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Currents can induce spin excitations in antiferromagnets, even when they are insulating. We investigate how
spin transfer can cause antiferromagnetic resonance in bilayers and trilayers that consist of one antiferromagnetic
insulator and one or two metals. An ac voltage applied to the metal generates a spin Hall current that drives
the magnetic moments in the antiferromagnet. We consider excitation of a sublattice macrospin mode and of
transverse standing-spin-wave modes. By solving the Landau-Lifshitz-Gilbert equation in the antiferromagnetic
insulator and the spin-diffusion equation in the normal metal, we derive analytical expressions for the spin-Hall-
magnetoresistance and spin-pumping inverse-spin-Hall dc voltages. In bilayers, the two contributions compensate
each other and cannot easily be distinguished. We present numerical results for a MnF2|Pt bilayer. Trilayers
facilitate separation of the spin-Hall-magnetoresistance and spin-pumping voltages, thereby revealing more
information about the spin excitations. We also compute the decay of the pumped spin current through the
antiferromagnetic layer as a function of frequency and the thickness of the antiferromagnetic layer.
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I. INTRODUCTION

Antiferromagnets have many qualities that make them at-
tractive for use in spintronic devices. For example, the absence
of stray fields allows for dense storage of components without
undesired cross talk between the active elements. The most
interesting feature of antiferromagnets is that their high reso-
nance frequencies pave the way toward terahertz circuits [1].

Current-induced spin-transfer torques (STTs) can induce
ferromagnetic resonance [2] in both metallic and insulating
ferromagnets [3,4]. An antidampinglike STT is even under
magnetization reversal [5]. Consequently, the magnetic
moments in the two sublattices of a collinear antiferromagnetic
insulator experience the same STT, which enables STT-driven
spin dynamics in antiferromagnets. Current-induced STT is a
powerful method for probing the magnetization dynamics in
magnetic layers [6,7]. An electric signal can simultaneously
drive and detect the magnetization dynamics. An ac voltage
leads to an alternating spin current through the spin Hall
effect [8], which drives the magnetic moments at resonance.
Subsequently, the spin Hall magnetoresistance (SMR) and
spin pumping (SP) induce dc voltages through the inverse
spin Hall effect (ISHE) [9].

SMR [10,11] is the dependence of the normal-metal re-
sistance on the orientation of the magnetic moments in an
adjacent magnetic layer relative to the applied current. When
the magnetic moments precess, the resistance of the metal
correspondingly oscillates. The mixing of the oscillating
resistance and charge current generates a dc voltage bias
that can provide insights into the magnetization dynamics.
Recent experiments have indicated that SMR also occurs
in antiferromagnetic-insulator/normal-metal (AF|N) bilayers
[12–16]. Theoretical predictions have also been made for
conducting antiferromagnets [17].
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Similar to ferromagnets, SP is also active in antiferromag-
nets [18]. However, to the best of our knowledge, there are
no direct experimental detections of antiferromagnetic SP.
The lack of direct experimental signatures is possibly due
to the high resonance frequencies and low susceptibilities of
the magnetic moments in antiferromagnets, which make ex-
perimental detection challenging. However, we have recently
theoretically shown that the susceptibilities and thus the dc
SP substantially increase near the spin-flop transition, where
the resonance frequency is low [19]. Therefore, we expect that
antiferromagnetic SP will be a prominent effect if we drive our
system close to the spin-flop transition.

In this paper, we compute the dc voltages resulting from
SMR and SP in antiferromagnetic-insulator/normal-metal bi-
layers. The driving source is an ac voltage bias on the normal
metal. We consider the excitation of a sublattice macrospin
mode, henceforth referred to as the macrospin mode, where
the magnetization dynamics within each sublattice is spatially
uniform throughout the antiferromagnet. In addition to the
macrospin mode, we also consider the excitation of transverse
standing spin waves. These standing waves have a higher
resonance frequency than that of the uniform precession
modes, and these waves can be excited by tuning the frequency
of the applied voltage bias. The detection of such waves would
reveal a wide variety of properties of the antiferromagnetic
material. The resonance frequencies can be used to determine
contributions to the free energy of the antiferromagnet, such
as exchange and anisotropy frequencies and the exchange
lengths of the sublattices. The amplitudes and linewidths of
the resonance peaks can also be used to determine both the
intrinsic and SP-induced damping and thus the transverse
spin conductance of the AF|N interface. Finally, we also
show how the SMR and SP dc voltages can be separated
by sandwiching the antiferromagnetic material between two
metals and measuring the dc biases in the metals independently.

2469-9950/2018/97(5)/054423(9) 054423-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.054423&domain=pdf&date_stamp=2018-02-21
https://doi.org/10.1103/PhysRevB.97.054423
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FIG. 1. An ac voltage applied to a normal metal with strong
spin-orbit coupling generates spin currents that flow into the antifer-
romagnetic insulator, exciting the magnetic moments. The direction
of the applied voltage and the easy axis of the antiferromagnet are
parallel to the AF|N interface, and there is an angle of θ between
them. An external field H0 along the easy axis of the antiferromagnet
controls the resonance frequency and the magnetic susceptibilities.

This approach requires that the dissipation of the pumped spin
current through the antiferromagnet is negligible. We therefore
study for what thicknesses of the antiferromagnetic layer and
for what resonance frequencies this is a valid assumption.

