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We consider the Abelian-Higgs model in 2 + 1 dimensions with instanton-monopole defects. This model is
closely related to the phases of quantum antiferromagnets. In the presence of Z2 preserving monopole operators,
there are two confining ground states in the monopole phase, corresponding to the valence bond solid (VBS)
phase of quantum magnets. We show that the domain wall carries a ’t Hooft anomaly in this case. The anomaly
can be saturated by, e.g., charge-conjugation breaking on the wall or by the domain wall theory becoming gapless
(a gapless model that saturates the anomaly is SU (2)1 WZW). Either way the fundamental scalar particles (i.e.,
spinons) which are confined in the bulk are deconfined on the domain wall. This Z2 phase can be realized
either with spin-1/2 on a rectangular lattice or spin-1 on a square lattice. In both cases the domain wall contains
spin-1/2 particles (which are absent in the bulk). We discuss the possible relation to recent lattice simulations of
domain walls in VBS. We further generalize the discussion to Abrikosov-Nielsen-Olsen (ANO) vortices in a dual
superconductor of the Abelian-Higgs model in 3 + 1 dimensions and to the easy-plane limit of antiferromagnets.
In the latter case the wall can undergo a variant of the BKT transition (consistent with the anomalies) while
the bulk is still gapped. The same is true for the easy-axis limit of antiferromagnets. We also touch upon some
analogies to Yang-Mills theory.

DOI: 10.1103/PhysRevB.97.054418

I. INTRODUCTION

’t Hooft anomaly matching [1] is a powerful method which
imposes strong constrains on the infrared (IR) physics. The
method relies on the observation that certain global symmetries
resist promotion to gauge symmetries. In other words, a gauge
formulation of the theory is not possible without an introduc-
tion of a nonlocal counterterm depending on the background
gauge fields which cancels the gauge noninvariance of the
original path integral. The gauge variation of the counterterm,
being a c number, can be performed at all energy scales, and,
in particular, at low energies. Therefore, the effective theory
at all scales has to reproduce the same transformations under
gauge variations of the background gauge fields.1

The traditional ’t Hooft anomalies involve continuous
symmetries and continuous anomalies. However, recently it
became clear that ’t Hooft anomalies are much more generic
and may include discrete symmetries as well. For some recent
work, see, for example, Refs. [2–9] and references therein (see
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1A point which we do not discuss in detail but will be implicit

throughout is that some of the symmetries that have ’t Hooft anomalies
typically appear as discrete spatial symmetries in the underlying spin
system on the lattice (see, e.g., Ref. [29]). This is not surprising, since
if the symmetries were manifest, on-site, symmetries, we could gauge
them as usual by adding gauge fields on the links.

also [10,11] for a related discussion in the context of condensed
matter physics). Such ’t Hooft anomalies transcend theories
with fermions and are not restricted to even dimensions.

Loosely speaking, continuous ’t Hooft anomalies are
matched with either Nambu-Goldstone bosons or with (pos-
sibly free) conformal field theories containing fermions [12].
Likewise, discrete ’t Hooft anomalies can be matched by either
breaking some symmetry (which leads to multiple degenerate
ground states) or by having a nontrivial low-energy theory
in a symmetric vacuum. In condensed matter the anomaly is
perhaps best known as being responsible for the edge modes
of the 2 + 1D U (1) Chern-Simons (CS) theory, where gauge
invariance of the CS Lagrangian requires the existence of chiral
edge modes to cancel the anomaly inflow [13,14] from the bulk.

On the other hand when ordinary discrete (i.e., 0-form2)
symmetries are spontaneously broken, the system supports
domain-wall excitations. These are topologically stable co-
dimension 1 objects which interpolate between the differ-
ent vacua. It was recently shown that several semiclassical
regimes (in Yang-Mills theories and antiferromagnets) with
spontaneously broken discrete symmetries support excitations
which are confined in the bulk, and hence absent from the bulk
spectrum [15,16], a behavior conjectured a long time ago to
hold in N = 1 super Yang-Mills theory [17]. This deconfine-
ment on the wall was also argued and verified numerically
in the nonsemiclassical regime of spin-1/2 antiferromagnets

2See Ref. [3] for a discussion of p-form symmetries.
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[16], giving evidence that the phenomenon is robust. Since the
domain wall can be thought of as the boundary separating two
bulk states, the situation is reminiscent of the existence of edge
modes in topological insulators [18]. This is not an accident,
and the existence of ’t Hooft anomalies in the global (discrete
and continuous) symmetries of the relevant systems is crucial
for the appearance of the domain-wall modes, otherwise absent
in the bulk.

This mechanism is briefly described as follows. The domain
walls are the analogs of Nambu-Goldstone bosons for discrete
symmetries. On a compact manifold such a domain wall can
be thought of as arising because the boundary conditions along
one of the directions of space are twisted by a symmetry
transformation or, equivalently, by turning on the background
gauge fields for the discrete symmetry. The natural question
which then arises is what is the theory on the domain wall and
what are its properties. Oftentimes, the original anomaly in the
bulk forces the domain wall to be nontrivial in order for the
anomaly to be matched. This is therefore a discrete version of
the anomaly inflow mechanism.

While we mostly focus on the study of the Abelian Higgs
model in 2 + 1 dimensions with monopole operators added
to the Lagrangian, we also give an overview of similar phe-
nomenon in the 3 + 1D Yang-Mills theories in the Appendix
as an analogy. The bulk of the work is dedicated to the
so-called valence bond solid (VBS) phase of 2 + 1D antifer-
romagnets, which is descried by the Abelian-Higgs model3

[27] in the regime where the charged particles are confined
by the Polyakov mechanism. If only even monopoles are
present, there are two ground states. There exists, therefore, a
domain wall interpolating between these vacua. Due to ’t Hooft
anomalies in the bulk, the domain wall theory also carries ’t
Hooft anomalies. For example, in the most familiar case with
two charged particles with a CP1 Néel phase, the domain wall
in the VBS phase carries a πi

∫
w3(O(3)) anomaly, where w3

is the third Stiefel-Whitney class. We find that the domain
wall itself has two ground states, which saturate the above
anomaly. The charged particles, which are confined in the bulk,
fractionalize and become deconfined on the wall and can be
viewed as a domain wall within a domain wall. We further
suggest that the domain wall may become critical away from
the semiclassical regime (while the bulk is still gapped) and
argue that the anomaly can be matched by the SU (2)1 WZW
model. This conjecture is consistent with the recent Monte
Carlo simulations [16], where the domain wall theory of the
Z2 VBS appears to be critical and consistent with the spin-1/2
chain, which is in the same universality as SU (2)1 WZW
model.

We similarly analyze the easy-plane and easy-axis modi-
fications of the model, showing that again the domain wall
may undergo an interesting phase transition while the bulk is
still gapped. For the easy-plane model, in the semiclassical
regime the wall has two ground states and deconfined spinons.
The domain wall may become massless as we move into the
strongly coupled regime undergoing an interesting modifica-
tion of the BKT transition. In the easy-axis case, the domain
wall exists when the bulk is really in the Néel phase, and

3See also Refs. [19–26] for related works.

the domain wall is massless already semiclassically. It may
become massive in the quantum regime, again undergoing a
modified BKT-like transition. We also discuss some analogies
between the physics of these antiferromagnets, Yang-Mills
theory, and the dynamics of ANO strings in 3 + 1 dimensions.

