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Exotic phases of frustrated antiferromagnet LiCu2O2
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7Li NMR spectra were measured in a magnetic field up to 17 T at temperatures 5–30 K on single crystalline
LiCu2O2. Earlier reported anomalies on magnetization curves correspond to magnetic field values where we
observe changes of the NMR spectral shape. For the interpretation of the field and temperature evolutions of our
NMR spectra, the magnetic structures were analyzed in the frame of the phenomenological theoretical approach
of the Dzyaloshinskii-Landau theory. A set of possible planar and collinear structures was obtained. Most of these
structures have an unusual configuration; they are characterized by a two-component order parameter and their
magnetic moments vary harmonically not only in direction, but also in size. From the modeling of the observed
spectra, a possible scenario of magnetic structure transformations is obtained.
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I. INTRODUCTION

Unconventional magnetic orders and phases in frustrated
quantum-spin chains appear under a fine balance of the ex-
change interactions and are sometimes caused by much weaker
interactions or fluctuations [1–5]. A kind of frustration in quasi-
one-dimensional (1D) chain magnets is provided by compet-
ing interactions, when the intrachain nearest-neighbor (NN)
exchange is ferromagnetic (JNN < 0) and the next-nearest-
neighbor (NNN) exchange is antiferromagnetic (JNNN > 0).
Numerical investigations of frustrated chain magnets within
different models [6–8] have predicted a number of exotic
magnetic phases in the magnetization process, such as planar,
spiral, and different multipolar phases. The theoretical study of
the magnetic phase diagram shows that real magnetic phases
are very sensitive to interchain interactions and anisotropic
interactions.

LiCu2O2 is an example of Cu2+ (S = 1/2) magnet with
frustrated exchange interactions akin to the quantum spin-
chain compound LiCuVO4 [9,10]. However, the magnetic
structure of LiCu2O2 appears to be complicated by interchain
interactions between coupled chains of magnetic Cu2+ ions.
Superexchange interactions via oxygen ions of edge-shared
CuO4 squares (see Fig. 1) provide frustration of the intrachain
exchange interactions (JNN < 0, JNNN > 0) [11]. According
to Ref. [6], for the 1D model with the intrachain exchange
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constants of LiCu2O2, a chiral long-range order in the low-
field range and a quasi-long-range ordered spin-density-wave
phase in higher applied magnetic fields H are expected
similar to the above mentioned LiCuVO4. Experimentally, an
incommensurate spin structure was observed at T < TN in the
low-field range, which was ascribed to a planar helical spin
structure [12,13]. Despite the fact that the magnetic properties
of LiCu2O2 and structurally isomorphic NaCu2O2 have been
intensively studied for more than ten years, the magnetic
structures of these compounds have not been unambiguously
determined. The lack of a reliable interpretation of the mag-
netic structure makes it impossible to unequivocally explain
the nature of the multiferroic properties of LiCu2O2 and their
absence in NaCu2O2 [14].

In the present work, 7Li NMR spectra of untwinned single
crystals of LiCu2O2 were studied in a magnetic field up to 17 T
at temperatures 5–30 K. Field and temperature dependencies
of the spectra are discussed in Sec. IV. The evolving magnetic
structures were analyzed in the frame of the Dzyaloshinskii-
Landau theory of magnetic phase transitions. This analysis
was performed in the exchange approximation, i.e., under
the assumption that the exchange interactions predominate
the interactions of relativistic nature (Sec. V). A theoretical
analysis of the relativistic effects, such as anisotropy and
electric polarization, is given in Appendix B. From the sim-
ulations of the NMR line shape of our observed spectra, we
elaborate the underlying magnetic structures theoretically and
provide a scenario for the case of LiCu2O2. The structures
exhibit an extraordinary configuration; a two-component order
parameter characterizes the ordering of the magnetic moments,
which appear to be not only rotated but also harmonically
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FIG. 1. (Bottom) The crystal structure of LiCu2O2 projected onto
the ac plane, all ions are shown. The positions of the magnetic Cu2+

ions are marked I, II, III, and IV. The positions of Li+ ions are marked
1, 2, 3, and 4. The two arrows from II to 2 and the two arrows from III
to 2 show possible hyperfine links discussed in Sec. VI. (Top) Cu2+

magnetic chains and nearest O2− ions are shown.

modulated in size from site to site (Sec. VI). Note that elliptical
structures in magnets with a two-component order parameter
arise quite often [15–21]. However, it is commonly accepted
that the ellipticity of the spiral structure is due to relativistic
interactions, while the proposed structures for LiCu2O2 are
elliptical already in the exchange approximation.

II. CRYSTAL AND MAGNETIC STRUCTURE

LiCu2O2 crystallizes in an orthorhombic lattice (space
group Pnma) with the unit cell parameters a = 5.73 Å, b =
2.86 Å, and c = 12.42 Å [22]. The unit cell parameter a is
approximately twice the unit cell parameter b. Consequently,
LiCu2O2 single crystals, as a rule, exhibit considerable twin-
ning due to the formation of crystallographic domains rotated
by 90◦ around their crystallographically common c axis.

The unit cell of the LiCu2O2 crystal contains four monova-
lent nonmagnetic cations Cu+ and four divalent cations Cu2+

with S = 1/2. The positions of all ions in the crystal lattice are
schematically shown in Fig. 1. The unit cell is selected with
a dashed line. There are four crystallographically equivalent
positions of the magnetic Cu2+ ions in the crystal unit cell of
LiCu2O2, denoted as I, II, III, and IV.

The two-stage transition into a magnetically ordered state
occurs at Tc1 = 24.6 K and Tc2 = 23.2 K [23]. Neutron
scattering and NMR experiments revealed an incommensurate
magnetic structure in the magnetically ordered state (T < Tc1)
[12,13,24]. The wave vector of the incommensurate magnetic
structure coincides with the chain direction (b axis). The
magnitude of the propagation vector at T < 17 K is almost
temperature independent and is equal to 0.827 × 2π/b. The
neutron scattering experiments have shown that adjacent mag-
netic moments along the a direction are oriented antiparallel,
whereas those along the c direction are mutually coaligned. The
intrachain and interchain exchange constants were determined
from the analysis of the spin wave spectra [11]. The large
number of exchange bonds stipulates the ambiguity of the main
exchange parameters obtained from Ref. [11]. Theoretical
analysis based on local density approach (LDA) and cluster
calculations as well as a phenomenological analysis of the
temperature dependence of the magnetic susceptibility allow
to map the most significant exchange paths. Using the result of
these investigations [25–27], we choose the most suitable set
of parameters proposed from neutron experiments: the nearest-
neighbor exchange interaction is ferromagnetic J1 = −7.00
meV, while the next-nearest-neighbor exchange interaction is
antiferromagnetic J2 = 3.75 meV. The competition between
these intrachain interactions leads to an incommensurate
magnetic structure. The antiparallel orientation of magnetic
moments of Cu2+ between nearby chains is caused by strong
antiferromagnetic exchange interaction J3 = 3.4 meV. These
main exchange paths are shown in Fig. 1. The coupling of
the Cu2+ moments along the c direction and the couplings
between the magnetic ions in other crystallographic positions
are much weaker [11,13]. Thus LiCu2O2 can be considered as
a quasi-two dimensional system. The quasi-two-dimensional
character of magnetic interactions in LiCu2O2 compound
was also proved by resonant soft x-ray magnetic scattering
experiments [28,29].

The magnetic structure of LiCu2O2 at zero magnetic field
was studied by several groups by means of neutron diffraction
experiments [12,23,24]. The authors of Ref. [12] have pro-
posed the planar spiral spin structure with the spins confined
to the ab plane. Polarized neutron scattering measurements
[23] have detected the spin component along the c direction,
indicating the spiral magnetic structure in the bc-plane. The
authors of Ref. [24], alternatively, have proposed a spiral spin
structure confined to the (1,1,0) plane. It was attempted to
extract information about the magnetic structure of LiCu2O2

from the studies of electric polarization, which accompanies
magnetic ordering [23,30]. Unfortunately, at the moment, the
nature of this polarization is not clear [31] and, hence, does not
allow to draw an unambiguous conclusion about the zero-field
magnetic structure from this type of experiment.

