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Viscous dynamics of vortices in a ferromagnetic film
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We derive viscous forces for vortices in a thin-film ferromagnet. The viscous force acting on vortex i is a
linear superposition Fi = −∑

j D̂ij Vj , where Vj is the velocity of vortex j . Thanks to the long-range nature of

vortices, the mutual drag tensor D̂ij is comparable in magnitude to the coefficient of self-drag Dii .
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The dynamics of solitons in ferromagnets is a topic with
a long history. Time evolution of magnetization, represented
by the field m(r,t) of unit length, is described by the Landau-
Lifshitz equation

J ṁ = −m × δU

δm
− α|J |m × ṁ, (1)

where U [m(r)] is a functional of potential energy, J is the
density of angular momentum [1], and α � 1 is Gilbert’s
damping constant [2]. Even in the simplest models, where
the energy includes only exchange interactions and local
anisotropy, Eq. (1) is a nonlinear partial differential equation
that rarely admits exact dynamical solutions. Approximate
solutions can be obtained for soft modes associated with global
symmetries (such as translations) in the limit of weak external
perturbations. Thiele [3] described the dynamics of a rigidly
moving magnetic soliton, m(r − R(t)), whose velocity Ṙ is
determined from the equation

G × Ṙ − ∂U/∂R − DṘ = 0, (2)

expressing the balance of gyroscopic, potential, and viscous
forces, respectively.

Thiele’s equation (2) has been widely used to describe the
dynamics of vortices in a thin film [4–15]. With few exceptions
[5,8,13], analytical treatments take into account the gyroscopic
and potential forces but leave out the viscous force involved
in energy dissipation. Both the gyroscopic and viscous forces
are proportional to the soliton velocity Ṙ and the neglect of
the viscous force can be justified by its relative weakness: the
viscosity tensor Dab = α|J | ∫ dV ∂am · ∂bm is of a higher
order in α � 1 than the gyrovector Ga = εabcJ

∫
dV m ·

(∂bm × ∂cm). Nonetheless, in certain situations the viscous
force cannot be neglected. For example, the annihilation of a
vortex and an antivortex is accompanied by gradual dissipation
of energy as the two solitons approach each other. This
motivates us to seek a proper understanding of viscous forces
in vortex dynamics.

To be specific, we set as our immediate goal to obtain
a satisfactory analytical model for the motion of a vortex–
antivortex pair with equal skyrmion numbers, Fig. 1(a). The
two solitons attract each other through a potential force
mediated by exchange interaction. To the zeroth order in
α, Thiele’s equation (2), applied to each soliton separately,
predicts that they will orbit a common center at an orbital

velocity proportional to the force of attraction. At the next
order in α, viscous forces opposing the orbital motion will
induce slow radial motion of the solitons toward each other,
Fig. 1(b).

Our main findings are as follows:
(1) Viscous forces acting on vortices come in two kinds.

The first is self-drag, a force proportional to the vortex’s
own velocity [5,8]. We show that a vortex also experiences a
drag force from other vortices proportional to their velocities.
The net force of viscous friction acting on vortex i is Fi =
−∑

j D̂ij Vj , where Vj is the velocity of vortex j and D̂ij is the
mutual drag tensor comparable in magnitude to the self-drag
coefficient Dii .

(2) Both Dii and D̂ij scale logarithmically with the system
size.

(3) The direction of mutual drag depends on the product of
vorticities. A vortex receding from an antivortex attempts to
drag the antivortex with it; the force direction reverses for a
vortex–vortex pair.

(4) Image vortices, created by “reflection” in the sample
edge, produce substantial corrections to viscous forces.

Our theory is built on the framework of collective coor-
dinates [8,16,17], in which the magnetization field m(r,t)
is parametrized by a few coordinates {qμ}, μ = 1,2, . . .,
representing soft modes of the system (e.g., vortex positions).
The Landau-Lifshitz equation (1) translates into equations of
motion for each coordinate qμ,

Gμνq̇
ν − ∂U

∂qμ
− Dμνq̇

ν = 0. (3)

Thiele’s equation (2) is a particular case of Eq. (3), in
which {qμ} are global translations m(r) �→ m(r − R). The
gyroscopic and dissipative tensors are [16,17]

Gμν = −J
∫

dV m ·
(

∂m
∂qμ

× ∂m
∂qν

)
, (4a)

Dμν = α|J |
∫

dV
∂m
∂qμ

· ∂m
∂qν

. (4b)