II. THE 2 + 1D ABELIAN-HIGGS MODEL

A. Preliminaries

The Lagrangian of this model is given by

L = − 1

4e2
|da|2 +

∑
i

|Daφi |2

+ m2
∑

i

|φi |2 + λ

(∑
i

|φi |2
)2

. (1)

The symmetries of this model are

C � (PSU (Nf ) × U (1)T ). (2)

C stands for charge conjugation, PSU (Nf ) is the group that ro-
tates the fieldsφi (which we call spinons), and theU (1)T , where
T stands for topological, reflects the topologically conserved
current j = �Fa which is conserved by the Bianchi identity
in the theory without monopoles added to the Lagrangian.
The conserved charge of U (1)T is the topological charge Q =∫

2 da/2π or the skyrmion number. Note that the flavor group
is PSU (Nf ) = SU (Nf )/ZNf

and not SU (Nf ) because the
center elements of SU (Nf ) are U (1) gauge transformations.

Motivated by observations made in Ref. [16], we will
be interested in the model (1) where only Z2 ⊂ U (1)T is a
symmetry. From the point of view of (1) this means that we
imagine adding monopole operators with even charges under
U (1)T . The symmetry group now is therefore

(C � PSU (Nf )) × Z2. (3)

Z2 now appears in a direct product because it commutes with
charge conjugation.

The model with even monopoles, and with the symmetry
group (3), has a ’t Hooft anomaly. Below we review the
argument [7] that the above symmetry cannot be gauged in a
consistent manner; one is forced to add nonlocal counterterms
to restore gauge invariance.

Let us first introduce some notation. We will think about
PSU (Nf ) gauge fields as follows. One element will be the
standard gauge fields of SU (Nf ) which we denote as a′, while
the other element will be a two-formZNf

-valued gauge field B

associated with the gauging of the center symmetry of SU (Nf )
to obtain PSU (Nf ) (see, e.g., Refs. [3,28] for further details
about this approach to PSU gauge fields). We normalize the

field B as ei
∮

B = e
i 2πk

Nf , k ∈ Z, where the integral is over an
arbitrary two-cycle. Note that the holonomies eip

∮
B are well

defined only if p ∈ Z and where p and p + Nf are equivalent.
This is because B is a gauge field, so that shifts B → B + dλ

where λ can be thought of as a properly normalized U (1) gauge
field, are gauge transformations, which then induce

∮
2 B →∮

2 B + 2πk,k ∈ Z.
Finally, the integral over B with a boundary is only well

defined if there is an object on the boundary which can cancel
the gauge transformation of B. For example if we integrate B
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over a disk D we get that the gauge variation of
∫
D

B is
∫
∂D

λ.
The object which cancels this term is the fundamental Wilson
loop of the SU (Nf ) gauge fields a′ (see, e.g., Ref. [3]). So if an
integral over the B field appears, it means that at the boundary
of the integration domain we have SU (Nf ) charges which are
not PSU (Nf ) charges. In other words, at the boundary we
have a projective representation of PSU (Nf ). In addition we
will further denote the Z2-valued one-form gauge field by A

and normalized such that ei
∮

A = ±1, and similarly for the
charge-conjugation C symmetry we introduce the one-form
gauge field C.

B. Semiclassical analysis of the VBS phase

Let us now consider a VBS (Polyakov) phase of (1) with
m � e2, i.e., in the semiclassical limit. Such a theory is a pure
gauge theory described approximately by the first term of (1).
However, we assume in addition that there are even monopole
operators in the system, coming from the UV theory. We denote
the space-time density of these monopoles by ρm (without loss
of generality, we choose ρm to be positive). This theory can be
dualized to a single compact scalar:

Leff = e2

2(2π )2
(∂iϕ)2 − ρm cos(2ϕ), (4)

where ϕ ∼ ϕ + 2π is a compact scalar—the dual photon—and
where we assumed that the charge of the monopoles in the
Lagrangian is ±2, preserving the Z2 ⊂ UT (1).4 (We could add
also higher monopoles with even charge. We will make some
comments about this scenario below.) The above description
is valid as long as ρm/e6 � 1, i.e., that the typical separation
between monopoles is much smaller than the length scale at
which ϕ develops a long-range order. In that case the monopole
contribution pins the ϕ dual photon down at either ϕ = 0,π

mod 2π , yielding two distinct vacua. The symmetries C and
Z2 topological therefore act as

Z2 : ϕ → ϕ + π , C : ϕ → −ϕ . (5)

The low-energy field ϕ does not transform under the SO(3)
symmetry of the spinons (we focus here of Nf = 2). The two
vacua at ϕ = 0,π mod 2π preserve charge conjugation but
break the Z2 spontaneously. We will see that in spite of the
fact that the SO(3) quantum numbers are not visible in (4),
by studying domain walls one rediscovers the SO(3) quantum
numbers.

Indeed, since the Z2 symmetry is spontaneously broken,
the effective theory allows for domain walls between the
two vacua. In fact, in the semiclassical regime where (4) is
valid, there are two distinct ground states for the domain wall,

4In quantum antiferromagnets the discrete topological symmetry is
identified with some subgroup of the discrete lattice symmetries. See,
e.g., Ref. [29]. In order to realize our model on the lattice in spin-1/2
systems, all one needs to do is to consider rectangular lattices, where
90 degree rotations are not a symmetry. Many of the statements below
can be understood also on the lattice. Alternatively we also argue that
the VBS phase of the spin-one system has similar features, as we
discuss below. We thank C. Wang for a discussion on this.

FIG. 1. The schematic depiction of domain walls in Z2 broken
VBS. The domain walls restore the topological symmetry but break
charge conjugation because they carry electric flux (depicted by the
arrows). The domain walls inside the domain walls are elementary
excitations of spinons which do not exist in the bulk as they are
confined. In (a) a single spinon on the domain wall is depicted, as
well as terms which enter (6). In (b) a pair created from the vacuum
of the domain wall is shown, changing the vacuum in between them
by the charge conjugation (i.e., changing the flux on the domain wall).

denoted by DW±, which are related by the C symmetry,5 so
that the wall spontaneously breaks the C symmetry but restores
the Z2-topological symmetry.6

We could also consider more general potentials, involving
a sum over even frequencies V = −∑

k ρk
m cos(2kϕ). Such

potentials, unless they are fine tuned, have either two or four
ground states. The case of two ground states always breaks Z2

and preserves C. The case of four ground states breaks both
C and Z2. It has different domain walls about which we will
make a few comments below. For the time, we will discuss the
scenario with two ground states, where Z2 is broken and C is
preserved. As we mentioned, semiclassically, it is obvious that
DW± are degenerate and hence C is broken on the wall even
though it is unbroken in the bulk.