The magnetic structure of LiCu2O2 was also studied by
63,65Cu and 7Li NMR in Ref. [32]. The authors of this work
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FIG. 2. Field evolution of 7Li NMR spectra, H ‖ a, T = 5 K
(4.5 K for the frequencies 10, 90, 127 MHz, taken from Ref. [33]).
Low-field phase (black) and high-field phase (colored).

describe their results in the frame of planar spin structure
and come to the conclusion that the spiral planes do not
coincide with any of the crystallographic planes ab, ac, or
bc, respectively.

III. SAMPLE PREPARATION AND EXPERIMENTAL
DETAILS

Untwinned single crystals of LiCu2O2 with the size of
several cubic millimeters were prepared by the solution in
the melt method as described in Ref. [33]. The quality of the
crystals under investigation was studied in Refs. [34,35] and
the magnetic properties were found to be identical for all the
samples from different batches.

FIG. 3. Temperature evolution of 7Li NMR spectra below the
spin-reorientation transition, H ‖ a, ν = 127 MHz, and 2πν/γ =
7.68 T. The spectra are in the paramagnetic (green), intermediate
Tc2 < T < Tc1 (red), and ordered phase T < Tc2 (black), respectively.

FIG. 4. Temperature evolution of 7Li NMR spectra below
the spin-reorientation transition, H ‖ a, ν = 279.178 MHz, and
2πν/γ = 16.87 T. The spectra are in the paramagnetic (green),
intermediate Tc2 < T < Tc1 (blue), and ordered phase T < Tc2 (red),
respectively.

7Li nuclei (nuclear spin I = 3/2, gyromagnetic ratio
γ /2π = 16.5471 MHz/T) were probed using pulsed NMR
technique. The spectra were obtained by summing fast Fourier
transforms (FFT) or integrating the averaged spin-echo signals
as the field was swept through the resonance line. NMR spin
echoes were obtained using τp − τD − τp pulse sequences,
where the pulse lengths τp were 1.5 μs, the delay times
between the pulses τD were 28 μs. Measurements were carried
out in the temperature range 5 � T � 30 K stabilized with a
precision better than 0.1 K.

IV. EXPERIMENTAL RESULTS

7Li NMR spectra were studied for four orientations of the
static magnetic field: H ‖ a (Figs. 2–4), H ‖ b (Figs. 5 and 10),

FIG. 5. Field evolution of 7Li NMR spectra, H ‖ b, T = 5 K.
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FIG. 6. Field evolution of 7Li NMR spectra, H ‖ c, T = 5 K.

H ‖ c (Figs. 6, 11, and 12), and H ‖ (c + 15◦) (H in bc plane
at an angle of 15◦ with respect to c axis, Fig. 7).

Figures 2, 5, 6, and 7 show field evolutions of the spectra.
The measurements were performed at the lowest temperature
5 K (4.5 K for H ‖ a and ν = 10, 90, and 127 MHz), i.e., well
below the magnetic ordering temperature (TN ≈ 24 K). The
spectra lines are shifted along the vertical axis for clarity. The
resonance field is defined by the vector sum of the external
field H and the effective field Heff from neighboring magnetic
environment. For the case H � Heff the resonance field Hres ≈
H + Heff , where Heff is the projection of the effective field on
the direction of the external field. In Figs. 2–7, the field scale for
each NMR spectrum is shifted by the value of the undisturbed
Larmor field 2πν/γ at 7Li nuclei (γ /2π = 16.5471 MHz/T).
In such a representation, the horizontal axes show Heff at the
nuclei of nonmagnetic ions.

The magnetic field Heff is defined by the magnetic environ-
ment. If the effective field Heff varies harmonically in space and
the wave length of this variation is incommensurate with the

FIG. 7. Field evolution of 7Li NMR spectra. H is located in bc

plane 15◦ off c axis, T = 5 K.

crystal lattice, we expect a broad NMR spectral line where its
shape is dominated by two characteristic maxima at the edges.
These maxima occur for the case Heff ‖ H (H � Heff ) and we
designate this particular shape as a double-horn pattern.

There are eight chains of Li+ ions along the b direction in the
magnetic structure of LiCu2O2 with the vector q = (1/2,q,0)
[33]. All other lithium chains can be obtained by translations.
For each of the eight chains, we expect a harmonically oscil-
lating effective field generated by the magnetic surrounding.
Therefore, in the low-temperature magnetic phase, the NMR
spectra comprise a superposition of eight double-horn patterns,
where some of them may coincide due to symmetry restric-
tions. All the observed spectra are well described by a sum of
not more than four double-horn spectra with nearly the same
integral intensity. This fact shows that lithium chains, distanced
by the lattice constant a, yield identical NMR spectra.

Figure 2 shows 7Li NMR field-swept spectra for H ‖ a.
For the fields below μ0Hc1 ≈ 15 T, all four lithium chains
demonstrate identical double-horn shaped lines. This means
that the a projections of effective fields on 7Li nuclei oscillate
along the lithium chains with the same amplitudes. At higher
fields, the spectrum transforms into a sum of four double-horn
shaped spectra. The value of Hc1 agrees with the field of an
anomaly in the magnetization curves [36]. The steplike in-
crease of the magnetic susceptibility at this field was previously
associated with a spin-flop transition. The value of Hc1 is in
satisfactory agreement with the value evaluated from ESR in
an investigation of the spin-flop transition in LiCu2O2 [33]. At
fields nearby the phase transition, the spectra exhibit hysteretic
feature; the spectra recorded upon field increase differ from the
spectra recorded upon field decrease (Fig. 2, 2πν/γ = 15 T),
which indicates that the phase transition observed at this field
is of first order typical for spin-flop transitions.

Figures 3 and 4 show the temperature evolutions of
NMR spectra measured around (μ0H ≈ 7.68 T) and (μ0H

≈ 16.87 T), i.e., below and above spin-flop field Hc1, re-
spectively. The single line of the paramagnetic phase is
significantly broadened in the magnetically ordered phase at
Tc1 = (24.8 ± 0.2) and (24.3 ± 0.2) K for 7.68 and 16.87 T,
respectively. Within a range of 1 K below Tc1, the NMR
spectrum can be considered as a superposition of a double-horn
spectrum and a paramagnetic solitary line. These spectra are
blue colored and observed between the temperatures Tc1 and
Tc2 of the two step transition into the magnetically ordered
phase. The intensity of the paramagnetic line rapidly decreases
with decreasing temperature. At temperatures below Tc2, the
double-horn spectrum transforms into two (four) double-horn
spectra. These spectra are red colored in Figs. 3 and 4. We
suggest that they are obtained within spin-flopped phase. The
boundary between phases with blue and red colored spectra
for the fields up to 9 T was presumably observed in Ref. [36]
by dielectric constant measurements.

Figures 5, 6, and 7 show the field evolutions of Li NMR
spectra measured for the field directions H ‖ b, H ‖ c, and
H ‖ (c + 15◦), respectively. All spectra were measured at high
enough fields, where the normal vector of the magnetically
ordered spin plane appears to follow the field direction [33].
For H ‖ b, a continuous transformation from two double-horn
shaped lines to one double-horn shaped line is observed upon
field increase. For H ‖ c, the spectra do not change in the full
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FIG. 8. Peak positions of the spectra in Fig. 5.

range of applied magnetic fields as it is documented in Fig. 6.
An applied field direction with small deviation by 15◦ off the
crystallographic c axis yields a duplication of the number of
double-horn pattern towards lower applied magnetic fields (see
Fig. 7). In other words, for this field orientation all four lithium
ions show the double-horn spectrum with individual amplitude
of oscillating projection Heff . The field splitting decreases with
increasing field and disappears at elevated fields higher than
(12.5 ± 0.5) T.