We use a simple model of a thin-film ferromagnet with
exchange interaction of strength A and easy-plane anisotropy
of strength K . We omit dipolar interactions [18]. In a film of
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FIG. 1. (a) Vortex–antivortex pair with equal skyrmion numbers. Red and blue colors signify positive and negative out-of-plane magnetization
mz, respectively. (b) Trajectory of the vortex. Natural units of length.

thickness h, the energy is

U = h

∫
d2r

(
A|∇m|2 + Km2

z

)
/2. (5)

The polar angle of magnetization θ is a hard mode pinned
at θ = π/2. At low energies, the system is effectively an
XY ferromagnet [19] parametrized by the azimuthal angle of
magnetization φ(r,t) with energy U = h

∫
d2r A|∇φ|2/2. A

state with N vortices has

φ(r) =
N∑

i=1

ni arctan
y − Yi

x − Xi

, (6)

where Ri = (Xi,Yi) is the location of the ith vortex and ni ∈
Z is its vorticity, usually ni = ±1. The effective description
breaks down inside vortex cores—circular regions with the
size on the scale of the exchange length λ = √

A/K , where m
comes out of the easy plane.

Gyroscopic and potential forces acting on vortices are well
understood. The gyroscopic density in Eq. 4(a) comes from
core regions, where m does not stay in a fixed plane [17]. Vortex
cores are rigid objects, for which Thiele’s approximation [3]
works well. The gyroscopic force Fg for a vortex with velocity
Ṙ = (Ẋ,Ẏ ) has components

F
g

X = −4πQJ hẎ , F
g

Y = 4πQJ hẊ, (7)

where Q = np/2 = ±1/2 is the skyrmion number of the
vortex determined by its vorticity n and polarity p = ±1.
Exchange-mediated conservative forces between vortices re-
semble Coulomb interactions in two dimensions [20]. The net
conservative force on vortex i is

Fc
i = −2πAh

∑
j �=i

ninj

Ri − Rj

|Ri − Rj |2 . (8)

Viscous forces are the primary focus of this paper. It is
natural to expect that vortex i experiences a viscous force
Fv

i = −D̂iiṘi , where D̂ii is a 2 × 2 symmetric tensor with

matrix elements such as DXiXi
, DXiYi

, and so on. For magneti-
zation lying primarily in the easy plane, m ≈ (cos φ, sin φ,0),
Eq. (4b) yields, e.g.,

DXiXi
≈ α|J |h

∫
d2r

(
∂φ

∂Xi

)2

= α|J |h
∫

d2r
(y − Yi)2

|r − Ri |4 .

On symmetry grounds, we expect D̂ii to be isotropic, D̂ii =
Dii 1̂, with a scalar viscosity coefficient

Dii = α|J |h
2

∫
d2r

|r − Ri |2 . (9)

The integral diverges and requires regularization for both r →
Ri and r → ∞. The long-range cutoff is the system size [5];
the short-range cutoff is provided by the size of the vortex core
of the order λ [13]. For a vortex near the center of a disk of
radius Rd � Ri ,

Dii ≈ απ |J |h ln (Rd/Cλ), (10)

where C is a numerical factor of the order 1. The logarithmic
divergence with the system size Rd reflects the long-range
impact of a moving vortex on the magnetization distribution
m(r). Viscous forces in a ferromagnet are of the order α � 1
(typically 10−4 to 10−2) and thus are much weaker than
gyroscopic ones. For a vortex, this is partly compensated by
the factor ln (Rd/Cλ) � 1.

The extended nature of vortices leads to substantial mutual
drag between them. Vortex i feels a force proportional to the
velocity of vortex j , Fv

i = −D̂ij Ṙj , where again D̂ij is a 2 × 2
tensor with coefficients such as

DXiXj
≈ α|J |h

∫
d2r

∂φ

∂Xi

∂φ

∂Xj

= α|J |hninj

∫
d2r

(y − Yi)(y − Yj )

|r − Ri |2|r − Rj |2 .

The integrand has two singularities at r = Ri and Rj . They
are weaker than the confluent singularity in Eq. (9) and are
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TABLE I. Vortices in the numerical simulation.

i ni Qi GXiYi
Ri �i note

1 +1 +1/2 −2πJ R � vortex
2 −1 +1/2 −2πJ R � + π antivortex
3 −1 0 R2

d/R � image of the vortex
4 +1 0 R2

d/R � + π image of the antivortex

integrable, making the short-range cut-off λ unnecessary. For
two vortices located symmetrically about the center of a disk,
Ri = (±R,0) in Fig. 1, the viscosity tensor D̂ij has principal
axes parallel and perpendicular to the line connecting the cores
with the eigenvalues

D
||
ij ≈ απninj |J |h[ln (Rd/2R) + 1/2], (11a)

D⊥
ij ≈ απninj |J |h[ln (Rd/2R) − 1/2]. (11b)

A notable feature of mutual drag is the dependence of
its direction on vorticities. The drag force Fv

i = −D̂ij Ṙj on
vortex i is roughly opposite to the velocity Ṙj of vortex j

for vorticities of the same sign and roughly parallel to it for
vorticities of opposite sign.