Let us study the semiclassical properties of DW± a little
further. The domain wall has tension given by 2e

√
ρm. A

domain wall inside the domain wall is an elementary scalar
excitation carrying charge under the U (1) gauge field, depicted
in Fig. 1(a). Such an object has a bare energy E = m, where
m is the mass of the scalar excitation. However it locally
distorts the electric field lines Ei ∝ ε0ij ∂jϕ. Approximately the
presence of the φ excitation on the domain wall has an energy
difference from the ground state (i.e., an effective mass) given
by

mDW
eff = m − e2

2π2
+ e2

4π
log

(
ξ

me

4π
√

ρm

)
, (6)

5These differ by whether ϕ = 0 mod 2π winds to ϕ = π mod 2π

with a positive or negative gradient as the wall is crossed.
6cos(ϕ) is an order parameter forZ2 and sin(ϕ) is an order parameter

for C symmetry. As the field profile interpolates from ϕ = 0 to ϕ = π ,
it is clear that off the wallZ2 × C → C and on the wallZ2 × C → Z2,
i.e., either one or the other is broken, consistent with anomaly.
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C

FIG. 2. A lattice depiction of Z2 VBS domain walls which break
the C symmetry.

where the second and third term are Ec and Evac depicted in
the shaded region of Fig. 1 and ξ is a number of order unity. We
have not indicated here, but the coupling e and the monopole
density ρm are expected to change with the mass m, which
provides the UV cutoff of the effective theory. In the large m

limit the mass of the φ excitation is clearly positive. However as
m is decreased the effective mass on the domain wall decreases.
Two scenarios are possible:

(i) As m is lowered, the effective mass meff of φ on the
domain wall does not vanish before the bulk theory undergoes
a transition.

(ii) The effective mass of φ on the domain wall goes to zero
while the bulk is still gapped.

If the first scenario is realized, the theory on the wall is
always gapped and breaks theC symmetry and, hence, supports
stable domain walls—deconfined φ excitations—which carry
SU (2) quantum numbers and are not present in the bulk. Below
we will see that these domain walls within domain walls indeed
carry the SU (2) quantum numbers despite the fact that the
global symmetry of the model is SO(3).

If the second scenario is realized, the φ excitations eventu-
ally condense on the wall (this cannot happen in the semiclas-
sical limit) and restore the C symmetry. However as we shall
see the domain wall does not reduce to a trivial theory, as this
would be inconsistent with the anomaly, but instead carries
massless SU (2) excitations. This can almost be seen from the
semiclassical picture, as the excitations which condense on the
wall to restore the C symmetry carry SU (2) quantum numbers.

C. The lattice description

Another way to get to the same conclusions is to think of
the lattice description of the Z2 VBS ground state. In fact
there are two realizations of the setup we discuss in this paper.
One concerns spin-1/2 antiferromagnet on the rectangular
lattice, where the simplest picture of the VBS is in terms of
spin singlets forming on nearest-neighbor links, and arranging
themselves into horizontal formation. The domain walls are
shown in Fig. 2, and they support deconfined spinons, as
discussed in Ref. [16].7 Little thought reveals that the domain
walls break up/down translational symmetry modulo two,
which is to be identified with C symmetry, and the spinon

7We would also like to thank C. Wang for discussions of this
interpretation.

FIG. 3. A lattice depiction of a spin-one system. (a) The product
state: circles label spin-one states on sites, labeled by two fundamental
indices. (b) The formation of the valence bond between two sites is
a contraction of one of the fundamental indices on each site. (c) A
formation of a long valence bond with fundamental indices at the end.

(depicted in red) acts as a domain wall inside the domain
wall interpolating between the two C vacua. Alternatively the
spinons can condense on the wall, breaking the singlet dimers
and restoring the C symmetry. In this case, as we shall see, the
theory must be gapless and consistent with the SU (2)1 WZW
theory.

Another scenario concerns a spin-one antiferromagnet on
a square lattice. Remarkably the effective low energy theory
still allows for emergent spinons carrying spin-1/2. To see this
consider a product state of spin-one triplet, as in Fig. 3(a). Two
sites were labeled with two symmetrized fundamental indices
(i,j ) and (l,k), respectively. Now if we set l = j and sum over
it, we end up with two indices i and k living on two separate
lattice sites. The contraction of indices between the sites we
labeled with a red line in Fig. 3(b). If we repeat the procedure,
we can obtain a state with spatially well separated indices (i,j )
connected by a red line—often called an AKLT chain [30,31]—
as in Fig. 3(c) as in Fig. 3(c). Note that while such a state is
still in the SO(3) representation, in agreement with the global
symmetries of the model, its group theory indices are spatially
separated, giving rise to two emergent spin-1/2 particles at
each end.

Nevertheless such a state is typically unfavored, both in the
Néel phase, which is depicted in Fig. 3(c), where it would
disintegrate easily into the vacuum by disintegrating the red
bonds between the sites i and j , reducing to the product state
of spin-one particles, while in the VBS phase,8 depicted in
Figs. 4(a) and 4(b) such objects are typically confined, and
do not exist as a part of the spectrum. Remarkably however,
the domain wall between the two vacua of the VBS phase
[depicted in Figs. 4(a) and 4(b)] hosts deconfined spin-1/2

8We assume here that there is a Hamiltonian which realizes such
states as ground states. A model which realizes a ground state with
these properties should be possible to construct by adding “Q terms”
like in the famous J-Q model used in many numerical simulations
(see Ref. [32] for a review).
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FIG. 4. (a),(b) Two vacua of the spin-one VBS phase. (c) A
domain wall hosts free spin-1/2 particles (labeled by a blue circle),
which are confined in the bulk.

excitations. This is depicted in Fig. 4(c). We will now see how
these scenarios are consistent with and further constrained by
the ’t Hooft anomalies in the problem.

D. The ’t Hooft anomalies

We will now discuss the ’t Hooft anomalies in this system
and how they affect the domain wall physics (for a general
discussion and derivation of the relevant ’t Hooft anomalies
see [7]). We will consider the theory on a Euclidean three-torus
with radii much larger than the inverse mass gap of the theory
and label the directions as x,y, and t . Consider coupling the
topological current j = �da to the one-form gauge field we
call A. Further since we assume onlyZ2 ⊂ U (1)T is intact, this
gauge field is a Z2 gauge field, so that

∫
γ

A = 0,π mod 2π ,
where γ is a nontrivial cycle. The coupling of A to the current

FIG. 5. A depiction of the space time of the quantum magnet. By
setting the Z2-topological gauge field A to a constant along the x

direction, the VBS domain wall is induced.

FIG. 6. A representation of the domain-wall surface on a torus
(a) and the two possible scenarios consistent with the ’t Hooft
anomaly inflow when the charge-conjugation gauge field is turned
on along the cycle γx . This can be thought of as implementing a C

transformation along the disk � on which an integral
∫

�
B is not

gauge invariant and requires a particle world line in the fundamental
SU (Nf ) representation wrapping along the minor cycle of the torus
to cancel the gauge variation.