Figures 8 and 9 show the field dependencies of the resonance
field values of all edge singularities within the multihorn spec-
tral pattern. The fields where the number of edge singularities
is halved are 17 and 12.5 T for H ‖ b and H ‖ (c + 15◦),
respectively, corresponding to the anomalies observed in the
magnetization measurements [36]. The fields values of these
anomalies were designated as Hc2. Such an anomaly was
also observed in the magnetization measurements for H ‖ a at
μ0Hc2 ≈ 20 T, that is out of range of the present experiments. It

FIG. 9. Peak positions of the spectra in Figs. 6 and 7.

FIG. 10. Temperature evolution of 7Li NMR spectra, H ‖ b, ν =
248.331 MHz, and 2πν/γ = 15 T.

appears that we also observed this transition for H ‖ a within
the temperature scan at μ0H ≈ 16.87 T (see Fig. 4). There,
also the number of edge singularities halves for temperatures
15–20 K and the multihorn shape of the spectra pattern in this
temperature range strongly resembles to the shapes observed
at lowest temperatures for H > Hc2.

The temperature evolutions of the lithium spectra for H ‖ b
and H ‖ c are given in Figs. 10–12. For fields lower than
the critical field Hc2, the transition from the low-temperature
magnetic phase to the paramagnetic phase occurs through an
intermediate phase, with one solitary double-horn spectral
line (see Fig. 11). This intermediate phase manifests itself
within the temperature range between Tc1 and Tc2. For elevated
fields higher than Hc2 (Fig. 12), the presence of the inter-
mediate phase is not established. In this case, the single line
spectrum of the paramagnetic phase transforms immediately
into the characteristic spectral pattern of the low-temperature

FIG. 11. Temperature evolution of 7Li NMR spectra, H ‖ c, ν =
127 MHz, and 2πν/γ = 7.68 T.
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FIG. 12. Temperature evolution of 7Li NMR spectra, H ‖ c, ν =
248.331 MHz, and 2πν/γ = 15 T.

phase, even within the temperature steps of our measure-
ments. Any intermediate magnetically ordered phase is
skipped.

V. THEORY: EXCHANGE APPROXIMATION

The crystal cell of LiCu2O2 contains four magnetic ions
Cu2+ (S = 1/2). At the magnetic transition, a doubling of the
period along the twofold C2x axis occurs, and as a result eight
spiral spin chains appear. Their mutual orientation, amplitudes,
phases, and possible ellipticity are unknown.

As a first step to interpret the spin structure of LiCu2O2,
it is useful to find out the types of the structures with the
wave vector (1/2,q,0) occurring in the Dzyaloshinskii-Landau
theory. As it is usually done applying the Landau theory
of second-order phase transitions, we assume the region of
critical fluctuations to be small, which in our case fits with
the experimental observations. In this case, the small value of
the spin (S = 1/2) is not essential at all, since the quantum
fluctuations near the transition are always small in comparison
with the thermodynamic ones.

In this section we define a list of such structures—
candidates for description of the phase realized in LiCu2O2

at temperatures below Tc2, as well as within the intermediate
phase (Tc2 < T < Tc1). It was found that the splitting of the
transition is most likely due to small relativistic effects, and
that even an additional transition is possible between the
temperatures Tc1 and Tc2.

The crystal symmetry group of LiCu2O2—
Pnma (D16

2h)—is defined by the three translations τa :
x → x + 1,τb : y → y + 1, τc : z → z + 1, the inversion
I : (x,y,z) → (−x,−y,−z) and the two screw rotations

C2x : (x,y,z) → (
x + 1

2 ,−y + 1
2 ,−z + 1

2

)
,

C2y : (x,y,z) → (−x,y + 1
2 ,−z

)
.

Two-dimensional complex representation corresponding
to the wave vector (1/2,q,0) (compare with the last case
considered in Sec. 134 of the book Ref. [37]) is implemented
by the functions sin πxe±iqy and cos πxe±iqy (the coordinates
x, y, z are measured in the unit cell parameters a, b, c,
respectively). The functions that transform according to other
possible representations associated with this wave vector differ
by the factors, which are insignificant for constructing the in-
variants even in the order parameter. For example, there is a rep-
resentation with a pseudoscalar factor sin 2πx sin 2πy sin 2πz.

The spin density arising at a second-order transition over
the considered representation is

s(r) = η[sin πx(μeiqy + μ∗e−iqy)

+ cos πx(νeiqy + ν∗e−iqy)]f (r), (1)

where η is the magnitude of the magnetic order parameter;
μ,ν are the complex vectors in the spin space, normalized
by the condition μμ∗ + νν∗ = 1; f (r) is a scalar function
of coordinates, which is invariant with respect to the crystal
symmetry group in paramagnetic phase.

To select the exchange effects, we suppose in Ref. [38] that
the effect of crystalline transformations on the function s(r)
is reduced to a corresponding change of coordinates (x,y,z)
at a fixed orientation of the spin space. In the Landau theory
of second-order phase transitions, it is convenient to transfer
the laws of crystalline transformations from the coordinate
functions to the coefficients

I : μ → −μ∗, ν → ν∗;

C2x : μ → −e−iq/2ν∗, ν → e−iq/2μ∗;

C2y : μ → −eiq/2μ, ν → eiq/2ν;

τa : μ → −μ, ν → −ν;

τb : μ → eiqμ, ν → eiqν. (2)

For the considered representation, there is the Lifshitz
exchange invariant

μ∂xν
∗ − ν∗∂xμ + μ∗∂xν − ν∂xμ

∗, (3)

leading to the instability of the phase transition. Therefore
observing a continuous transition over the representation with
the wave vector (1/2,q,0) in LiCu2O2 implies that the impact
of the invariant (3) in this antiferromagnet is small compared
to the anisotropy effects, and we will not take it into account
when considering the phases structure at T < Tc2.

In the exchange approximation, the Dzyaloshinskii-Landau
expansion of free energy up to the fourth-order terms has the
form

F = τη2 + β0 + B
2

η4,

B = β1(μν∗ + μ∗ν)2 + β2(μ∗μ − ν∗ν)2

−β3(μν∗ − μ∗ν)2 + β4(μ2 + ν2)(μ∗2 + ν∗2)

+β5(μ2 − ν2)(μ∗2 − ν∗2) + 4β6(μν)(μ∗ν∗). (4)

Note that in the case of spin-1/2, the fourth-order terms
of the Landau expansion should be treated as the result
of thermodynamic averaging of the microscopic exchange
Hamiltonian, which takes into account simultaneous pair
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permutations of spins belonging to four or more atoms, for
example, a biquadratic term of the form (σ 1σ 2)(σ 3σ 4), where
σ i is the spin operator of the ith atom. This peculiarity of
the spin-1/2 case was established earlier in the study of the
antiferromagnetic phase of crystalline 3He in Ref. [39].

The real form p = μν∗ + μ∗ν is transformed as the z com-
ponent of the vector, and the real forms r = μμ∗ − νν∗, s =
i{μν∗ − νμ∗} are transformed as components of deformation
tensors uxz and uxy . For the rest spin convolutions, we intro-
duce the following notation: ζ = μ2 + ν2, ω = μ2 − ν2, ξ =
μν. The free energy F does not change under the calibration
transformation

μ → eiκμ, ν → eiκν, (5)

which corresponds to the incommensurability of arising spin
structure to the crystal spacing along the y axis. Using this
invariance, we assume ω is real-valued.

The free energy F is invariant under the replacement μ �
ν, which is connected with the solution transformation under
the reflection σx = IC2x . Taking this into account, we will
consider only the solutions with μ �= 0.

The free energy (4) does not change under the transforma-
tion

ν → iν, β1 � β3, β4 � β5. (6)

Hence extrema that either remain unchanged or transform into
each other under this transformation are possible. Note that the
Lifshitz invariant (3) breaks this random symmetry.