The remainder of this paper is organized as follows.
In Sec. II, we present the model that describes the
magnetization dynamics in an antiferromagnetic insulator and
the accumulation of spins in an adjacent nonmagnetic metal.
In that section, we primarily focus on an AF|N bilayer, as
illustrated in Fig. 1. The solution of the model for the bilayer
system is then presented in Sec. III. This solution is used to
obtain analytical expressions for the dc voltages resulting from
SP and SMR, given by Eq. (31). These expressions are our
main result for the bilayer system. In Sec. IV, we extend the
solution of the model presented in Sec. II to a N|AF|N trilayer
system (as illustrated in Fig. 4 below). For the trilayer system,
our main contribution is illustrating how this system can be
used to measure the SP and SMR voltages independently.
These contributions cannot be distinguished in the bilayer
system because they have the same frequency dependence.

II. MODEL

A. Equations of motion

The sublattice magnetizations of the antiferromagnetic
insulator are M1 and M2. We describe the dynamics of these
magnetizations in terms of the dimensionless average mag-
netization and Néel order parameter vectors m and n, which
are defined as Lm = (M1 + M2)/2 and Ln = (M1 − M2)/2,
where L is the saturation magnetization of each sublattice.
These vectors satisfy the constraints m2 + n2 = 1 and m · n =
0. The coupled equations of motion for m and n are given by

the Landau-Lifshitz-Gilbert (LLG) equations

ṁ = 1
2 (ωm × m + ωn × n) + τGD

m + τ SP
m + τ STT

m , (1a)

ṅ = 1
2 (ωm × n + ωn × m) + τGD

n + τ SP
n + τ STT

n . (1b)

In the LLG equations (1), the Gilbert damping torques are

τGD
m = α0(m × ṁ + n × ṅ), (2a)

τGD
n = α0(m × ṅ + n × ṁ), (2b)

the interfacial SP torques are

τ SP
m = α′dAFδ(y)(m × ṁ + n × ṅ), (3a)

τ SP
n = α′dAFδ(y)(m × ṅ + n × ṁ), (3b)

and the STTs are

τ STT
m = α′

h̄
dAFδ(y)

{
m × [

m × μN
s (y,t)

]
+ n × [

n × μN
s (y,t)

]}
, (4a)

τ STT
n = α′

h̄
dAFδ(y)

{
m × [

n × μN
s (y,t)

]
+ n × [

m × μN
s (y,t)

]}
. (4b)

Here, we have introduced the SP-induced enhanced damp-
ing parameter α′ = h̄γg⊥/(4πLAdAF), and α0 is the intrinsic
Gilbert damping parameter. A is the AF|N interface area, γ is
the gyromagnetic ratio, g⊥ is the transverse spin conductance
at the AF|N interface, and dAF is the thickness of the antifer-
romagnetic layer. The STTs depend on the spin accumulation
μN

s in the normal metal.
The frequencies ωm,n corresponding to the effective fields

are ωm = −(γ /L) · δf/δm and ωn = −(γ /L) · δf/δn, where
f is the free-energy density in a continuum approximation,

f = L

γ

{
ωE(m2 − n2) − 2ωH mx

− ω‖
[
m2

x + n2
x − λ2(∇m)2 − λ2(∇n)2

]}
. (5)

Here, ωE is the exchange frequency, ω‖ is the easy-axis
anisotropy frequency,ωH is the frequency that describes the ex-
ternal magnetic field along the easy axis, and λ is the exchange
length. The exchange length is defined as λ2 = a2ωE/(4ω‖)
[20], where a is the length of the antiferromagnetic unit cell.

We will compute the induced dc voltages to the second order
in the spin excitations. For this purpose, computing the spin
excitations to the first order in their deviations from equilibrium
is sufficient. For simplicity, we assume an ideal compensated
antiferromagnetic-insulator-metal interface. In this case, we
can excite only standing waves in the transversal direction,
along the interface normal. Impurities, an uneven interface, or a
sufficiently high temperature can also facilitate the excitations
of waves in other directions. Within our assumptions, we
linearize the LLG equations and use a harmonic transversal
standing-wave ansatz of the solutions:

m(y,t) = 1
2 [δm(y)eiωt + δm∗(y)e−iωt ], (6a)

n(y,t) = n0 + 1
2 [δn(y)eiωt + δn∗(y)e−iωt ], (6b)
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FIG. 2. Standing waves of the Néel order parameter in the
transversal direction of the antiferromagnet (y ∈ [−dAF,0]) in the
limit when φy,z

m,n = 0 and ky,z
m,ndAF = Nπ .

where ω is the frequency of the dynamical source, n0 = x̂, and

δm(y) = δmy cos
[
ky
m(dAF + y) + φy

m

]
ŷ

+ δmz cos
[
kz
m(dAF + y) + φz

m

]
ẑ, (7a)

δn(y) = δny cos
[
ky
n (dAF + y) + φy

n

]
ŷ

+ δnz cos
[
kz
n(dAF + y) + φz

n

]
ẑ. (7b)

Here, δmy,z and δny,z are complex precession amplitudes,
k

y,z
m,n are the wave numbers of the standing waves, and φ

y,z
m,n

are relative phases. Figure 2 illustrates the different standing
waves.