�da is given by a term

i

2π

∫
A ∧ Fa (7)

in the action, where Fa = da is the curvature two-form. Since
we define the VBS as the phase where Z2 topological is
spontaneously broken, setting A to a constant along, say the
compact y direction, so that

∮
γy

A = π induces a domain wall
interpolating between the two Z2 vacua (see Fig. 5). But then
the term above becomes

i

2

∫


Fa (8)

over the two-cycle  complementary to γy .  can be visualized
as the surface of a torus, like in Fig. 6(a). Since the flux of Fa

along any cycle can only be an integer multiple of 2π , the
charge conjugation symmetry remains a symmetry. However
if we promote the U (1) gauge connection to an U (Nf ) gauge
connection ã, we must promote of Fa → 1

Nf
Tr Fã , and its

integral is no longer quantized in multiples of 2π , but is now
quantized in units of 2π

Nf
, which destroys the charge conjugation

symmetry if Nf > 19. In fact we can see that as we perform the
C transformation the relevant term shifts as (modulo an integer

9If Nf = 1 there is no anomaly. However there should still be an
Ising transition between the C-broken phase and trivially gapped
phase on the domain wall, discussed in Ref. [7] (see also the discussion
at the end of this section).
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times 2π )

i

2

∫


1

Nf

tr Fã → i

2

∫


1

Nf

tr Fã + i

∫


B, (9)

where B is a two-form ZNf
gauge field so that its integral is

given by10
∫

B = 2πk
Nf

mod 2π,k ∈ Z. For Nf = 2 we can
identify B = πw2(SO(3)), where w2 is the second Stiefel-
Whitney class of the SO(3) bundle. Note that the integral of
the B-field is only well defined up to an overall 2π integer
multiple.

To restore charge conjugation symmetry we may try to add
a local term in the the action p

∫
γ

B, where p is an integer. The
transformation will then be (see Ref. [7] for more details)

i

2

∫


1

Nf

tr Fã + ip

∫


B → i

2

∫


1

Nf

tr Fã + i(1 − p)
∫



B.

(10)

If 1 − p = p mod Nf then the theory has recovered its C
invariance. However this cannot be achieved with integer p for
even Nf (for odd Nf a more lengthy argument is needed, with
the same conclusion. See Ref. [7].). The arguments above show
that the domain wall theory has a mixed charge-conjugation
PSU (Nf ) anomaly.11 For the case of Nf = 2 one can describe
this anomaly by [7]

πi

∫
3
w3(O(3)), (11)

i.e., the third Stiefel-Whitney class of O(3) = C × SO(3),
integrated over some auxiliary three-dimensional space that
ends on our domain wall (see Fig. 6). In other words the domain
wall has an anomaly between SO(3) symmetry and charge
conjugation and as a consequence cannot be trivial. One can
think about the term (11) as an integral of the product between
the second Stiefel-Whitney class w2(SO(3)) and the charge
conjugation gauge field.

To see this, consider introducing the bulk term12

i

2

∫
�

dB , (12)

such that the boundary of � is —the world sheet of the
domain wall as in Fig. 6. Let us now gauge the C symmetry
by introducing a one-form Z2 gauge field C with ei

∮
C = ±1.

When e
i
∮
γ

C = −1 all the fields transforming under C must
experience a jump as γ is traversed. If we now pick a cycle

10The gauge fields of U (Nf ) should be separated into the dynamical
part U (1) and the nondynamical part PSU (Nf ), which can be thought
of as SU (Nf ) with its center symmetry ZNf

gauged away by a two-
form gauge field B.

11The theory also has a Z2 × PSU (Nf ) mixed anomaly, indicating
that the ground state must necessarily be nontrivial. One can see
this from noticing that promoting Fa → tr Fã/Nf in (7) destroys the
gauge invariance of Z2 gauge field A.

12Note that while dB = 0 on the surface of the domain wall, this
is not necessarily the case in the auxiliary dimension. This is akin to
considering a flat, but nontrivial, U (1) connection on a circle extended
to a disk which indicates the presence of a magnetic field somewhere
in the bulk.

traversing the x-direction γx and select C such that e
i
∮
γx

C =
−1, the above term becomes

i

∫
�

B, (13)

where � is a surface in the bulk of � which ends on the domain
wall .

However, as we commented early on, this integral is not
well defined unless there is an object on the boundary which
cancels the gauge variation of B → B + dλ. A natural object
which accomplishes this is an SU (Nf ) fundamental Wilson
loop. Hence we must have a fundamental Wilson loop—a
particle world line carrying SU (Nf ) quantum numbers—
winding somewhere on the surface  [see Figs. 6(b) and 6(c)],
which we can think of as the surface of the domain wall.

These facts are rather manifest in the semiclassical de-
scription, as we explained above. However we see here that
the anomaly is a powerful tool that allows us to make some
statements also away from the semiclassical limit.

(i) If the charge conjugation is spontaneously broken on
the domain wall , the constant C field along γx will induce a
domain wall (inside the original domain wall) somewhere on 

[see Fig. 6(b)]. The anomaly then tells us that this domain wall
must support a particle world line in the SU (Nf ) fundamental
representation. So a massive particle excitation carrying quan-
tum numbers of the fundamental SU (Nf ) representation inside
the domain wall exists, and they are identified as domain walls
of the C-broken domain wall theory. This is true whether or
not we are in the semiclassical limit.

(ii) If charge conjugation on the domain wall is not spon-
taneously broken (for example, it could be restored away from
the semiclassical limit), the C field will not change the vacuum
as γx is traversed. However the anomaly matching insists that
there is a particle wrapping around γ in order to compensate
the gauge variation of B. Hence we must be in a phase where
there are massless SU (Nf ) excitations.

Another possibility which can in principle be realized is
that the domain wall theory restores all the symmetries but
has a nontrivial TQFT, e.g., see the analysis along the lines of
Ref. [33]. We will assume that this does not happen.

In all of the cases above, however, the anomaly guaran-
tees that on the domain wall excitations exist which carry
fundamental SU (Nf ) quantum numbers, which do not exist
in the bulk (as they are confined and the local operators sit
in PSU (Nf ) representations). Hence we conclude that the
domain-wall theory is always deconfining.

When C symmetry is restored, the domain wall can become
gapless. A natural candidate for the theory on the domain wall
in this case is the SU (2)1 Wess-Zumino-Witten model in 1 +
1D. This particular conformal field theory matches the required
mixed anomaly because it is also the universality class of the
O(3) model at θ = π , which has the same anomaly (11). This
nicely fits with the numerical measurements in the J-Q model
[16] and the fact that in the lattice construction of the Z2 VBS
phase the domain wall closely resembles the spin-1/2 chain
which was also suggested in Ref. [16].

We note that it is also possible that both C and Z2 are
spontaneously broken. This can be achieved, for instance, if
we add to (4) a term like cos(4ϕ) with a sufficiently large
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coefficient. In that case there are four vacua and two distinct,
trivial domain walls. This is also consistent with the anomaly
inflow arguments.

We briefly comment on the case of Z4 VBS, where four-
monopole events are allowed. The symmetry is spontaneously
broken in the VBS phase, and, hence, has stable domain walls.
Semiclassically the theory is described by a scalar field and
potential of the form − cos(4ϕ). The domain walls which
interpolate between ϕ : 2πk/4 → 2π (k + 1)/4 do not host
deconfined spinons. There is no anomaly inflow on these walls
and the domain wall is expected to be trivial.