Performing the transformation (6) two times, we obtain
invariance F under the replacement μ → μ, ν → −ν. This
invariance is associated with the solution transformation under
the crystal rotation τaC2y .

The extrema conditions of the free energy (4) are

−(B − β2r)μ + (β1p − iβ3s)ν

+ (β4ζ + β5ω)μ∗ + 2β6ξν∗ = 0, (7)

−(B + β2r)ν + (β1p + iβ3s)μ

+ (β4ζ − β5ω)ν∗ + 2β6ξμ∗ = 0. (8)

Performing scalar multiplication of equations (7) by μ∗ and
separating the imaginary part, we find

(β1 − β3)ps + (β4 + β5)ζ ′′ω = 0, (9)

where ζ ′′ = Im(ζ ). Multiplying Eq. (8) by ν∗, for the imagi-
nary part of the product we get

(β1 − β3)ps + (β4 − β5)ζ ′′ω = 0. (10)

From Eqs. (9) and (10), it follows that ps = ζ ′′ω = 0. Hence in
view of invariance of (6), with s → p → −s, we can assume
that, for example, p = 0. Thus we have two cases:

1) p = ζ ′′ = 0, 2) p = ω = 0. (11)

At ω = 0, we can again use the calibration symmetry and
choose ζ of real-valued. Thus, in all cases, it will be ζ ′′ = 0.

Performing scalar multiplication of Eq. (7) by μ and
separating the imaginary part at p = ζ ′′ = 0, we find

sξ ′ = 0. (12)

Substraction of Eq (7) multiplied by ν, and Eq. (8) multiplied
by μ, at p = 0 gives

2(β2 − β6)rξ + i(−β3 + β4)sζ = 0. (13)

Hence at ζ ′′ = 0, we find rξ ′ = 0. Combining this result
with the conditions (11) and (12), we obtain the following
possibilities:

1) p = ζ ′′ = r = s = 0,

2) p = ζ ′′ = ξ ′ = 0. (14)

Let us introduce four real-valued vectors a, b, c, and d,

such that μ = a + ib and ν = c + id. For all possible cases
from the general conditions of reality of ω and ζ , it follows
that μ2, ν2 are real, which leads to the orthogonality condition
ab = cd = 0.

According to Appendix A, the magnetic structure should be
planar and can therefore be written as

μ = cα(lcγ + iksγ ),

ν = sα[cε(lcϕ + ksϕ) − isε(lsϕ − kcϕ)], (15)

where l,k are mutually orthogonal unit vectors (we use short
notation cα = cos α, sα = sin α). In such parametrization, we
have p = s2αcϕc−, r = c2α, s = −s2αsϕs+,ξ ′ = s2αcϕc+, and

B = β1s
2
2αc2

ϕc2
− + β2c

2
2α + β3s

2
2αs2

ϕs2
+

+β4(c+c−−c2αs+s−)2

+β5(c+c−c2α − s+s−)2

+β6s
2
2α(c2

ϕc2
+ + s2

ϕs2
−), (16)

where s± = sγ±ε and c± = cγ±ε . At the phase transition, a
spin structure corresponding to the minimum of B arises,
in this case the magnitude of the order parameter takes the
maximum value η = √−τ/(β0 + B). According to (14), we
get five scenarios for solving simultaneous equations (7) and
(8):

A) c2α = 0, cϕ = s+ = 0;

B) c2α = 0, sϕ = c− = 0;

C) s2α = 0; (17)

D) s2α �= 0, c+ = c− = 0;

E) s2α �= 0, cϕ = 0.

In the framework of these scenarios, solving is reduced
to elementary minimization of the function (16) over the
remaining free angular parameters in each of them [40]. We
find eight solutions, whose form is independent of the values
of βi :

A1 : μ = l + ik
2

, ν = ±k + il
2

, B = β6;

A2 : μ = l√
2
, ν = k√

2
, B = β4;

B1 : μ = l + ik
2

, ν = ± l − ik
2

, B = β6;

B2 : μ = l√
2
, ν = i

k√
2
, B = β5;
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C1 : μ = l, ν = 0, B = β2 + β4 + β5;

C2 : μ = l + ik√
2

, ν = 0, B = β2;

D : μ = l√
2
, ν = ±i

l√
2
, B = β3 + β5 + β6;

E : μ = l + ik
2

, ν = ±k − il
2

, B = β3. (18)

The degeneracy of energy for the solutions A1 and B1 will
be removed if we take into account the next terms of the
Dzyaloshinskii-Landau expansion. The solutions A1 and B1,
as well as A2 and B2 are transformed into each other under the
transformation (6). To the list of solutions we obviously need
to add two more associated solutions:

D∗ : μ = ±ν = l√
2
, B = β1 + β4 + β6;

E∗ : μ = ±ν = l + ik
2

, B = β1. (19)

All the phases found can be presented on the phase diagram.
Indeed, the value ofB for each solution is obviously an absolute
minimum of the function B, if the parameters βi belonging to
it are negative, and the rest of the parameters βi are positive.

Besides the magnetic structures (18) and (19) with fixed
values of the phase parameters α, γ, and ε, the symmetry
allows the existence of magnetic structures for which these
parameters are functions of the coefficients of energy expan-
sion βi . These solutions may occur in a certain range of values
of the parameters βi only in the scenario E, when ϕ = π/2,
see Eq. (15),

μ = cα(lcγ + iksγ ), ν = sα(cεk − isε l), (20)

where the parameters α, γ, and ε are functions of βi . In this
case, rather complicated expressions occur, whose form is not
necessary to determine the structure realized in LiCu2O2—it
is enough to have the formulas (20) with three free angles.

As an illustration, let us get the solution in the limit of large
values of magnitude of the parameter β2:

c2
+ = β3 + β5

β4 + β5
< 1, c2

− = β6 + β5

β4 + β5
< 1,

c2α = β4 + β5

β2
c+c−s+s−,

B ≈ β3s
2
+ + β4c

2
+c2

− + β5s
2
+s2

− + β6s
2
−. (21)

There is also an associate of this solution, corresponding to
the transformation (6). It should be noted that the Lifshitz
exchange invariants (3) occur in the phases A2, B2, E, and E∗,
as well as in the set of phases described by (20).

In the presence of magnetic field, there is an invariant

HiHk(μiμ
∗
k + μkμ

∗
i + νiν

∗
k + νkν

∗
i ), (22)

giving the anisotropy of the magnetic susceptibility tensor of
exchange approximation. For all the structures (18) and (19),
this tensor has obvious axial symmetry. For the structures
described by (20), the two main axes of the tensor belong to
spin plane.

A spontaneous electric polarization of exchange nature as
a quadratic effect in the order parameter (the effect predicted

by Indenbom [41]) arises in the phases D∗ and E∗, where
the quadratic form p (transforming as z component of vector)
is not equal to zero. Exchange striction corresponding to
the symmetry breaking D2h arises in the phases C1 and C2

(invariant ruxz) and in the phases D and E (invariant suxy).
The relativistic effects are discussed in Appendix B.

VI. DISCUSSION

We discuss the observed NMR spectra using the mag-
netic phases obtained in Sec. V. The theoretical analysis
assumes that in the entire range of fields and temperatures
the crystal structure of LiCu2O2 is described by the symmetry
group Pnma, and the low-temperature magnetic structure
is described by the wave vector (1/2,q,0). The proposed
magnetic phases are obtained under the assumption that the
magnetic structure is defined by the dominating exchange
interactions, whereas its orientation with respect to the crystal
axes is determined by the relativistic interactions with the
crystal environment and the applied magnetic field. It was also
demonstrated (see Appendix A) that the exchange interactions
in LiCu2O2 can lead to planar or collinear magnetic structures
only. Therefore noncoplanar magnetic structures will be ex-
cluded from further consideration.