To test our theory, we modeled the dynamics of a vortex–
antivortex pair with equal skyrmion numbers (Table I) with the
aid of the micromagnetic simulator MUMAX3 [21]. We used
magnetization length M = 8.60 × 105 A/m, gyromagnetic
ratio γ = −2.21 × 105 m/As, angular momentum density
J = μ0M/γ = −4.89 × 10−6 J s/m3 [1], exchange constant
A = 2.6 × 10−11 J/m, and easy-plane anisotropy K = 2.60 ×
105 J/m3. Natural units of length and time were λ = √

A/K =
10.0 nm and τ = |J |/K = 18.8 ps. The sample was a disk of
radius RD = 2048 nm and thickness h = 4 nm. A vortex and
an antivortex with equal skyrmion numbers Q1 = Q2 = +1/2
were initially placed symmetrically on opposite sides of the
disk center, Fig. 1(a). The pair orbited the disk center and grad-
ually spiraled down, Fig. 1(b). The dimensionless constantC =
0.342 in Eq. (10) was determined through a numerical evalu-
ation of the dissipation constant Dii = α|J |h ∫

d2r|∂xm|2 of
a simulated vortex.

In the absence of dissipation (α = 0), the motion of the pair
reflects the balance of the exchange-mediated attraction (8) and
the gyroscopic force (7), Fc + Fg = 0. The radial direction
of the exchange attraction results in the azimuthal direction
of the vortex velocities. The two topological defects orbit the
common center at a constant radius R. It is therefore convenient
to parametrize the positions of the vortices in polar coordinates
(Ri,�i), see Table I. The angular velocity is obtained from the
balance of the gyroscopic and conservative forces acting on a
vortex in the radial direction,

−2πJ hR�̇ − 2πAh

2R
= 0. (12)

Weak dissipation (α � 1) turns the trajectories into spirals
with a radial velocity Ṙ of the order α.

Numerical simulations reveal very good, but not perfect,
agreement with Eq. (12): the observed angular velocity of
the vortices �̇(R) differed from the expected value �̇ =
−A/2JR2 by a small constant, Fig. 2(a). This minor discrep-
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FIG. 2. (a) Angular velocity �̇ of the vortices vs the radius R of
their orbit. (b) The ratio of radial Ṙ and orbital R�̇ velocities vs the
orbit radius R. Natural units of length λ and time τ .

ancy reflects an edge effect in a finite system. Free boundary
conditions at the edge, ∂φ/∂r = 0, result in the appearance
of image vortices outside of the disk [9,13], see Table I.
The images generate a weak radial force of approximately
4πAhR/R2

d that reduces the angular velocity by 2A/JR2
d ,

in excellent agreement with the numerical data, Fig. 2(a).
To determine the radial velocity Ṙ, which is of the order

α, we need to carefully evaluate viscous forces acting on the
vortices. This task is made complicated by the constrained
motion of images (their positions mirror the locations of the
vortices). Because of these constraints, the vortices also “feel”
forces acting on the images. Although it is possible to solve
the dynamics with constraints, a more expedient way is to
reformulate the dynamics in terms of the two independent
variables R and � that fully determine the positions of all
four objects (see Table I). Equations of motion for R and �

can be obtained by following the usual prescription (3):

GR��̇ − ∂U/∂R − DRRṘ = 0, (13a)

G�RṘ − D���̇ = 0. (13b)
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Here we took into account rotational symmetry, which
yields −∂U/∂� = 0, and the diagonal nature of the dissipation
tensor, DR� = D�R = 0.