On the other hand, the intersection of four domain walls
that are related cyclically by the Z4 topological symmetry is
nontrivial. The intersection hosts a spinon [34]. Interestingly
this is guaranteed by anomaly inflow. To see this, let us impose
a vortex in the Z4 gauge field A for U (1)T , so that dA =
2πδ(C), where δ(C) is a 2D δ function along the world line
of the vortex. By gauging the PSU (N ) symmetry we have
that i

2π

∫
M A ∧ tr F/Nf is not gauge invariant under the gauge

transformations of A and needs to be supplemented by a bulk
term13 i

2π

∫
�

A ∧ dB, where ∂� = M. Partially integrating
this term we get i

2π

∫
�

dAB = i
∫
C B, hence the vortex carries

a projective PSU (Nf ) representation, which is really just the
fundamental representation of SU (Nf ). For Nf = 2 this is just
a qubit.

Finally, the entire discussion is easily adapted to 4D where
the relevant topological symmetry is a 1-form symmetry. We
consider a U (1) gauge theory with Nf electrically charged
particles and we assume that there are only even magnetic
monopoles. The system then has a magnetic Z2 symmetry,
under which the fundamental ’t Hooft line carries charge 1, and
a PSU (Nf ) symmetry acting on the charge particles, exactly
like before.

Let us assume that our even charge monopole particles
condense. The one-form Z2 topological symmetry is sponta-
neously broken, allowing for stable Abrikosov-Nielsen-Olsen
electric strings, carrying half the flux of the fundamental
electric charge. The low energy effective theory is a Z2 gauge
theory, which has essentially a line and a surface which can
link to each other. The surface is the string with half electric
charge and the line is the ’t Hooft line with magnetic charge
one. The strings are stable because the dynamical charges are
unit charges, and half-electric fluxes cannot end on them. Let us
couple theZ2-topological one-form symmetry to a background
two-form gauge field A. The coupling looks the same as (7)
only it is now a four-dimensional integral. Setting

∮
γ

A = π

mod 2π , where γ is a 2-cycle now, induces an ANO vortex
along the complementary two-cycle , reducing to (8).

We again distinguish two cases: Nf = 1 and Nf > 1. The
Nf = 1 model on the vortex can be therefore viewed as 1 + 1
dimensional QED at θ = π with dynamical unit charges.
This model has no anomaly. It was analyzed in detail in
Ref. [7] (and see references therein). In the semiclassical limit
where the electric charges are heavy we have two ground

13Note that this indicates a mixed anomaly between the topological
symmetry and SO(3), and no C symmetry appears. The C symmetry
is not necessary for the present discussion.

states and charge conjugation (alternatively, time reversal)
is spontaneously broken. We may ponder what happens as
the electric charges are decreased in mass. The pure 1 + 1
dimensional model is dual to the Ising model and so the model
becomes critical and then switches to a trivial ground state
(for which there is no obstruction since there is no anomaly)
in which the electric charges are condensed. It would be
interesting to see if the domain wall in this theory undergoes
similar dynamics, i.e., develops an Ising fixed point before the
bulk becomes gapless.

On the other hand if Nf > 1, the vortex has an anomaly
between theC and PSU (Nf ), so it can either breakC symmetry
or be gapless, just like before. The anomaly again insists that
the wall supports deconfined SU (Nf ) excitations, by the same
arguments as before.

III. EASY-PLANE/AXIS CP1 MODEL

The easy-plane and easy-axis models are spin models where
the O(3) spin symmetry is reduced to the Z2 × O(2) subgroup
and they play an important role in the physics of materials. The
regime of easy-plane and easy-axis is differentiated by whether
the Néel vector prefers the plane on the equator or the poles
of the Bloch sphere. We will often refer to both of them as
“easy-plane” for simplicity.

These models are of great interest in quantum magnets.
They played an important role in establishing the Haldane
conjecture [19,22] but are also more realistic as exact O(3) spin
symmetry is unlikely to occur in realistic systems. Therefore
they are interesting to study (see, e.g., Refs. [6,35] for recent
references).

We describe here a ’t Hooft anomaly in the 2 + 1 dimen-
sional easy-plane CP1 model and we outline its consequences
for the bulk phases of the model as well as the domain
wall phases.14 First, let us define the model in terms of the
continuum 2 + 1 dimensional theory

L = − 1

4e2
|da|2 +

∑
i

|Daφi |2 + m2
1|φ1|2 + m2

2|φ2|2

+ λ(|φ1|2 − |φ2|2)2. (14)

Both φ1,2 have charge +1 under the gauge field a. Being for a
moment careless about various discrete factors, the internal
symmetries of the model are U (1) × U (1)T , where U (1)
acts as φ1 → eiαφ1, φ2 → e−iαφ2 and U (1)T is the standard
topological symmetry generated by the charge 1

2π

∫
2 da.

First, let us do some semiclassical analysis in order to get
some intuition for the possible phases of the model. Let us
first consider a phase where λ > 0, so that the vacuum prefers
that |φ1| = |φ2|. The model therefore prefers the equator of
the O(3) order parameter [see Fig. 7(a)]. If both m2

1,m
2
2 are

large and positive, the dynamics is as before. The model
breaks spontaneously the discrete subgroup of U (1)T that is
preserved by the monopole operators and U (1) is unbroken.
If both are large and negative, then there is again a massless
Nambu-Goldstone boson corresponding to a broken U (1) but

14We are grateful to O. Motrunich who prompted us to consider this
problem.
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FIG. 7. (a) The preferred orientation of the O(3) order parameter
�n = ∑

i,j=1,2 φ∗
i (�σ )ij φj (red arrow), when λ in (14) is positive. (b),(c)

The preferred orientation of �n when λ is negative. The Z2 exchange
symmetry corresponds to the exchange of north and south poles.

now U (1)T is preserved. If however one of the masses squared
is large and negative and the other is large and positive then the
model is in a disordered phase, where the vacuum is gapped and
trivial. (In some limit, where the positive mass squared is much
larger in absolute value than the negative mass squared, we
can think about this trivial vacuum as being the trivial vacuum
of the O(2) Wilson-Fisher model by particle-vortex duality
[36,37]). This analysis makes it evident that a disordered phase
exists and hence the model cannot have a ’t Hooft anomaly. But
this analysis also suggests that if we include one more discrete
symmetry that pins m2

1 = m2
2 = m2, then a ’t Hooft anomaly

may exist. Such a symmetry is given by the Z2 exchange
symmetry φ1 ↔ φ2.

Furthermore, if m2 is large and positive, and if the even
monopoles are added, the system is in the two-state VBS phase
which supports domain walls with a semiclassical description
just as in the limit where there is the full O(3) symmetry we
discussed before.

Alternatively we can have a phase where λ is negative and
sufficiently large. The vacuum spontaneously breaks the Z2

exchange symmetry φ1 ↔ φ2. The domain wall in this case is
an O(2) sigma model (i.e., the c = 1 model at large radius) in
1 + 1 dimensions, with vortices (winding modes added to the
Lagrangian). That this is true can be seen by solving for the
domain wall and integrating over the direction perpendicular
to it. Note that the vortices on such a domain wall are trapped
monopoles [i.e., hedgehogs in the O(3) order parameter] in
the full theory (see Fig. 8). This is a curious case because the
domain wall is exactly massless even when the bulk is gapped
and the physics is semiclassical.