In the following, we compare the experimental NMR
spectra with the simulated ones. We assume that the magnetic
moments are localized at the Cu2+ ions. This assumption
accounts for the scalar function f (r) = δ(r − Ri) in Eq. (1),
where Ri is the radius vector of ith Cu2+ ion. Using Eqs. (1)
and (15), the magnetic moment of Cu2+ ion with coordinates
(x,y,z) for the coplanar magnetic structure with a wave vector
(1/2,q,0) can be written as follows:

M(x,y,z) = η{l[ηl1 sin(πx) cos(qy + ϕlc)

+ ηl2 cos(πx) sin(qy + ϕls)]

+ k[ηk1 sin(πx) cos(qy + ϕkc)

+ ηk2 cos(πx) sin(qy + ϕks)]}. (23)

Here, l and k are two mutually perpendicular unit vectors,
defining the spin plane, and η is the magnitude of the two-
component magnetic order parameter. The parameters ηl1, ηl2,
ηk1, and ηk2 take the values 0 and 1. The angles ϕlc, ϕls , ϕkc,
and ϕks denote harmonic phase angles. According to Sec. V
there are ten possible magnetic phases A1, A2, B1, B2, C1, C2,
D, E, D∗, and E∗ with fixed phase parameters. An overview
of all values of these parameters is given in Table I.

The letters “C” and “P” in the table mark collinear and
planar phases, respectively. The value of the magnetic moment
for the collinear phases C1, D, and D∗ oscillates harmonically
along the chains. The phases C2, E, and E∗ are circular. For
them, the Cu2+ magnetic moment with constant absolute value
rotates by an angle defined by q. Note, the absolute values of
magnetic moments differ from chain to neighboring chains
within the phases C2 and E∗. The structures A1, B1, and B2

can be considered as two embedded elliptical phases with large
elliptical axes which are oriented perpendicular with respect
to each other between neighboring axes. The planar structure
A2 consists of two embedded collinear structures in which the
value of the magnetic moment varies along the chains. In this
structure, the magnetic moments of neighboring chains are
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TABLE I. List of the phases in Eqs. (18) and (19) and their sketches and parameters in Eqs. (15) and (23).

oriented perpendicular with respect to each other. To visualize
the structures, we included their sketches in the Table I (the
spin plane coincides with the easel plane, l is horizontal, k is
vertical). The sketches show the ends of the magnetic moment
vector for four chains I, II, III, and IV, the arrows indicate the
moment rotation direction for the translation along the chain for
one of magnetic domains. The magnetic phases which allow
magnetically induced electrical polarization (multiferroicity)
are marked with the letter “p.”

Besides the structures given by Eqs. (18) and (19), there
are the set of structures given by Eq. (20). These structures are
described by Eq. (23) with the following values of parameters:
ϕlc = ϕls = 0 and ϕkc = ϕks = π/2. Other parameters are
defined by ηl1 = 2cαcγ , ηl2 = 2sαsε , ηk1 = 2cαsγ , and ηk2 =
2sαcε , where α, γ , and ε are arbitrary. The set of structures
(20) contains the phases A1, A2, D, and E and adjoins to the
phases C1 and C2. Concluding the phase description, we note
that all suggested magnetic phases are unusual. The values of
the magnetic moments of all Cu2+ ions are identical only for
the E phase, for other phases this value oscillates.

Space orientation of the spin structure is defined by the
vectors l and k. For further discussion we suppose that initially
the vectors l and k are directed along a and b crystal axes,
respectively. An arbitrary orientation of the spin plane can be
obtained by successive rotation of the structure with l ‖ a and
k ‖ b by an angle �a around a axis, �b around b axis, and �c

around c axis. The number 1 or 2 or 3 in the brackets after the
angle � specifies the order of the corresponding rotation where
it matters. Thus the distribution of the magnetic moments is
defined by the four parameters η, �a , �b, and �c for the
structures (18) and (19) and by the seven parameters η, α,
γ , ε, �a , �b, and �c for the structures (20). For large enough
static fields (H > Hc1), the spin plane orientation is defined
by the field direction, whereas in small fields the orientation

is defined by relativistic interactions with the crystallographic
environment.

In our spectra simulations, we suppose that the effective
field on lithium nuclei is defined by the dipolar fields and
the contact Fermi fields. We took into account the dipolar
fields from the neighboring moments in the sphere of radius
20 Å and the hyperfine contact fields from the four nearest
moments belonging to neighboring chains (Fig. 1). The con-
stants defining the contact fields for three field orientations
H ‖ a,b,c were obtained as follows. First, the shift of 7Li
NMR line at a certain temperature in the paramagnetic state
was determined. Then, using the magnetization data from Ref.
[36], the magnetic moment of individual Cu2+ ions at the same
temperature and field was calculated. The difference between
the computed dipole field at the lithium nuclei and the effective
field observed in the experiment was ascribed to the contact
field. Thus obtained contact field is in good agreement with
the results of Ref. [42]. This value was ascribed to two pairs of
the nearest magnetic moments. The first pair is located along
a axis, the second pair is located along b axis (see Fig. 1).
According to the first-principles calculations [42], the contact
field from the first pair is expected to be much larger than the
contribution from the second one. It is important that in the
magnetically ordered phase the magnetic moments from the
first pair are antiparallel; as a result, we can exclude the contact
part of effective field in the magnetically ordered phase from
further consideration [43].

We have simulated the spectra for all magnetic structures
from Table I and orientations of the applied magnetic field H ‖
a,b,c, and (c + 15◦), respectively. For H ‖ a, the spectral shape
does not change with applied magnetic fields up to ≈15 T.
For higher fields, the susceptibility sharply increases, which
was interpreted as a spin-flop transition [36]. For all other
field directions, the shape changes with field monotonically.
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For H ‖ b and (c + 15◦), some pairs of maxima continuously
approach each other and merge into one single spectral line
at elevated applied fields. This disappearance of the line
splitting is accomplished at a field value where anomalies of the
magnetic susceptibility were already observed in Ref. [36]. We
tried to describe the field evolution of the spectra by changing
the spin plane orientation of one individual magnetic phase.
A special program was written for spectra simulation [44]. It
calculates NMR spectra for the suggested magnetic structures
(18)–(20) for given orientations of the static magnetic field
with respect to the spin plane. The number of maxima in the
spectrum was chosen as the main criterion in order to assess the
matching between the observed NMR spectrum and the simu-
lated one. The calculations for all the structures (18) and (19)
performed with an angular step of 10◦ showed that the observed
field evolution of the spectra for H ‖ a,b,c, and (c + 15◦),
respectively, can not be fitted assuming one single structure.

For H ‖ a at the spin-flop field Hc1 ≈ 15 T, the spin plane
turns abruptly from the state with n ‖ b (�a = 90◦, �b = 0◦,
and �c = 0◦) to the state with n ‖ a [�a = 0◦, �b(2) = 90◦,
and �c(1) = 90◦]. Figures 13(a) and 13(b) show simulated
spectra for H < Hc1 and H > Hc1, respectively. The best
coincidence between experiment and simulation above the
spin-flop transition is achieved if one assumes that a phase
from set (20) is realized. Note here that the inflated value of the
magnetic moment used for modeling at H ‖ a, in comparison
with the expected value of 1 μB , is most probably explained
by the contact fields. This additional contribution to the local
magnetic field at the 7Li nuclear site can be significant for the
magnetic field applied in the spin plane.

For H ‖ c and (c + 15◦), respectively, the spectra evolution
can be modeled by rotation of the spin plane around the c

axis within the structure A1. When H > Hc2, the spin plane
rotation stops. For H ‖ c, the spectrum exhibits four maxima
throughout the entire field range under investigation in this
work. Figures 13(e) and 13(f) show simulated spectra for H <

Hc2 and H > Hc2, respectively. For H ‖ (c + 15◦) in the low-
field rangeH < Hc2, the number of maxima doubles. When the
field is increased to the value μ0Hc2 ≈ 12.5 T, the number of
maxima becomes equal to four. Figures 13(g) and 13(h) show
the simulated spectra for H < Hc2 and H > Hc2, respectively.