B. Spin accumulation

The spin-diffusion equation determines the spatiotemporal
evolution of the spin accumulation μN

s (r,t) in the normal metal,

∂μN
s (r,t)
∂t

= γNH0 × μN
s + DN

∂2μN
s

∂y2
− μN

s

τN
sf

, (8)

where γN is the gyromagnetic ratio in the normal metal, H0 is an
external magnetic field, DN is the diffusion constant, and τN

sf is
the spin-flip relaxation time. When τN

sf is considerably smaller
than the other time scales of the system (applied ac voltage
frequency and characteristic magnetic field frequency ωH =
γN|H0|), the spin-diffusion equation can be approximated to
be static. This approximation is true for metals such as Pt,
which has a spin-flip relaxation time that is as low as 0.01 ps
[21]. We use this simplification in our calculations, leaving us
with a one-dimensional Helmholtz equation characterized by
the spin-diffusion length λN

sd =
√
DNτN

sf , with solutions given
by hyperbolic functions.

The source of the spin accumulation in the normal metal
is an ac voltage. This ac voltage leads to an ac charge current

I0
c(t) = I 0

c (t)x̂′ in the metal, which generates an oscillating
spin current through the spin Hall effect [8]. We consider a
harmonic ac current with frequency ω. The total spin current
in the normal metal is then

IN
s (y,t) = h̄θSH

2e
I 0
c (t)ẑ′ − h̄σA

4e2

∂μN
s (y,t)

∂y
, (9)

where θSH is the spin Hall angle and σ is the conductivity of
the normal metal.

The boundary conditions that μN
s must satisfy are that

the spin current across the normal-metal-vacuum interface
must vanish [IN

s (y = dN,t) = 0, where dN is the thickness
of the metallic layer] and that the spin current across the
AF|N interface is continuous [IN

s (y = 0,t) = IAF
s (y = 0,t)].

The spin current in the antiferromagnetic insulator is given
by contributions from SP and STTs, and it is approximated as

IAF
s (t) ≈ g⊥

2π

[
h̄(n × ṅ) + n × (

n × μN
s

)]
y=0 (10)

to the leading order in the applied ac voltage bias. We have
disregarded contributions from the imaginary part of the trans-
verse spin conductance since it is small in most materials. We
also consider the exchange limit (ω‖ � ωE), which is a good
approximation for many antiferromagnetic materials. In the
exchange limit, the antiferromagnet is approximately collinear
also at resonance, which means that the net magnetization is
negligible. Any SP contributions from the magnetization will
therefore be insignificant compared to the SP from the Néel
order parameter. By solving the spin-diffusion equation (8)
with the boundary conditions, we find that

μN
s (y,t) = μs0(t)

sinh
[
(2y − dN)

/(
2λN

sd

)]
sinh

[
dN

/(
2λN

sd

)] ẑ′

+ 1

1 + ξ

cosh
[
(y − dN)

/
λN

sd

]
cosh

[
dN

/
λN

sd

]
× [h̄(n × ṅ) − μs0(t)n × (n × ẑ′)]y=0, (11)

where we have introduced the dimensionless parameter

ξ = [
πh̄σA tanh

(
dN

/
λN

sd

)]/(
2g⊥e2λN

sd

)
(12)

and a characteristic spin accumulation

μs0(t) = 2θSHeλN
sd tanh

(
dN

/
2λN

sd

)
I 0
c (t)/(Aσ ). (13)

C. Magnetization dynamics

The magnetization dynamics in the antiferromagnet can
be divided into two separate regions: the dynamics at the
interfaces and the dynamics in the bulk. At the AF|N interface,
the STTs τ STT

m,n drive the dynamics, and there are also dissipative
SP torques τ SP

m,n. By integrating the LLG equations (1) in a
low volume around the AF|N interface, we find the boundary
conditions for n:

dAFα
′
{

n × ṅ + 1

h̄

[
n × (

n × μN
s

)]}
y=0

+ ω‖[λ2n × ∂yn]y=0 = 0. (14)

We assume that the other interface (y = −dAF) connects to
vacuum or a substrate with neither SP nor spin transfer.
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Subsequently, there is only a contribution to the boundary
conditions from the exchange stiffness, which requires that
the spatial derivative in the transversal direction vanishes.

By linearizing the boundary condition in Eq. (14) with the
ansatz in Eq. (6), we obtain the following constraint on the
wave number kz

n:

kz
ndAF tan

(
kz
ndAF

) = i
d2

AFα
′ω

λ2ω‖
κ, (15)

where we have introduced

κ =
[

1 + 2e2g⊥λN
sd coth

(
dN

/
λN

sd

)
Aπσ h̄

]−1

= ξ

ξ + 1
. (16)

When the term on the right-hand side of Eq. (15) is small, we
can expand the solution around the roots where k

y,z
m,ndAF ≈ Nπ

(N = 0,1,2, . . .) to determine the wave numbers. This limit
corresponds to the low-damping limit where the decay of the
standing waves in the antiferromagnetic layer is negligible.
Note that the opposite (high-damping) limit implies that the
precessions at the interface (and thus the SP and SMR voltages)
become small; therefore, this limit is of little interest.