It is possible that as the model is deformed towards the
transition to the Z2 VBS by dialing λ, (double charged)
monopole-vortices condense on the wall before the transition
in the bulk occurs. Furthermore this possibly occurs even
when there is no topological symmetry (i.e., when unit-charge
monopoles are allowed), and no anomaly. In other words, as
λ is increased, the domain wall may become trivial before
the vacuum undergoes a transition to being trivially gapped
(and the domain wall disappears). We will see that nontrivial
domain walls are required by anomaly inflow coming from the
bulk ’t Hooft anomalies involving the topological symmetry,
Z2 exchange symmetry, the U (1) flavor symmetry, and the C
charge conjugation symmetry.

FIG. 8. A representation of the domain wall of the Z2-exchange
symmetry broken phase. On one side of the domain wall we must
have the O(3) order parameter pointing north (the red arrow) and
on the other south (the blue arrow). The monopole-antimonopole is
linearly confined in the bulk, but it is only logarithmically confined
on the domain wall as a monopole becomes a vortex on the domain
wall (pictured). The system can therefore undergo the BKT transition
on the domain wall by percolating vortex monopoles. If only even
monopoles are allowed in the bulk, correspondingly even vortices
(winding modes) will be allowed on the domain wall.

To demonstrate this, let us first couple the system to a
background gauge field A for the U (1)T symmetry. This is
done via the standard coupling

1

2π

∫
A ∧ da. (15)

This coupling is perfectly gauge invariant under A and a

gauge transformations. Now let us note that we were somewhat
imprecise about the action of the U (1) symmetry, φ1 → eiαφ1,
φ2 → e−iαφ2. At α = π this coincides with a gauge transfor-
mation. In other words, the scalars φ1,2 transform under the
total gauge symmetry U (1)a×U (1)

Z2
. Therefore, in the presence of

background gauge field B for the U (1) symmetry, the fluxes of
da can be half-integer because the holonomies can be unwound
through the gauge field B. These fluxes are correlated, so

∫
2
da =

∫
2
dB mod 2π.

Due to these possible half-integer fluxes, the coupling (15)
may now break the gauge invariance under A → A + dλ. We
can fix it with a properly quantized Chern-Simons countert-
erm (Chern-Simons counterterms must always be properly
quantized [38,39]) for the background gauge fields by adding
another term to (15):

1

2π

∫
A ∧ da + 1

2π

∫
A ∧ dB. (16)

Since the half-integer part is correlated, and since now A

couples to da + dB, the action is again perfectly gauge
invariant under A and B gauge transformations.

So far what we have seen is that the partition function, as
a functional of A,B gauge fields, can be rendered perfectly
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gauge invariant by appropriate choices of the counterterms.
Therefore there is no ’t Hooft anomaly that involves just the
symmetries U (1) × U (1)T . This is of course nicely consistent
with the semiclassical analysis, which exhibited a disordered
phase in parts of the parameter space.

Now let us imagine that we require the Z2 symmetry φ1 ↔
φ2. This in particular requires that m2

1 = m2
2 in the Lagrangian

(14). This Z2 commutes with U (1)T but it does not commute
with U (1); it is now extended to O(2). Therefore, under the
action of the Z2 symmetry A → A and B → −B. Also the
dynamical gauge field a is invariant under this symmetry.
The counterterm that we have added in (16), 1

2π

∫
A ∧ dB,

breaks this Z2 symmetry explicitly (see also [6]). The state-
ment therefore is that we cannot preserve both U (1)T gauge
invariance in the presence of nontrivial B and preserve the Z2

symmetry. This is therefore an anomaly that involves all these
three symmetries. As usual in such situations, we could have
added a four-dimensional bulk counterterm that preserves all
the symmetries, including theZ2 symmetry. Such a term would
be i

2π

∫
4 dA ∧ dB.

If we introduce aZ2 valued gauge field D that couples to our
φ1 ↔ φ2 symmetry, we could write the anomaly polynomial
in terms of an auxiliary 3 + 1 dimensional bulk as

1

2π

∫
4
D ∧ A ∧ dB. (17)

This writing is however schematic; it is meant to convey the
symmetries that participate in the anomaly. It is only schematic
because B is not invariant under the Z2 that couples to the
gauge field D. In addition, so far we have ignored charge
conjugation symmetry. (It will be important below.)

As usual, the existence of the anomaly (17) immediately
implies that the model cannot be disordered (even far from
the semiclassical regime) by perturbations that preserve all the
symmetries. As in our analysis of the Néel-VBS transition,
let us now imagine that we add monopole operators. We may
assume first that they are divisible by four, so we have a Z4 ⊂
U (1)T unbroken symmetry. The domain walls in the confining
phase are trivial but their clockwise intersection is nontrivial.
We can think about it as turning a unit flux for dA. One finds
that the core supports the anomaly polynomial (schematically)∫

2 D ∧ B, in other words, the core supports a projective O(2)
representation. Therefore, the core is doubly degenerate (i.e.,
there is a qubit at the core). This can be of course associated
with the particles φ1,φ2 sitting at the core. The Hilbert space is
in a representation of P in(2) and the projective Hilbert space
would transform under O(2), as necessary. In fact the degree
of freedom at the core is dual to a free complex fermion [40].

Let us now assume that we add even monopoles to the
Lagrangian. The U (1)T symmetry is now broken to Z2. The
domain wall in the confining phase is now nontrivial. In order
to understand its anomaly polynomial we have to reinstate
the charge conjugation symmetry. If we denote the associated
gauge field by C there is now a new term in the anomaly
polynomial, given by

∫
A ∧ C ∧ w2(O(2)),

where the O(2) consists of the SO(2) gauge field B and the Z2

gauge field D.15 This is again written schematically because
charge conjugation acts on SO(2).

The domain wall therefore has Z2 � O(2) symmetry and ’t
Hooft anomaly, schematically written as∫

3
C ∧ w2(O(2)). (18)

Semiclassically the domain wall breaks the charge conjuga-
tion symmetry and the O(2) symmetry is preserved. So we
again have domain walls within domain walls, now carrying
projective O(2) representations.

We can ask what happens when we depart from the semi-
classical regime. The theory on the wall may again become crit-
ical while the bulk is still gapped. A natural 1 + 1 dimensional
conformal field theory saturating the above anomaly is the
compact c = 1 boson. The symmetry Z2 � O(2) guarantees
that we should not add to the Lagrangian momentum modes
and also we should not add odd winding modes. Therefore
the transition is of the Berezinskii-Kosterlitz-Thouless (BKT)
type, where the semiclassical phase maps to the gapped phase
with two degenerate ground states where the winding modes
condense and the quantum phase could map to the unbroken
phase with power-law correlation functions. However it is
not exactly the BKT transition as there is Z2 symmetry
breaking/restoration involved and both sides of the transition
are ordered.