The orientation of the spin plane with respect to the
crystallographic axes for different directions of the applied
magnetic field for the phase A1 can be explained by assuming
the hierarchy of the anisotropy constants λ2 > 0, λ1 < 0,
|λ4| � |λ2| < |λ1|.

For H ‖ b, we were unable to describe the field evolution of
the spectra in the frame of our established structures, which we
introduce in Eqs. (18) and (19). Figures 13(c) and 13(d) show
a possible scenario in the frame of the phases in Eq. (20). The
low-field phase exhibits a similar structure like phase A1. As
the field increases and gets closer to Hc2, phase (20) gradually
transforms into phase C1. Both phases A1 and C1 are located
on the boundary of the phase set described by Eq. (20).

Figure 14 shows the sketches of the structures used in the
proposed scenario.

As a conclusion note, we cannot judge the uniqueness of
the proposed scenario of the spectral field evolution within the
magnetic structures set by Eq. (20), since the number of free
parameters defining these structures is too large.

FIG. 13. Dashed lines: Simulated NMR spectra, Mmax is noted in
the figure, references to Fig. 14 for the structure sketches are given.
(a) H ‖ a, H < Hc1, A1 structure, �a = 90◦, �b = 0◦, �c = 0◦, Fig.
14(a); (b) H ‖ a, H > Hc1, structure (20), α = 72◦, γ = 60◦, ε = 5◦,
�a = 0◦, �b(2) = 90◦, �c(1) = 90◦, Fig. 14(b); (c) H ‖ b, H < Hc2,
structure (20), α = 20◦, γ = 45◦, ε = −45◦, �a = 90◦, �b = 0◦,
�c = 0◦, Fig. 14(c); (d) H ‖ b, H > Hc2, structure (20), α = 0◦,
γ = 45◦, ε = −45◦, �a = 90◦, �b = 0◦, �c = 0◦, Fig. 14(e); (e)
H ‖ c, H < Hc2, A1 structure, �a = 0◦, �b = 0◦, �c = 0◦, Fig.
14(f); (f) H ‖ c, H > Hc2, A1 structure, �a = 0◦, �b = 0◦, �c =
45◦, Fig. 14(h); (g) H ‖ (c + 15◦), H < Hc2, A1 structure, �a =
−15◦, �b = 0◦, �c = 0◦, Fig. 14(f); (h) H ‖ (c + 15◦), H > Hc2, A1

structure, �a(2) = −15◦, �b = 0◦, �c(1) = 45◦, Fig. 14(h). Solid
lines: experimental NMR spectra, T ≈ 5 K; the values of the applied
magnetic field and its orientation are displayed additionally in each
frame (a) to (h), see specified figures for details.

As the temperature increases, the spectra shape does not
change within a scale factor. This indicates that the magnetic
structure is not changed until the temperatures approach
the transition temperature, and the width of the spectra is
determined by the order parameter η, see Eq. (23). The
transition occurs through an intermediate phase observed in a
narrow temperature range Tc2 < T < Tc1. In this temperature
range for all field orientations, spectra with two characteristic
maxima at the edges and a narrow central line ascribed to the
paramagnetic state are observed. Relative intensities of these
lines change with temperature. As the temperature increases,
the intensity of the paramagnetic line increases, while the in-
tensity of the double-horn pattern with the significant maxima
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FIG. 14. The sketches of the magnetic structures of four spirals
I, II, III, and IV. Shown are the projections of the magnetic moment
vector endpoint on the corresponding spiral plane. The magnetic field
orientation is shown at the left side. For all figures, n ‖ H with the
exception of (a). The b′ axis is b axis rotated by an angle of −15◦

around the a axis. Axes b and b′ are used for H ‖ c and H ‖ (c + 15◦),
respectively. For the parameters of the structures and corresponding
NMR spectra see Fig.13.

at its edges decreases. A phase transition that takes place in
two stages by passing through nearby transition temperatures
is a characteristic fingerprint of a transition into a planar low-
temperature phase in magnetic compounds having easy-axis
anisotropy. The observed spectra with such two characteristic
maxima are well described by the collinear phase D.

VII. CONCLUSIONS

7Li NMR spectra were measured in applied magnetic fields
μ0H up to 17 T with the temperature range 5–30 K. Four
different orientations of the field H ‖ a,b,c, and (c + 15◦)
with respect to the crystallographic axes where employed. The
field-dependent evolution of the spectra was studied in full
detail. Anomalies in bulk measurements of the magnetization
curves at fields Hc1 and Hc2, recently reported in the literature,
were found to correspond to the field values where the shape
of our NMR spectra changes. At Hc1, a first-order phase
transition is observed for H ‖ a, which is accompanied by the
increase of magnetic susceptibility and most likely indicates
a spin-reorientation transition. The observation of the spin-
reorientation transition for H ‖ a supports the model of a
planar two-component magnetic structure with the magnetic
susceptibility in the field perpendicular to the spin plane larger
than that in the field directed within the spin plane. This result
is also in agreement with the biaxial character of the magnetic
anisotropy suggested in Refs. [33,36]. For other directions
of the magnetic field at H < Hc2, the shape of the spectra
monotonically evolves to a state with less number of maxima

upon field increase. At the point where the evolution stops,
the magnetic susceptibility decreases. Such monotonous field
evolution could be explained by the rotation of the spin plane or
by monotonous change of magnetic structure. The modeling of
our experimental NMR spectra shows that the second scenario
is realized.

We analyzed the underlying magnetic structures in the
frame of Dzyaloshinskii-Landau theory of magnetic phase
transitions. A set of possible planar and collinear structures
for low temperatures and close to the transition temperature
was obtained. Most of these structures have an unusual config-
uration. They are characterized by a two-component magnetic
order parameter and their magnetic moments vary harmon-
ically not only in direction, but also in size. A theoretical
analysis made within the exchange approximation, revealed
a set of magnetic structures given by Eqs. (18) and (19),
which are determined by fixed spin configurations within each
individual chain and fixed interchain phase relations. Besides
these solutions a possibility that the minimum of exchange
energy is achieved for a set of magnetic structures described
by Eq. (20) was found. For such a case, the configuration of the
magnetic structure depends on the values of the coefficients of
the energy expansion written in Eq. (4), βi . For these structures,
monotonous temperature and field evolutions of the spectra
are expected and degeneracy removing occurs due to weak
interactions. For such structures, the application of a magnetic
field can lead not only to a rotation of the spin plane, but also
yields a change into a structure out of the set, which we present
in Eq. (20).

Our simulation of the experimental NMR spectra was
performed ab initio from the structures in Eqs. (18)–(20). It
has been shown that the experimentally observed spectra for
H ‖ a,b,c, and (c + 15◦), respectively, and for temperatures
T � TN , and applied fields H � Hsat can only be described in
the frame of the structures given in Eq. (20). This result allowed
us to propose a possible scenario of the magnetic structure
evolution which should easily be confirmed by elastic neutron
scattering experiments.
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APPENDIX A

Let us write the real and imaginary parts of the equation
obtained by scalar multiplication of Eqs. (7) and (8) by
e = [ab], g = [cd]:

(−B + β2r + β4ζ + β5ω)ag = 0,

(−B + β2r − β4ζ − β5ω)bg = 0,

(β1p + 2β6ξ
′)ag + (2β6ξ

′′ − β3s)bg = 0,

(2β6ξ
′′ + β3s)ag + (β1p − 2β6ξ

′)bg = 0,
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(−B − β2r + β4ζ − β5ω)ce = 0,

(−B − β2r − β4ζ + β5ω)de = 0,

(β1p + 2β6ξ
′)ce + (2β6ξ

′′ + β3s)de = 0,

(2β6ξ
′′ − β3s)ce + (β1p − 2β6ξ

′)de = 0. (A1)

These simultaneous equations lead to four types of solu-
tions (accurate within the above mentioned transformations
μ � ν,μ → iμ).