The constraint from the boundary conditions in Eq. (14) on
the wave number k

y
n depends on an amplitude of δn,

δny

[
λ2ky

nω‖ sin
(
ky
ndAF

) − idAFα
′κω cos

(
ky
ndAF

)]
= dAF cos θα′κ|μs0|/h̄. (17)

Another equation is required to find solutions for δny and k
y
n ;

therefore, we must solve the LLG equations in the bulk of the
antiferromagnet.

In the bulk (−dAF < y < 0), the LLG equation becomes
a 4 × 4 matrix equation. A nontrivial solution requires the
determinant of this matrix to be zero because there is no
dynamical source in the bulk. The dynamics enters through the
boundary conditions at the interface. Because the determinant
is independent of the precession amplitudes δm and δn, we
can use this condition to determine the solutions for k

y
n that

allow a nontrivial solution of the precession amplitudes. The
amplitude δny can then be determined from Eq. (17), and the
remaining amplitudes δmy , δmz, and δnz can be determined
from the eigenvectors of the LLG bulk equations.

III. SPIN-TRANSFER-TORQUE-INDUCED
ANTIFERROMAGNETIC RESONANCE

A. Frequency spectrum and susceptibilities

When we are in both the low-damping and exchange limits,
the resonance frequencies of the N -node standing-wave mode
are |ω(N)

± | = ω
(N)
0 ± |ωH |, where

ω
(N)
0 = ω0

√
1 +

(
Nπλ

dAF

)2

(18)

and ω0 ≈ √
2ωEω‖ is the gap frequency. The solutions of

Eq. (17) around the k
y,z
n dAF = Nπ roots are approximately

complex Lorentzians,

δn
(N)
y,±(ω) ≈ (−1)N+1α′(N)κ cos θ |μs0|√ωE/

(
2h̄

√
2ω‖

)
|ω| − |ω(N)

± | + i�ω
(N)
± /2

,

(19)
where we have introduced the linewidth

�ω
(N)
± = 2(α0 + α′(N)κ)|ω(N)

± |
√

ωE

2ω‖
. (20)

We have also introduced the effective SP damping parameter
α′(N) for the N -mode spin wave, where α′(N=0) = α′ and
α′(N 
=0) = 2α′, which is analogous to the result for ferromag-
netic spin waves [22].

The Lorentzian approximation in Eqs. (19) and (20) is
valid to the lowest order in α0 and α′ under the assumption
that λ/dAF � 1. If the antiferromagnet is so thin that the
thickness becomes comparable to the exchange length, then
the gap between the resonance frequencies of the macrospin
mode and the higher-order standing-wave modes approaches
the exchange frequency ωE . This is the upper bound of the
resonance frequency; thus, in the limit dAF ∼ λ, we can excite
only the macrospin mode. Because we also want to study
the higher-order standing waves, we consider only the limit
where dAF � λ.

Note that even though the linewidth is enhanced by a factor
of

√
ωE/ω‖, the maximum amplitude of the precessions is not

suppressed by the inverse of this factor. This differs from the
case where the source of the dynamics is a magnetic field,
where the amplitudes are suppressed by a factor of

√
ω‖/ωE .

For the spin-transfer-driven case, the only suppression arises
from the high resonance frequencies of the antiferromagnet,
and this suppression is also present in the magnetic-field-driven
case in addition to the

√
ω‖/ωE factor.

The z component of the Néel order parameter is related to
the y component by

cos
(
kz
ndAF

)
δn

(N)
z,± = ∓sgn(ωH )i cos

(
ky
ndAF

)
δn

(N)
y,±. (21)

This is obtained through the eigenvectors of the bulk LLG
equations in Eq. (1) in the region where −dAF < y < 0. The
magnetization δm also has a circular polarization for uniaxial
antiferromagnets, and its amplitude is suppressed by a factor
of ∝√

ω‖/ωE compared to the Néel order parameter. This
suppression factor justifies our discarding the contributions
from the magnetization in the antiferromagnet to the spin
accumulation in the metal. We now assume that the separation
between the resonance frequencies |ω(N)

± | is considerably
greater than the linewidths |�ω

(N)
± | and that the real part of the

eigenfrequency is much greater than the imaginary part. The
frequency spectrum for, e.g., δny(ω) can then be approximated
by a sum of the complex Lorentzians in Eq. (19):

δny(ω) =
∞∑

N=0

∑
i=±

δn
(N)
y,i (ω), (22)

with similar notation for the other amplitudes.

B. Spin Hall magnetoresistance and spin pumping dc voltages

We can now use our solutions of the spin accumulation in
Eq. (11) and precession amplitudes in Eqs. (19) and (21) to

054423-4



SPIN-TRANSFER ANTIFERROMAGNETIC RESONANCE PHYSICAL REVIEW B 97, 054423 (2018)

determine the total charge current resulting from the applied
voltage and interaction with the antiferromagnet driven at
resonance. This charge current density is [11]

jc(y,t) = I 0
c (t)

A
x̂′ + θSHσ

2e
ŷ × ∂μN

s (y,t)

∂y
. (23)

By averaging over the normal metal, jc(t) = d−1
N

∫ dN

0 jc(y,t)dy,
we find that the contributions to the x ′ direction are

jc(t) · x̂′ = jSMR
c,x ′ (t) + jSP

c,x ′ (t), (24)

where

jSMR
c,x ′ (t) = I 0

c (t)