A geometric way to understand this is to start from the O(3)
model at θ = π—i.e., an effective model of a spin-1/2 chain
which matches all the anomalies—and imagine breaking the
O(3) symmetry (e.g., by adding a potential) to Z2 � O(2). In
the language of the Abelian Higgs model that corresponds to

L = − 1

4e2
|da|2 +

∑
i

|Daφi |2 + i

2
da + m2|φ1|2 + m2|φ2|2

+ |φ1|4 + |φ2|4. (19)

This model has charge conjugation symmetry a → −a, φi →
φ∗

i when θ = 0,π , where we used the fact that
∫

da ∈ 2πZ
and hence 1

2da is invariant when integrated over a closed
two-dimensional manifold. This model has the anomaly when
θ = π (18) which we can verify upon coupling the model to
a background gauge field for the symmetries Z2 : φ1 ↔ φ2,
U (1) : φ1 → eiαφ1, φ2 → e−iαφ2.

15One can view this as a reduction of the anomaly
∫

4 A ∧ w3(O(3))
of Ref. [7] (which is valid when the topological symmetry is broken
to Z2) in the following way: First, ignoring charge conjugation,
the anomaly reduces the anomaly to

∫
4 dA ∧ w2(SO(3)). Next, we

observe that if we only preserved SO(2) ⊂ SO(3) then the anomaly
would disappear completely. This is the statement we derived above,
that there is no anomaly in the U (1) × U (1)T model. However,
imagine that we preserve O(2) ⊂ SO(3). The additional generator
is our φ1 ↔ φ2 symmetry. Then, the anomaly does not disappear and
we remain with

∫
4 dA ∧ B ∧ C, which is exactly what we obtained

in (17). In the presence of a nontrivial charge conjugation gauge field
C, the anomaly

∫
4 A ∧ w3(O(3)) reduces to

∫
4 A ∧ C ∧ w2(SO(3))

which further reduces to
∫

4 A ∧ C ∧ w2(O(2)) upon breaking SO(3)
to O(2).
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If m2 is large and positive then we have two ground states
related by charge conjugation symmetry. If m2 is large and
negative then we have a large circle of vacua with irrelevant
even winding mode operators added to the Lagrangian. The
model has vortices which classically have a Z2 degeneracy at
the core, because either φ1 of φ2 can go to zero there (i.e.,
the O(3) Néel vector vector pointing north or south at the
center of the core. These vortices are sometime called merons,
and they carry a half-integer topological charge.) Quantum-
mechanically, the degeneracy is lifted for generic θ �= π , as the
two core configurations are summed over and there is only one
vortex in the IR theory, so that the Z2 symmetry acts trivially
on the vortex operators. The IR theory is therefore a critical 1 +
1D O(2) model, or the c = 1 compact boson, with momentum
and vortex operators. This model has no anomaly as in the
vortex percolating phase it has a trivially gapped state, and
therefore cannot be the model we seek.

At θ = π , however, the single winding vortices cancel, as
the sum over the two Z2 orientations inside the core interferes
destructively. As a result, only even vortex modes are allowed
and the model has a Z2 topological symmetry. The model
therefore reduces to the Z2 × O(2) 1 + 1D compact boson.
Let us reduce to this regime by taking the extreme limit of
m2 → −∞ in (19). The model essentially reduces to

Leff = |dα1 + a|2 + |dα2 + a|2 + iθ

2π
da . (20)

Let us dualize the above Lagrangian, and obtain

Ldual
eff = |dσ1|2 + |dσ2|2 + i

1

2π
(θ − σ1 − σ2)da . (21)

By integrating out the gauge field, we get that there is only one
degree of freedom as σ1 = −σ2 − θ . The operator einσ1 is an
n-vortex operator. Under the exchange symmetry it transforms
as

Z2 : einσ1 → einσ2 = e−inσ1−inθ . (22)

At θ = 0,π we also have a charge-conjugation symmetry,
which acts as

C : einσ1 → e−inσ1 . (23)

Consider the combination at θ = π

Z2C : einσ1 → (−1)neinσ1 , (24)

which is the same as σ1 → σ1 + π . Since this is an exact
symmetry of the theory at θ = π , the vortex potential must
be of the form

∑
n cn cos(2nσ1).

Let us summarize: the limitm2—large and negative contains
vortex operators which wind the global U (1) ∈ SO(3) that
acts on the two scalars oppositely. This vortex forces a
half-instanton (i.e., meron) at its core, and hence couples as
exp(±iθ/2). The sign depends on the (classical) Z2-exchange
symmetry vacua at the core of the vortex, i.e., it depends on
whether φ1 or φ2 vanished at the core. Quantum mechanically,
the two vortex vacua are summed over, which causes single-
vortices to interfere with each other at θ = π . Hence only even
dynamical vortices are allowed.

Note that in this model where only even winding modes are
allowed in the action, the discrete anomaly which we derived
starting from 2 + 1 dimensions becomes a discrete anomaly

in 1 + 1 dimensions which can be viewed as a standard Z2 ’t
Hooft anomaly involving the axial and vector symmetries of
the compact bosons.

IV. CONCLUSIONS AND SUMMARY

In this work we have discussed domain walls in the VBS
phase of quantum antiferromagnets in 2 + 1D. At low energies
these systems are described by the Abelian-Higgs system with
a scalar doublet and with monopole insertions. We were mostly
concerned with the Z2-VBS phase, which is a gapped phase
of percolating charge-two monopoles with two nonequivalent
vacuum states and a domain wall between them. The VBS
vacuum further allows only spin-one excitations in the bulk,
while spin-1/2 excitations—spinons—are confined.

We have shown that the domain wall carries a ’t Hooft
anomaly between charge conjugation symmetry and SO(3)
global (spin) symmetry, and as a result either breaks the charge
conjugation symmetry or is gapless. In both of these scenarios
the domain wall theory supports deconfined spinons. The
scenario in which the domain wall breaks charge conjugation
symmetry is realized when the mass squared of the Higgs
doublet is large. We have argued that as the mass of the
scalars is lowered the domain wall theory may undergo a
phase transition to the gapless WZW theory, while the bulk
still remains gapped. This scenario is supported by the recent
first-principle Monte Carlo simulations of the J-Q model [16].
We also discussed the 3 + 1D Abelian-Higgs theory with
charge-two monopoles, which in the monopole phase, supports
Abrikosov-Nielsen-Olesen (ANO) half-flux electric vortices.
We showed that the ANO vortex likewise carries the ’t Hooft
anomaly when the number of scalars is larger than 1, and the
vortex worldsheet either breaks charge conjugation symmetry
or is gapless and saturated by the SU (2)1 WZW theory.

Finally we discussed the reduction of the SO(3) symmetry
by the easy-axis/plane deformations, and showed that as long as
the deformation keeps the Z2 symmetry which exchanges the
North and South pole of the Bloch sphere, the ’t Hooft anomaly
persists. The system carries a ’t Hooft anomaly between the
remaining SO(2) symmetry, Z2-exchange symmetry and Z2-
topological symmetry. As a result the vacuum must always be
nontrivial in the bulk and must break one of these symmetries.