I. If ag = bg = 0, then the vectors a,b,c,d are coplanar
and therefor ce = de = 0. These structures were considered
above.

II. If ag = ce = 0, bg,de �= 0, i.e., when simultane-
ously three vectors a,c,d are coplanar and three vectors
a,b,c are coplanar, this is possible only at a||c. Then
p = s = ξ = 0, β2r = −β5ω, and B = −β4ζ .

III. If ce = 0, ag,bg,de �= 0, then β2
1p2 + β2

3 s2 =
4β2

6ξξ ∗andB = β2r = −β4ζ = β5ω.

IV. If ag, bg, ce, de �= 0, then r = ζ = ω = B = 0 and
β2

1p2 + β2
3 s2 = 4β2

6ξξ ∗.
Thus the possibility of existence analysis for noncoplanar

structures is reduced to the analysis of 2 × 3 = 6 cases. Here,
the same solution can be obtained repeatedly, but no solution
will be missed.

Let us introduce two orthonormal bases in the spin space
l,k,n and l̃,k̃,ñ, and the parameters α, γ, and ε, such that

a = lcαcγ , b = kcαsγ ,

c = l̃sαcε, d = k̃sαsε.

Let us introduce Euler angles θ,ϕ,ψ, to specify the mutual
orientation of the spin bases:

l̃ = l(cψcϕ − sψcθ sϕ) + k(cψsϕ + sψcθcϕ) + nsψsθ ,

k̃ = −l(sψcϕ + cψcθ sϕ) + k(cψcθcϕ − sψsϕ) + ncψsθ ,

ñ = lsθ sϕ − ksθ cϕ + ncθ .

II. From the condition a||c, it follows that

μ = cα(lcγ + iksγ ), ν = sα[cε l + isε(kcθ + nsθ )].

In this case, the condition s = 0 is performed automat-
ically. The condition p = ξ = 0 for the considered non-
coplanar structures (cαsα �= 0) is reduced to the relation
cγ cε = sγ sεcθ = 0. Hence for noncoplanar structures we have
either cγ = cθ = 0 or cε = cθ = 0. In the first case,

μ = icαk, ν = sα(cε l + isεn),

B = β2c
2
2α + β4

(
s2
αc2ε − c2

α

)2 + β5
(
s2
αc2ε + c2

α

)2
.

It is easy to verify that there are no noncoplanar solutions here.
The same result is obtained in the case of cε = cθ = 0.

III. From the condition ce = 0 for noncoplanar structures it
follows that sψcε = 0.

IIIA. If sψ = 0, then

μ = cα(lcγ + iksγ ),

ν = sα[cε(lcϕ + ksϕ) + isε(−lcθ sϕ + kcθcϕ + nsθ )].

From the general for 1a,b condition p = 0, we found, that
either cϕ = 0, and then a||c, i.e., we return to the already

considered type of solution II, or

cγ cε = −sγ sεcθ . (A2)

In the case 1a, we have r = 0, whence it follows, that c2α =
0, i.e.,

μ = lcγ + iksγ√
2

,

ν = cε(lcϕ + ksϕ) + isε(−lcθ sϕ + kcθcϕ + nsθ )√
2

,

and, according to III, ζ = ω = 0. Hence we found
c2γ = c2ε = 0, i.e., according to (A2), cθ = cot γ cot ε = ±1,

i.e., we return to coplanar structure again.
In the case 1b, from the condition ξ ′ = 0, we find

cγ cε = sγ sεcθ . (A3)

For noncoplanar structure sε �= 0, and from Eqs (A2) and (A3)
it follows that cγ cε = sγ cθ = 0. Hence there are three options
of solution: 1. cγ = cθ = 0 : μ = icαk,

ν = sα{cε(lcϕ + ksϕ) − isεn},
B = β2c

2
2α + (β3 + β6)s2

2αc2
ε s

2
ϕ

+β4
(
s2
αc2ε − c2

α

) + β5
(
s2
αc2ε + c2

α

)
;

2. cε = sγ = 0 : μ = cαl,

ν = isα{cθ (−lsϕ + kcϕ) + nsθ },
B = (β2 + β4)c2

2α + (β3 + β6)s2
2αc2

θ s
2
ϕ + β5;

3. cε = cθ = 0 : ν = isαk, μ = cα(lcγ + iksγ ),

B = β2c
2
2α + β4

(
c2
αc2γ + s2

α

)2 + β5
(
c2
αc2γ − s2

α

)2
.

It is easy to verify that in these three options only coplanar
structures appear.

IIIB. If cε = 0, then the vector c = 0. Let us direct ñ along
the vector d, then

μ = cα(cγ l + isγ k),

ν = isα(lsθ sϕ − ksθ cϕ + ncθ ),

B = (β1 + β3)c2
γ s2

2αs2
θ c

2
ϕ + (β3 + β6)c2

γ s2
2αs2

θ s
2
ϕ

+β2c
2
2α + β4

(
c2
αc2γ − s2

α

)2 + β5
(
c2
αc2γ + s2

α

)2
.

Here also only coplanar structures appear.
IV. From the condition r = ζ = ω = p = 0, it follows that

α = γ = ε = π/4; ψ + ϕ = π/2. Thus 2μ = l + ik and

2ν = lsϕcϕ(1 − cθ ) + k
(
s2
ϕ + cθc

2
ϕ

) + ncϕsθ ,

+ i
[ − l

(
c2
ϕ + cθ s

2
ϕ

) + ksϕcϕ(cθ − 1) + nsϕsθ

]
,

B = β3

4
(1 + cθ )2 + β6

4
(1 − cθ )2.

Minimizing the function B, we found

cθ = β6 − β3

β6 + β3
, B = β3β6

β3 + β6
.

We see, that the condition B = 0, as it should be for the solu-
tions type IV, is only performed when β3 or β6 equals to zero.
Thus there are no extrema of the function B, corresponding to
noncoplanar structures.
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APPENDIX B

1. Relativistic effects

To obtain relativistic invariants, the action of rotational el-
ements, in contrast to the exchange symmetry transformations
(2), has to be extended to the spin indices

C2x : μx → −e−iq/2ν∗
x , μy,z → e−iq/2ν∗

y,z,

νx → e−iq/2μ∗
x, νy,z → −e−iq/2μ∗

y,z;

C2y : μy → −eiq/2μy, μx,z → eiq/2μx,z,

νy → eiq/2νy, νx,z → −eiq/2νx,z. (B1)

Anisotropy energy in general case has the form

λ1(μxμ
∗
x + νxν

∗
x ) + λ2(μyμ

∗
y + νyν

∗
y )

+ λ3(μxμ
∗
z + μ∗

xμz − ν∗
x νz − νxν

∗
z )

+ iλ4(μxν
∗
y − μ∗

xνy + ν∗
xμy − νxμ

∗
y), (B2)

here the common factor η2 has been omitted.
Let us give the expressions for the anisotropy energy of the

phases:

A1 : −λ1

2
n2

x − λ2

2
n2

y ± λ4(lx ly − kxky);

A2 : −λ1

2
n2

x − λ2

2
n2

y + λ3(lx lz − kxkz);

B1 : −λ1

2
n2

x − λ2

2
n2

y ± λ4(lxky + kxly);

B2 : −λ1

2
n2

x − λ2

2
n2

y + λ3(lx lz − kxkz)

± λ4(lxky + kxly);

C1 :
λ1

2
l2
x + λ2

2
l2
y + 2λ3lx lz;

C2 : −λ1

2
n2

x − λ2

2
n2

y − λ3nxnz;

D :
λ1

2
l2
x + λ2

2
l2
y ∓ 2λ4lx ly ;

E : −λ1

2
n2

x − λ2

2
n2

y ± λ4nxny ;

D∗ :
λ1

2
l2
x + λ2

2
l2
y ;

E∗ : −λ1

2
n2

x − λ2

2
n2

y.