A

[
1 − �ρ0

ρ
− �ρS

ρ

(
1 − n2

z′
)]

y=0

, (25)

jSP
c,x ′ (t) = −θSHh̄σ

2dNe
η[(n × ṅ)z′]y=0. (26)

Here, we have introduced

�ρ0 = −ρθ2
SH

2λN
sd

dN
tanh

(
dN

2λN
sd

)
, (27)

η = 1

1 + ξ
tanh

(
dN

2λN
sd

)
tanh

(
dN

λN
sd

)
, (28)

and the SMR �ρS = −η�ρ0/2. ρ = 1/σ is the resistivity of
the normal metal. The contributions from both the SMR and
the SP induce a dc component in the resulting ISHE voltage in
the normal metal. Assuming that I 0

c (t) = I 0
c cos(ωt), we find

that 〈
jSMR
c,x ′ (t)

〉
t
= �ρSI

0
c

2ρA
sin 2θRe

[
δnz cos

(
kz
ndAF

)]
. (29)

To find the dc contributions from SP, we study the dc compo-
nent of 〈(n × ṅ)z′ 〉t , and we compute that

〈(n × ṅ)z′ 〉t = − ωIm
{[

δny cos
(
ky
ndAF

)]∗

× δnz cos
(
kz
ndAF

)}
sin θ. (30)

Let us now compare the results for the dc components of
jSMR
c,x ′ and jSP

c,x ′ in Eqs. (25) and (26) to the ferromagnetic case
[3]. We observe that the results are exactly the same when
n ↔ M̂ and Gr → 2Gr , where M̂ is the magnetization unit
vector in the ferromagnet and Gr is the real transverse spin
conductance in Ref. [3].

Experiments measuring the SMR in NiO|Pt heterostruc-
tures indicate that the SMR is negative for antiferromag-
nets [13–16]. Because the only key difference between the
antiferromagnetic case and the ferromagnetic case is that the
Néel order parameter, not the magnetization, causes the SMR,
the negative sign must be due to some property of the Néel
order parameter. This is in agreement with the reasoning in
Ref. [14], where the negative SMR is explained by the coupling
of the Néel order parameter to the magnetic field. They
typically couple perpendicularly to each other, whereas for
ferromagnets, the magnetization couples along the magnetic
field. The perpendicular coupling gives rise to a π/2 phase
shift relative to the ferromagnetic case and a negative sign in
the measured SMR.

If we consider the case in which the susceptibility of the
Néel order parameter is of the same order of magnitude as

the susceptibility of the magnetization in a ferromagnet, then
the SMR and SP voltages in an antiferromagnet should be
comparable to those in a ferromagnet. Equation (19) shows
that the susceptibility scales with the inverse of the resonance
frequency. The susceptibility of the Néel order parameter
therefore becomes comparable to that of the magnetization in
a ferromagnet when the system is driven close to the spin-flop
transition, where the resonance frequency is small [19].

Inserting our solutions of the frequency-dependent ampli-
tudes in Eqs. (19) and (21), the dc voltages as a function of
applied ac voltage frequency become approximately

V SMR
dc (ω) = sgn(ωH )K sin 2θ cos θ

(
I 0
c

A

)2

×
∞∑

N=0

∑
j=±

α′(N)

2(α0 + κα′(N))

jL
(N)
j (ω)∣∣ω(N)
j

∣∣ , (31a)

V SP
dc (ω) = −sgn(ωH )κK sin 2θ cos θ

(
I 0
c

A

)2

×
∞∑

N=0

∑
j=±

[
α′(N)

2(α0 + κα′(N))

]2 jL
(N)
j (ω)∣∣ω(N)
j

∣∣ , (31b)

where V SMR/SP
dc = lρ〈jSMR/SP

c,x (t)〉t and l is the length of the
bilayer in the direction of the applied voltage. We have also
introduced the symmetric Lorentzian

L
(N)
± (ω) =

(
�ω

(N)
±

/
2
)2(|ω| − ∣∣ω(N)

±
∣∣)2 + (

�ω
(N)
±

/
2
)2 (32)

and the constant

K = lκηθ3
SHe

(
λN

sd

)2

h̄dNσ 2
tanh2

[
dN

2λN
sd

]
. (33)

In our model, the SMR and SP voltages as functions of fre-
quency are described via symmetric Lorentzians. However, we
have not included the contributions from the Oersted field to the
dynamics. The charge current causes an oscillating magnetic
field that leads to an antisymmetric Lorentzian component [3].
One therefore needs to filter out the antisymmetric component
before comparing experimental data with our model. We did
not take the Oersted field in the free energy into account since
the susceptibility associated with this magnetic field is a factor
of ∼√

ω‖/ωE smaller than the susceptibility associated with
the spin accumulation [23]. Moreover, because the Oersted
field is approximately uniform in a sufficiently thin antiferro-
magnetic film, it can couple only to the N = 0 mode. The sym-
metric Lorentzian can therefore be expected to be the dominant
component of the signal for most antiferromagnetic materials
and should be the only component for the N 
= 0 modes.

Next, we will compute the dc voltages for a MnF2|Pt bilayer
using the parameters in Tables I and II. Direct measurements

TABLE I. Material parameters for MnF2.