In the case of the VBS phase, the domain wall carries the
’t Hooft anomaly between the charge conjugation symmetry,
the SO(2) symmetry and the Z2 symmetry, which forces
the domain wall theory to be nontrivial. The semiclassical
regime (which is realized for large positive masses squared
of the Higgs field in the bulk) realizes the charge conjugation
symmetry breaking on the domain wall. As the mass is lowered
it is plausible that the domain wall undergoes the transition to
the Z2 × O(2) compact scalar model, where Z2 signifies that
only even winding modes are allowed, and the system has a
Z2-topological symmetry. This model can further be either in
the gapless phase, or the vortex phase.

Alternatively the bulk can be in the Z2-exchange-
symmetry-broken phase. This also allows for a semiclas-
sical description of the domain wall, which now supports
the Z2 × O(2) compact boson theory on the domain wall
semiclassically. Furthermore, the vortices on the domain wall
in this phase are monopoles from the bulk. Semiclassical phase
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is a gapless phase in this case. As the bulk is driven towards the
VBS phase, the domain wall theory will likely undergo a phase
transition to the vortex percolating gapped phase, which breaks
the Z2-topological symmetry on the domain wall, before the
bulk undergoes the phase transition in the bulk.
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APPENDIX: YANG-MILLS THEORY AT θ = π AND
SUPERSYMMETRIC YANG-MILLS

The Yang-Mills Lagrangian is given by

S =
∫

d4x Tr

( −1

4g2
F ∧ �F + iθ

8π2
F ∧ F

)
. (A1)

At θ = 0 or θ = π the model (A1) enjoys CP symmetry andZN

center (1-form) symmetry. There is a mixed ’t Hooft anomaly
between these two symmetries at θ = π [5].

The anomaly can be understood as follows. The CP symme-
try at θ = π is due to the quantization of topological charge.
However upon gauging the center symmetry of the SU (N )
theory, topological charge is no longer an integer, but can be
fractional,16 and the CP symmetry is lost. This means that there
is a mixed anomaly between the CP symmetry and ZN center
symmetry [5].

The anomaly can be, for instance, saturated by breaking at
least one of these symmetries spontaneously. (In principle it
could also be that the theory is gapless or that there is long
range topological order. We exclude these two possibilities
from consideration even though they could be relevant for
small values of N , especially N = 2.) The most likely scenario
for sufficiently large but finite N is that the theory breaks
time reversal spontaneously. This is known to be the case
in the planar limit N = ∞, softly broken SUSY, as well as
some deformations of the Yang-Mills theory [41–45]. There-

16The simplest way to see this is to note that constant mag-
netic and electric fields with 1/N fluxes on T 4 are allowed
in the PSU (N ) = SU (N )/ZN theory, i.e., a configuration F12 =
2πn12
NL1L2

T ,F34 = 2πn34
NL3L4

T , with T = diag(1,1, . . . ,1, − (N − 1)) is a

Cartan generator for which ei 2π
N

T ∈ ZN . It follows that the topological
charge of such a configuration is Q = 1

8π2

∫
tr F ∧ F = n12n34(N −

1)/N , which is a multiple of 1/N and not an integer in general. If
the center is not gauged, the integers n12,n34 must be multiples of N

which renders Q an integer.

fore the zero temperature theory has two ground states and
allows for a domain wall between them.

Roughly speaking since a domain wall interpolates between
the two CP vacua, the middle of the domain wall must restore
the CP symmetry. Hence the anomaly inside the domain
wall requires that the vacuum of the theory on the domain
wall couples to the center symmetry. Therefore Wilson lines
on the domain wall, which correspond to probe quarks, are
deconfined. In some sense this is consistent with the general
idea that the physics of the domain wall is that of the original
theory in the ultraviolet.17

One can compute the anomaly of the theory on the do-
main wall precisely: It is a ZN ’t Hooft anomaly for the
center symmetry, so the anomaly polynomial takes the form
1
N

∫
4 B2, where B is a two-form gauge field valued in ZN .

This anomaly is matched by SU (N )1 pure Chern-Simons
theory, where the Wilson lines are indeed deconfined and
obey a simple algebra. This algebra of Wilson lines associated
to probe quarks can be derived directly from the anomaly
polynomial. We can compactify the domain wall theory on
T2 and the anomaly polynomial then reduces to a mixed
ZN × ZN anomaly between standard, zero-form symmetries
of the quantum mechanical model. As a result, the quantum
mechanical model has an N dimensional ground state which
is in a representation of aZN central extension over ZN × ZN .
This is just the Heisenberg group of order N3. We can think
about this quantum mechanical model as a particle on a torus
with N units of magnetic field, hence, there are N -fold degen-
erate ground states transforming under the Heisenberg group
and the projective Hilbert space transforms under ZN × ZN

as it should. (This is the degeneracy of the lowest Landau
level.) All these properties are of course reproduced bySU (N )1

Chern-Simons theory.
So far we have discussed the pure Yang-Mills theory. If we

add one adjoint Weyl fermion, the theory still has an exact cen-
ter symmetry ZN , as well as an anomaly free axial Z2N sym-
metry. The existence of Z2N symmetry is tied with the quanti-
zation of topological charge, namely, axial charge nonconser-
vation in the SU (N ) theory is �Q5 = T (adj) × 1

8π2

∫
Tr (F ∧

F ) ∈ 2N × Z. Upon gauging ZN center, the topological term
is modified into 1

8π2

∫
(Tr F ′ ∧ F ′ − 1

N
Tr F ′ ∧ Tr F ′) ∈ 1

N
Z,

where F ′ is the field strength for U (N ) and can assume frac-
tional values. Therefore, �Q5 ∈ 2N × 1

N
Z = 2Z, and one

looses the axial symmetry. Only fermion number modulo two
survives gauging of the center. This implies that there is a mixed
anomaly between these two symmetries [3,46]. Assuming
confinement (unbroken center), the axial Z2N symmetry must
be broken to saturate the anomaly and there are N vacua.
The domain walls support Chern-Simons theories on which
the quarks are deconfined.

There are two independent weak coupling calculations that
show consistency with the anomaly calculation. On thermal
compactification of this theory on R3 × S1

β , where β is inverse
temperature, on small β, center symmetry is broken, and
axial symmetry is restored. Using similar arguments to those
in Ref. [5], anomaly predicts that the axial symmetry must

17We thank N. Seiberg for emphasizing this perspective.
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be restored at a higher temperature than the deconfinement
transition, namely18

βdiscrete chiral � βdeconfinement. (A2)

In other words, an intermediate deconfined phase with broken
chiral is possible, but a confined phase with unbroken chiral
symmetry is impossible. On circle (nonthermal) compactifica-

18This formula also appeared in Ref. [47], almost simultaneously
with the first version of this paper.

tion on R2,1 × S1
L where fermions are endowed with periodic

boundary conditions, theory preserves its center symmetry
even at small L [48,49]. In this regime, one can prove chiral
symmetry breaking by semiclassical methods, and theory ex-
hibits confinement with chiral symmetry breaking, consistent
with anomaly. There is evidence from lattice simulations for
the above predictions of the anomaly, see, e.g., Refs. [50,51].
While the discussion in this subsection is mostly a review of
results that already appeared earlier, we emphasize that here
we took the perspective that the anomaly polynomial itself is
sufficient in order to derive deconfinement on the wall and the
algebra of Wilson lines follows as well.
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