Polar components of the gyroscopic tensor GR� = −G�R

can be expressed in terms of Cartesian ones through a standard
coordinate change from {qμ} (here positions of the vortices
and images Ri) to R and �:

GR� =
∑
μ,ν

∂qμ

∂R

∂qν

∂�
Gqμqν = R

(
GX1Y1 + GX2Y2

)

= −4πRJ h. (14)

Here we used the reference frame of Fig. 1, in which
∂R1/∂R = (1,0), ∂R1/∂� = (0,R), ∂R2/∂R = (−1,0),
∂R2/∂� = (0, − R), etc. Image vortices 3 and 4 do not
contribute to the gyroscopic tensor because they are centered
outside the sample and therefore lack cores. The energy of the
vortices and images is

U (R) = 2πAh

(
ln 2R + ln

R2
d − R2

R2
d + R2

)
. (15)

The dissipative term in Eq. (13a) is of the order α2 and can be
neglected to yield �̇ ≈ −(A/2J )(R−2 − 4R−2

d ) for R � Rd ,
as derived above.

To obtain the radial velocity from Eq. (13b), we need the
dissipative coefficient

D�� =
∑
μ,ν

∂qμ

∂�

∂qν

∂�
Dqμqν =

∑
i,j

(−1)i+jRiRjD
⊥
ij , (16)

which reduces to a superposition of these terms:

2R2
1D11 ≈ 2απ |J |hR2 ln (Rd/Cλ), (17a)

−2R2
1D

⊥
12 ≈ 2απ |J |hR2[ln (Rd/2R) − 1/2], (17b)

4R1R3(D⊥
13 − D⊥

14) ≈ 4απ |J |hR2, (17c)

2R2
3(D⊥

33 − D⊥
34) ≈ απ |J |hR2. (17d)

They represent self-drag of the vortices (17a), their mutual
drag (17b), and corrections from the images (17c) and (17d).
In the limit of a large disk, the first two terms dominate over
the edge corrections, albeit only logarithmically in the system
size Rd . Thus the edge corrections must be included to obtain
quantitative agreement with simulations, Fig. 2(b).

The ratio of the radial and orbital velocities,

Ṙ

R�̇
= D��

RG�R

= sgnJ α

2
ln

�

R
, (18)

where � = R2
de

2/2Cλ, has a telltale logarithmic dependence
on the vortex separation 2R inherited from mutual drag,

Eqs. (11b) and (17b). As a result, a vortex-antivortex pair
follows a double logarithmic spiral,

ln ln
R(�)

�
− ln ln

R(0)

�
= sgnJ α�

2
, (19)

in excellent agreement with the numerical simulations,
Fig. 1(b). Note the contrast with a single vortex in a disk,
which has a constant self-drag coefficient (10) and therefore
follows a simple logarithmic spiral [13].

At the smallest orbital radiiR, the observed radial velocity Ṙ

shows small but growing deviations from the theoretical value,
Fig. 2(b). As the radial motion is tied to energy dissipation, an
excess radial velocity hints at the opening of a new dissipation
channel. The likely culprit is spin waves, which have a linear
dispersion ω = sk with the speed s =

√
AK/J 2 = λ/τ . In a

disk, the normal modes in polar coordinates (R,�) are

φ(R,�,t) = aJm(kR) cos (ωt − m�), (20)

where Jm(x) is a Bessel function of the first kind. For open
boundary conditions, the wave numbers k satisfy J ′

m(kRd ) = 0.
A rotating vortex-antivortex pair couples strongly to modes
with m = 1. The lowest frequency for an m = 1 spin wave
is ω = 1.84s/Rd = 8.98 × 10−3τ−1. At the end of the sim-
ulation, the angular frequency of the pair reached �̇ =
4.3 × 10−3τ−1. Although the pair was not yet in resonance
with this mode, its angular velocity had a substantial chirp,
|�̈/�̇2| = α ln (�/R) ≈ 0.1, and thus a spectrum potentially
wide enough to excite the m = 1 spin wave, whose dynamics
would produce additional dissipation.

We have derived viscous forces acting on a vortex in a
thin-film ferromagnet. In addition to self-drag proportional to
the vortex’s own velocity, vortices experience mutual drag,
a force on vortex i proportional to the velocity of vortex j ,
Fv

i = −D̂ij Ṙj . Reflecting the long-range influence of vortices,
both the self-drag coefficient Dii (10) and the mutual viscosity
tensor D̂ij (11) scale logarithmically with the system size. The
mutual drag tensor D̂ij is anisotropic and distance-dependent.
We have tested our theory by deriving the dynamics of a vortex-
antivortex pair with equal skyrmion numbers. The results are
in excellent agreement with micromagnetic simulations. Edge
effects in the form of image vortices contribute substantially
to viscous friction. Dissipation through the emission of spin
waves becomes noticeable when vortices approach each other
very closely, within a few exchange lengths λ.
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