ωE (s−1) [24] ω‖ (s−1) [24] L (A/m) [25]

9.3 × 1012 1.5 × 1011 47 862
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TABLE II. Material parameters for Pt.

θSH [26] λPt
sd (nm) [27] σ ([� m]−1) [28]

0.12 1.5 5 × 106

of some of the parameters are lacking. We therefore use these
missing material parameters from similar systems. We use the
Gilbert damping of NiO, α0 = 2.1 × 10−4 [29]. The transverse
conductance at AF|N interfaces has been predicted to be of
the same order of magnitude as the conductance at interfaces
consisting of ferromagnets or ferrimagnets and a normal
metal [18]. We therefore use a typical value of the transverse
conductance for ferromagnet-normal-metal systems, g⊥/A ∼
3 × 1018 m−2 (ferromagnet|Pt [30]). MnF2 has a tetragonal
crystal structure and therefore two lattice constants. The length
a of the antiferromagnetic unit cell is therefore not uniquely
defined for this material. The value of a used to evaluate
the exchange length λ [given by λ2 = a2ωE/(4ω‖)] will be
the length of the unit cell in the propagation direction of
the spin waves, i.e., the y direction in our geometry. In our
calculations, we use the average of the two lattice constants for
our characteristic length a. The two lattice constants for MnF2

are a1 = 4.88 Å and a2 = 3.32 Å [31], providing the average
value a = 4.10 Å. This value results in an estimated exchange
length of 1.6 nm. We note, however, that this value depends on
the orientation of the antiferromagnet. The exchange length
should therefore be estimated by measuring the separation
between the resonance peaks.

The results obtained using these parameters are presented
in Fig. 3, where we have used l = 100 μm, dN = 2λPt

sd, and
I 0
c /A = 1010 A/m2. For the angle θ between the applied

voltage and the easy axis of the antiferromagnetic material,
we use a value of θ = 35◦. Optimally, one would have the ac
voltage source along the easy axis direction and another pair of
electrodes for detecting the resulting dc voltage perpendicular
to the easy axis. However, realizing such an experimental
setup with two pairs of electrodes may be impractical. When
measuring the signal along the same direction as the applied
voltage source, as considered here, θ ≈ 35◦ is the most efficient
angle for simultaneously exciting and detecting the resonance.
The SMR and SP dc voltages always have opposite signs,
whereas their frequency dependence is exactly the same.
The partial cancellation leads to a smaller net signal. The
contributions from SMR and SP cannot be distinguished from
one another in this bilayer system. We also observe that the SP
voltage is always smaller than the SMR voltage. For a given
direction of the external magnetic field, here assuming that
ωH > 0, the signs of the dc signals depend solely on whether
the precessions are right handed (ωres > 0, + mode) or left
handed (ωres < 0, − mode). The dc voltages resulting from the
higher-energy modes are not particularly large for our choice
of parameters. This is primarily due to the high resonance
frequencies of these modes. The standing waves will be easier
to detect in materials with a gap frequency ω0 lower than that of
MnF2. Examples of antiferromagnets with a low gap frequency
are RbMnF3, which has a gap of ω0/2π = 9 GHz [32], and
GdFe3(BO3)4, which has a gap of ω0/2π = 29 GHz [33]. For
comparison, the gap frequency of MnF2 is ω0/2π = 267 GHz.

FIG. 3. Resonance spectrum for a MnF2 film of thickness dAF =
20 nm in an external magnetic field ωH = 0.97ω0 (|H0| = 9.24 T).
The dc voltages for the low-energy macrospin mode (0−) are shown
in (a), while some of the higher-energy left-handed N− modes are
shown in (b).

As an alternative to finding materials with lower resonance
frequencies, one can apply a stronger voltage to enhance the
signals because the measured dc voltages are quadratic in the
applied ac voltage.

In the next section, we will discuss a trilayer system that
allows separating the SMR and SP voltages. Separating these
voltages yields more information about the system, such as
the ratio between the intrinsic damping and the SP-enhanced
damping.

IV. SEPARATION OF SPIN-HALL-MAGNETORESISTANCE
AND SPIN-PUMPING VOLTAGES

A. N|AF|N system

We now extend and generalize our considerations to an
antiferromagnetic insulator sandwiched between two normal
metals, as illustrated in Fig. 4. We apply an ac voltage with a
constant amplitude to an active normal metal as in the previous
sections. Additionally, we use a passive normal metal to detect
the SP contributions from the antiferromagnet. Because the
passive normal metal does not exhibit any SMR dc voltage to
the leading order in the applied voltage source, we measure the
SMR and SP voltages independently.
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FIG. 4. An antiferromagnet sandwiched between two normal
metals. Magnetization dynamics in the antiferromagnet is induced by
applying an ac voltage with a constant amplitude on the normal metal
to the right, which leads to a spin current into the antiferromagnet. A
spin current is then pumped into the left normal metal, which induces
a charge current through the inverse spin Hall effect.

