector, χ ′′(E) increases quadratically. Then, it becomes
zero at the highest-E end of the mode. The estimation of χ ′′(E)
in Fig. 9 is limited in the Brillouin zone for the cubic unit cell
with 40 Fe ions. Therefore, there is a certain ambiguity for the
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FIG. 8. The lowest-E magnon dispersion along the  and �

directions. The solid line is the fitting with Eq. (1). The calculated
dispersions with exchange integrals are also shown by pale blurry lines
in the same Q-E space. Brown (blue) denotes the positive (negative)
chirality mode.

value above 30 meV due to an overlap with a mode in another
neighboring Brillouin zone. The validity of our estimation can
be checked by the energy integration of χ ′′(E) for one mode
in Fig. 9. It is roughly consistent with the theoretical value,
1/40 Fe−1.

Let us discuss the meaning of the single mode. We suggest
that the mode is only a single chirality, as expected theo-
retically, although the present nonpolarized inelastic neutron
scattering cannot distinguish two chiralities. This contrasts
with doubly degenerate modes in the lowest-E magnon dis-
persion of an antiferromagnet, which often split in Q due to
the Dzyaloshinskii-Moriya interaction [31]. The two types of
chirality modes in YIG are split in energy due to the energy
splitting of up and down spins. A polarized inelastic neutron
scattering measurement would reveal the chirality of each
magnon mode for a single-domain YIG crystal. This kind of
experiment can be carried out under a magnetic field parallel

FIG. 9. The q-integrated dynamical spin susceptibility χ ′′(E) for
the lowest-E magnon mode as a function of energy. The downward
triangle was obtained at DNA. The diamond was obtained at AM-
ATERAS. Upward triangle, squares, and circles were obtained at
4SEASONS from Ei = 12.5, 21.5, and 45.3 meV, respectively. The
solid line is the fitting with a single parameter χ ′′

0 using Eq. (4). The
dashed line is a guide to the eye.

to the scattering vector, which requires the estimation of a
phase shift due to Larmor precession under the magnetic field.
Anyway, it was proved here that there is only a single magnon
mode at the lowest-E branch in YIG, which has positive
chirality based on our theoretical simulation.

IV. CONCLUSIONS

We have studied the basic parameters of YIG. The refined
nuclear structure was distorted to a trigonal space group of
R3̄. As for the magnons, the highest-E mode extended to
86 meV. Based on the whole magnon dispersions, the nearest-
neighbor-exchange integrals,Jaa ,Jad , andJdd , were estimated.
The stiffness constant D of a magnon dispersion below 14
meV was consistent with these estimated nearest-neighbor-
exchange integrals. The imaginary part of the q-integrated
dynamical spin susceptibility χ ′′(E) exhibited a square-root
E dependence in the energy range. Thus, the applicable upper
energy limit for the simple dispersion model of LSSE was about
14 meV. The lowest-E magnon branch was found to have a
single chirality mode based on our absolute-scale estimation
of MDOS, which was consistent with a theoretical prediction
[10].
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APPENDIX: ABSOLUTE INTENSITY ESTIMATION

Event-recording data sets obtained at neutron scattering
spectrometers at the Materials and Life Science Experimental
Facility of J-PARC have all the neutron detection time and posi-
tion information for each detector pixel. Each of the Ei data sets
was extracted from the event-recording data using UTSUSEMI

software [32] and was converted to intensity data proportional
to the scattering function, Iobs(Q,E) ∝(ki /kf )d2σ /d�dE, as
a function of E for each detector pixel. Iobs(Q,E) was sliced
for a specific region of Q and E by using the slicer software
VISCONTM in UTSUSEMI. In this process, the intensity for the
specific region of Q and E gave an averaged intensity with units
of counts sr−1 meV−1 r.l.u.−3. Note that the obtained intensity
decreases when the specified region of the slice is expanded to a
background region. This is due to averaging with the low-count
background. On the other hand, the sliced intensity does not
change by expanding the region to the no-detector region
because there are no data points to be averaged in the expanded
region. When one obtains an integrated intensity over a unit
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cell of the reciprocal lattice, its volume �VQ (r.l.u.3) depends
on the reciprocal lattice specified in VISCONTM. In our case, the
original unit cell of YIG with a = 12.36 Å has 40 Fe sites (16a