Here for the planar structures we introduced the normal vector
to the spin plane n = [lk] and used the relation

lαlβ + kαkβ + nαnβ = δαβ.

Electric polarization of relativistic nature is due to the follow-
ing invariants:

−d1Ex(μxν
∗
z + μ∗

xνz + μzν
∗
x + μ∗

zνx)

− d2Ey(μyν
∗
z + μ∗

yνz + μzν
∗
y + μ∗

zνy)

− d3Ez(μzν
∗
z + μ∗

zνz). (B3)

Accordingly, in five phases of twelve components of polariza-
tion Px,Py,Pz occur:

A1) d1(lxkz + kxlz), d2(lykz + kylz), d3lzkz;

A2) d1(lxkz + kzlx), d2(lykz + kylz), d3lzkz;

B1) d1(lx lz − kxkz), d2(ly lz − kykz), d3(l2
z − k2

z );

D∗) 2d1lx lz, 2d2ly lz, P0 + d3l
2
z ;

E∗) d1(lx lz + kxkz), d2(ly lz + kykz), P0 − d3n
2
z .

Here, for the phases D∗ E∗, we added the already mentioned
polarization of exchange nature P0. Note that P0 and the
relativistic contribution to the polarization, as well as the
“anomalous” terms of anisotropy (λ3,λ4) are given for the
one of four possible domains, differed by the sign of ν and
the replacement μ � ν. Thus, if we exclude the collinear
structure D∗, there are four candidates for the phase, observed
in LiCu2O2 at the temperature T < 23.2 K.

Due to the low symmetry of the crystal, there are too many
invariants caused by the relativistic effects of magnetostric-
tion: ηxxuxx, ηxxuyy, ηxxuzz, ηyyuxx, ηyyuyy, ηyyuzz; ηzzuxx,

ηzzuyy,ηzzuzz; ηxyuxy, ηyzuyz, ηzxuzx ; rxxuxz,ryyuxz,rzzuxz,

rxzuxx, rxzuyy, rxzuzz, rxyuyz, ryzuxy ; sxyuxx, sxyuyy, sxyuzz,

sxxuxy,syyuxy, szzuxy, syzuxz, and sxzuzy ; here, the following
forms are introduced for brevity:

ηik = μiμ
∗
k + μkμ

∗
i + νiν

∗
k + νkν

∗
i ,

rik = μiμ
∗
k + μkμ

∗
i − νiν

∗
k − νkν

∗
i ,

sik = μiν
∗
k + μkν

∗
i − μ∗

i νk − μ∗
kνi,

therefore the use of strain measurements for the task of
structure selection is difficult.

2. Spin-orbit splitting of phase transition

The above regular accounting for relativistic effects un-
der the perturbation theory may become inapplicable in the
vicinity of the transition, where their contribution necessarily
becomes comparable to the exchange quadratic term of the
Dzyaloshinskii-Landau expansion τη2. In this case, an inter-
mediate magnetic phase may appear in a small vicinity of
the transition in the cases, when active representation of the
exchange approximation is not one-dimensional. Let us find
out the features of this phase, suggesting the Lifshitz instability
is weak.

Let us select the real and imaginary parts in the order
parameter ημ = a + ib,ην = c + id, without imposing any
restrictions on the real-valued vectors a, b, c, and d. In these
variables, the quadratic part of the Dzyaloshinskii-Landau
expansion has the form

(τ + λ1)
(
a2

x + b2
x + c2

x + d2
x

)

+ (τ + λ2)
(
a2

y + b2
y + c2

y + d2
y

)

+ τ
(
a2

z + b2
z + c2

z + d2
z

)

+ 2λ3(axaz + bxbz − cxcz − dxdz)

+ 2λ4(axdy − bxcy + dxay − cxby). (B4)
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In the immediate vicinity of the transition, we can not
neglect the Lifshitz invariant (3), and should also consider
suppressive instability quadratic in the gradient exchange
invariant:

L(ac′ − ca′ + bd′ − db′) + g(a′2 + b′2 + c′2 + d′2),

(B5)

where prime means differentiation with respect to
coordinate x.

In the general case, this is a rather complicated task.
However, in LiCu2O2, according to the experimental data [36],
if the parameter λ1 is negative and substantially exceeds the
value of the remaining anisotropy constants, then the analysis
of the transition is much easier. The transition then should
occur at τ ≈ −λ1 and we may neglect y and z components of
the vectors in the vicinity of Tc1. As a result, the quadratic term
in the Dzyaloshinskii-Landau expansion in the order parameter
has the form

F2 = τ̃ η2 + L(ac′ − ca′ + bd ′ − db′)

+ g(a′2 + b′2 + c′2 + d ′2), (B6)

where η2 = a2 + b2 + c2 + d2, the same for all vectors, index
x has been omitted.

Let us turn to the Fourier components
a = ake

ikx + a∗
k e

−ikx, . . . , k > 0. For the contribution of
single harmonic, we have

F2 = (τ̃ + gk2)(a∗
k ak + b∗

kbk + c∗
kck + d∗

k dk)

+ ikL(a∗
k ck − c∗

kak + b∗
kdk − dkb

∗
k ). (B7)

For given magnitude a∗
k ak + b∗

kbk + c∗
kck + d∗

k dk and wave
vector, this contribution is minimal if

ck = iak, dk = ibk, (B8)

then

F2 = 2(τ̃ − Lk + gk2)(a∗
k ak + b∗

kbk). (B9)

The phase transition occurs when the temperature decreases
and the minimal value of the coefficient in (B9) changes
sign at k = k0 = L/2g. The relative phase and amplitude of
the components ak and bk are determined by the minimum
condition of the function

B = 4β1(ac + bd)2

+β2(a2 + b2 − c2 − d2)2 + 4β3(ad − bc)2

+β4[(a2 − b2 + c2 − d2)2 + 4(ab + cd)2]

+β5[(a2 − b2 − c2 + d2)2 + 4(ab − cd)2]

+ 4β6(a2c2 + b2d2 + a2d2 + b2c2) (B10)

at the fixed magnitude η2 = 2(a∗
k ak + b∗

kbk) and fulfillment the
condition (B8).

Turning to the Fourier components in the expression (B10)
and integrating over the volume, we get

8(β1 + β2)(a2 + b2)(a∗2 + b∗2) − 16β3(a∗b − ab∗)2

+ 16β4(a2a∗2 + b2b∗2 + a2b∗2 + a∗2b2)

+ 8(β5 + β6)[(a2 − b2)(a∗2 − b∗2) + 4aa∗bb∗] ,

here the indices k have been omitted.
Introducing parametrization

ak = η

2
e−iϕsφ, bk = η

2
cφei(δ−ϕ), (B11)

we get

B = B0 + As2
2φs2

δ , (B12)

where

B0 = 1

2
(β1 + β2 + 2β4 + β5 + β6),

A = −1

2
(β1 + β2 + 2β3 + 2β4 + β5 + β6). (B13)

If A < 0 then the minimum B occurs at φ = π/4, δ = π/2.
If A > 0 then there are two solutions (1) φ = 0 (or φ = π/2),
and the value of δ is not relevant, and (2) δ = 0,π . Thus the
following solutions are the candidates for the intermediate
phase:

I1 : μx = ±iνx = e−i(kx−ϕ)

√
2

;

I2 : μx = cos(kx − ϕ), νx = ± sin(kx − ϕ);

I3 : μx = cos(kx − ϕ), νx = ±i sin(kx − ϕ).

Let us note that there are no associated solutions trans-
forming into each other under the transformation (6) here,
since, as noted above, the Lifshitz invariant (3) breaks this
random symmetry. One of these phases has to be realized at
the transition point Tc1. Note that only in the phase I2 electric
polarization of exchange nature occurs.

There are two possible scenarios with decreasing tempera-
ture: either a first-order transition into one of the phases con-
sidered above at the temperature Tc2 or, if the low-temperature
phase is noncollinear, then a first-order transition into another
intermediate collinear phase C1, D, or D∗ is possible.
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