Taking advantage of the symmetry of our system, the spin
accumulation in the passive normal metal can readily be
obtained from Eq. (11). Because the only source for the spin
accumulation is SP from the antiferromagnet, we find the spin
accumulation to be

μNL
s (y,t) = h̄

1 + ξL
[n × ṅ]y=−dAF

(
cosh

[
dNL

/
λ

NL
sd

])−1

× cosh
[
(y + dNL + dAF)

/
λ

NL
sd

]
. (34)

Here, the index L implies that the value should be evaluated
using the properties of the passive normal metal NL and the
NL|AF interface. These parameters are defined analogously
to those of the bilayer system but will potentially take on
different values than the active normal metal NR and the
AF|NR interface. Consequently, the average charge current in
the passive normal metal along the x ′ direction becomes

jL
c,x ′ (t) = jL

c (t) · x̂′ = θL
SHh̄σL

2dNLe
ηL[(n × ṅ)z′ ]y=−dAF . (35)

If we, for simplicity, assume no decay of the spin current in
the antiferromagnet, then we can observe from Eq. (26) that

〈
jL
c,x ′ (t)

〉
t
= − θL

SHσLηLdNR

θR
SHσRηRdNL

〈
jSP
c,x ′ (t)

〉
t
. (36)

In other words, when the properties of both metallic layers
are known, we can indirectly measure the SMR dc voltage by
measuring the ratio of the dc voltage in the passive normal
metal NL relative to the dc voltage in the active normal metal
NR. This indirect measurement of the SMR voltage assumes
that the decay of the pumped spin current is insignificant. We
will now determine in what region this approximation holds.

B. Spin-current decay

The nonzero spin current across the left AF interface implies
that the boundary conditions at y = −dAF must be extended to
include SP and STTs:

dAFα
′
L

{
n × ṅ + 1

h̄

[
n × (

n × μNL
s

)]}
y=−dAF

− ω‖[λ2n × ∂yn]y=−dAF = 0. (37)

The boundary conditions at y = 0 remain unchanged and are
given by Eq. (14). As a result of the new boundary conditions
at y = −dAF, the solutions for the phases φ

y,z
m,n in our linear

response ansatz in Eq. (7) are no longer zero as they were in
the bilayer system. The phases will now have a finite correction
in α′. We can rewrite our boundary conditions at y = 0, − dAF

as the following constraints on the wave numbers and phases:

ky,z
n dAF tan φy,z

n = −i
d2

AFω

λ2ω‖
α′

LκL, (38a)

kz
ndAF tan

(
kz
ndAF + φz

n

) = i
d2

AFω

λ2ω‖
α′

RκR. (38b)

We can decouple the above equations to obtain constraints that
are dependent on only the wave number kz

n,

tan
(
kz
ndAF

)[
kz
ndAF + 1

kz
ndAF

(
d2

AFω

λ2ω‖

)2

α′
Lα′

RκLκR

]

≈ kz
ndAF tan

(
kz
ndAF

) = 2i
d2

AFω

λ2ω‖
α′κ, (39)

where we have introduced α′κ = (α′
LκL + α′

RκR)/2. This con-
straint is similar to the constraint for the AF|N bilayer in
Eq. (15) to the lowest order in α′, except that α′κ → 2α′κ .
The enhanced damping due to SP is because we now pump
spins across two interfaces rather than across one interface.
The last constraint on k

y
n is equivalent to Eq. (17), where we

now also have to take the nonzero phase φ
y
n into account; thus,

the boundary condition becomes

dAF cos θα′
RκR

∣∣μR
s0

∣∣/h̄ = δny

[
λ2ky

nω‖ sin
(
ky
ndAF + φy

n

)
− idAFα

′
RκRω cos

(
ky
ndAF + φy

n

)]
.

(40)

The decay of the spin current in the antiferromagnetic
insulator is related to the imaginary components of dAFk

y,z
n .

At resonance and to the lowest order in α′ and α0, we find
these to be

∣∣Im(
dAFk

z
n,N=0

)∣∣ =
√

d2
AFα

′κω

λ2ω‖
, (41a)

∣∣Im(
dAFk

y

n,N=0

)∣∣ =
√

d2
AF(α′κ + α0)ω

λ2ω‖
(41b)

for the macrospin mode and

∣∣Im(
dAFk

z
n,N>0

)∣∣ = 2d2
AFα

′κω

λ2Nπω‖
, (42a)

∣∣Im(
dAFk

y

n,N>0

)∣∣ = d2
AF

(
2α′κ + α0

)
ω

λ2Nπω‖
(42b)

for the standing-wave modes, respectively.
Let us now study how the imaginary components in

Eqs. (41) and (42) scale with dAF and the resonance frequency
ω. Since the SP-induced damping α′ ∝ 1/dAF, Im(dAFk

z
n,N )

scales as ∝ (dAFω)ζ , where ζ = 1/2 for the macrospin mode
and ζ = 1 for the standing waves (N > 0). In the limit where
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FIG. 5. Ratio of the spin pumping at the passive AF|N interface
relative to the spin pumping at the active AF|N interface as a function
of dAF for three of the low-energy left-handed N− modes at ωH =
0.97ω0 (|H0| = 9.24 T).