and 24d), composed of 8 subunit cells with 5 Fe ions [7]. In
our crystal setting, the measuring reciprocal zone was formed
by three orthogonal reciprocal lattice vectors, (2,−1,−1),
(1,1,1), and (0,−1,1). In this crystal-setting Brillouin zone,
the modified unit cell had 40/6 Fe ions (= Nm). In order to
get the averaged dynamical spin susceptibility per Fe ion, the
integration should be made in a reciprocal zone that effectively
has only one Fe ion. So the q-integrated intensity (counts
sr−1 meV−1 Fe−1) was obtained from multiplying Iobs(E)
(counts sr−1 meV−1 r.l.u.−3) by the effective reciprocal space
volume per Fe, �VQ/Nm (r.l.u.3 Fe−1).

Then we have to integrate all magnon intensities in one
Fe Brillouin zone. Instead of the integration of the whole
zone, it is also possible to estimate the averaged dynamical
spin susceptibility by correcting an integrated intensity at a
specific reciprocal point based on the dynamic structure factor
t2(Q) [30] in Eq. (3). Here, t2(Q) was approximated to be the
squared static magnetic structure factor ratio F 2

M (G)/F 2
M0. The

magnetic structure factor FM (G) is written as

FM (G) =
N0∑
j=1

σj exp(iG · rj ), (A1)

where σj is +1 or −1 for the j th spin in a magnet with a
total number of spins N0. FM0 is the summation of +1 for all
the spins, resulting in N0. For example, the (220) magnetic
Bragg peak intensity is reduced from the full magnetic inten-
sity by the squared magnetic structure factor ratio t2(Q) ≈
F 2

M (G)/F 2
M0 =(22 + 32)/52 = 13/25 at (220) for YIG, where

2 and 3 are the numbers of Fe atoms at the 16a and 24d sites
in the subunit cell of Fig. 1, respectively. Then, the average
dynamical spin susceptibility for the whole Brillouin zone was
estimated from the low-E magnon intensity at (220).

The angle effect between the scattering unit vector τ̂ and the
mean spin unit vector η̂ was included as the angle-dependent
term {1 + (τ̂ · η̂)2}av = 4/3 of the randomly oriented domain
case in Eq. (3).

The q-integrated scattering function S(E) (mbarn
sr−1 meV−1 Fe−1) was obtained from the observed

q-integrated neutron scattering intensity Iobs(E) at Q for
a domain average case as follows:

S(E) = 3CIobs(E)�VQ

4NmA∗f 2(Q)t2(Q)
, (A2)

where C is the normalization factor, which was obtained from
vanadium incoherent scattering [33], �VQ is the reciprocal
space volume in r.l.u.3 specified in VISCONTM for intensity
integration, Nm is the number of magnetic ions in the crystal-
setting zone, and A∗ is the neutron absorption coefficient.

The imaginary part of the q-integrated dynamical spin
susceptibility χ ′′(E) (μ2

B eV−1 Fe−1) was obtained from the
q-integrated scattering function S(E) as follows:

χ ′′(E) = πg2

(γ re)2
μ2

BS(E){1 − exp(−E/kBT )}, (A3)

where (πg2)/(γ re)2 = 43.26 sr barn−1. The Debye-Waller
factor term was neglected because of the measured low-Q
reflections.

As demonstrated by the present measurement at 4SEA-
SONS with the multi-Ei option [24], many magnons in a
wide Q-E space were simultaneously observed by single
scan without any crystal rotation. It took only 1 day. The
present study is possible because of the powerful capability.
On the other hand, the measuring region is a scattering curved
surface in a four-dimensional space (Qa,Qb,Qc,E). Although
the energy had a strong correlation with reciprocal vectors
as the scattering curved surface, the energy direction was
approximated as a constant-E slice because of the small E

width. The strong correlation was observed mainly along the
Qa direction in our crystal setting. In this case, precise q

positions at an energy can be measured along the qb and qc

directions, which are shown in Figs. 7 and 8. The validity
of the constant-E slice approximation can be found in the
E dependence of χ ′′(E) at low energies in Fig. 9. The E

dependence is the same as that observed in ferromagnetic Fe
magnons [30]. In the integration of one 3D spherical-shell
magnon excitation, the energy in Fig. 9 is an average value
with a certain E width due to the correlation mainly with Qa

in our study.
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