α0 � α′, when the bulk damping is small compared to the
interface damping, Im(dAFk

y

n,N ) scales as Im(dAFk
z
n,N ). How-

ever, when α0 becomes large compared to α′, the bulk damping
dominates, and Im(dAFk

y

n,N ) scales as ∝(d2
AFω)

ζ
. We can then

observe, as expected, that the spin current decays faster as
a function of dAF for thicker films where the bulk damping
dominates. Based on these scaling relations, we observe that
we can minimize the decay of the spin current, thereby keeping
the magnitude of the SP at the two interfaces similar to each
other, by (i) keeping the antiferromagnetic layer sufficiently
thin and (ii) reducing the resonance frequency by driving the
system close to the spin-flop transition.

Assuming that the SP is dominated by the dynamics of n,
which is a good assumption for most collinear antiferromag-
nets, the transmission of the pumped spin current through the
antiferromagnetic layer can be defined as

T
(N)

SP =
∣∣∣∣ 〈(n × ṅ)y=−dAF

〉t
〈(n × ṅ)y=0〉t

∣∣∣∣. (43)

This describes the ratio of the SP at the passive interface
relative to the active interface where we excite the dynamics
by injecting a spin current. When this ratio is close to unity,
it is a good assumption that we are in the low-decay regime,
and the pumped spin current across the two interfaces will be
approximately the same. In the low-decay regime, the SMR and
SP dc voltages can be separated by measuring the dc voltage
in both normal metals independently.

We plot the transmission of the pumped spin current as a
function of dAF in Fig. 5 for the three lowest energy modes.
We use the same values for the system parameters as for the
bilayer system in Sec. III B, and for simplicity, we let the
properties of both metallic layers be identical. As shown, the
pumped spin current of the modes with the lowest energy
exhibits the fastest decay with increasing thickness of the
antiferromagnetic layer. This result is as expected from the
scaling behaviors in Eqs. (41) and (42), as d2

AFωα′κ/(λ2ω‖) is
a small dimensionless number for the choice of parameters that
we have previously considered. If d2

AFωα′κ/(λ2ω‖) is of order
unity or larger, then we are in the large-damping limit, and we

can therefore expect the decay of the spin-wave amplitudes
to become significant. We also observe that the N > 0 modes
decay in both the thin-film limit (dAF ∼ λ) and in the thick-film
limit (dAF � λ), in contrast to the behavior of the macrospin
mode. This result is due to the high resonance frequencies
of the standing waves when the thickness of the AF layer
approaches the exchange length, as one can see from Eq. (18).
As the standing waves (N > 0 modes) decay considerably due
to a high resonance frequency in the thin-film limit and due to
the long transport distances in the thick-film limit, there will
be a finite optimal-transmission thickness for these modes, as
indicated by the transmission peaks in Fig. 5. For the macrospin
mode, T

(N)
SP ≈ 1 is a good approximation when the thickness

of the antiferromagnetic layer is comparable to the exchange
length. For the standing-wave modes there is always a notable
decay for our choice of parameters. However, a transmission
close to 90% is possible for thin AFs if the resonance frequency
is relatively low.

To study the cause of the decay of the spin current, we
compare the different contributions to the damping. For our
choice of parameters, we have that α′ = α0 at dAF = 440
nm. As shown in Fig. 5, there is a significant decay of the
spin current well below this thickness. This means that for
our choice of parameters, the observed decay of the spin
current is not primarily due to the intrinsic Gilbert damping
in the bulk of the antiferromagnet. The noteworthy decay
observed for relatively thin films is a consequence of the short
exchange length of MnF2. The spin waves are rather soft in this
material. For stiffer materials with longer exchange lengths,
i.e., materials with a larger exchange to anisotropy ratio, it
is expected that the decay lengths will also be longer. The
disadvantage of having long exchange lengths, however, is
that this will also increase the resonance frequencies of the
standing-wave modes, thereby making their detection more
challenging. This is not the case for the macrospin mode, where
the exchange length affects only the decay length of the spin
waves.

Based on our results, one can observe thatT (N)
SP ≈ 1 is a good

approximation when Im(dAFk
y,z
n ) � 1. We can then utilize

the analytical expressions for these imaginary components in
Eqs. (41) and (42) to evaluate whether we are in a low-decay
regime, where the SMR and SP dc voltages can be separated.

V. CONCLUSIONS

We have studied STT-induced antiferromagnetic resonance
in bilayers that consist of an antiferromagnetic insulator and
a normal metal and in a metal-antiferromagnetic-insulator-
metal trilayer. We considered excitations of the uniform mode
and of the transverse standing waves. The dc voltages have
contributions from the SMR and SP, similar to ferromagnetic
systems. In the antiferromagnetic system, the dynamics of the
Néel order parameter causes these effects. A challenge in an
antiferromagnetic system is the weak signals due to the low
susceptibility of the Néel order parameter. We demonstrate
how the signals are enhanced by driving the system close to the
spin-flop transition, where the resonance frequency is lower.
In trilayer systems, the contributions due to SP and SMR can
be separated when the antiferromagnetic layer is thin.
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Note added. Recently, an independent study of spin-transfer
antiferromagnetic resonance was reported [23]. Reference [23]
computes the spin accumulation and frequency dependence
of the conductivity in the normal metal for the macrospin
mode. A main point and difference in our work is that
we consider a magnetic field that importantly reduces the
frequency and enhances the output signal. This facilitates
experimental detection in an experimentally feasible frequency
range. Additionally, we study the excitation of standing spin

waves and a trilayer system that can be utilized to separate the
output signals resulting from SP and SMR.
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