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Magnetic state selected by magnetic dipole interaction in the kagome antiferromagnet NaBa2Mn3F11
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We haved studied the ground state of the classical kagome antiferromagnet NaBa2Mn3F11. Strong magnetic
Bragg peaks observed for d spacings shorter than 6.0 Å were indexed by the propagation vector of k0 = (0,0,0).
Additional peaks with weak intensities in the d-spacing range above 8.0 Å were indexed by the incommensurate
vector of k1 = [0.3209(2),0.3209(2),0] and k2 = [0.3338(4),0.3338(4),0]. Magnetic structure analysis unveils
a 120◦ structure with the tail-chase geometry having k0 modulated by the incommensurate vector. A classical
calculation of the Heisenberg kagome antiferromagnet with antiferromagnetic second-neighbor interaction, for
which the ground state a k0 120◦ degenerated structure, reveals that the magnetic dipole-dipole (MDD) interaction
including up to the fourth neighbor terms selects the tail-chase structure. The observed modulation of the tail-chase
structure is attributed to a small perturbation such as the long-range MDD interaction or the interlayer interaction.
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I. INTRODUCTION

Long-range magnetic dipole-dipole (MDD) interaction is
ubiquitous in nature. The texture of iron fillings around a bar
magnet is a visualization of the MDD interaction which is
familiar to schoolchildren, and the anisotropic deformation of
condensed magnetic atoms at a low temperature is at the fore-
front of modern science [1]. In insulating magnets, effective
quantum spins having large magnitudes of moments coupled
via the MDD interaction give easy access to observations of
novel quantum phenomena [2–4]. In artificial mesomagnets the
vortex cores dominated by the long-range MDD interaction
exhibit complex collective dynamics in magnonic crystals
[5–7]. In bulk magnets composed of 3d transition metals,
however, the MDD interaction is not necessarily a primary
interaction but rather a small liaison to transfer the information
of the lattice symmetry to the spin space. Luttinger and Tisza
successfully explained several types of magnetic structures by
the MDD interaction in their pioneering work [8], and several
experimental studies followed [9–11].

The MDD interaction is even more important in geo-
metrically frustrated magnets, where the geometry causes
macroscopic degeneracy. For instance, A2B2O7 pyrochlore
oxides exhibiting MDD interaction display exotic states which
are doubly gauge charged emergent magnetic monopoles [12].
In an artificial magnet, collections of nanomagnetic islands
arranged in a kagome lattice generate magnetic moment frag-
mentation [13]. The combination of the frustrated geometry
and the MDD interaction is thus a good playground for a new
magnetic state.

In a classical Heisenberg kagome antiferromagnet, the
ground state is infinitely degenerated. At zero temperature, the

long-range order of the 120◦ structures with enlarged
√

3×√
3

unit cells characterized by k1/3 = (1/3,1/3,0) in Fig. 1(a)
is selected by the order-by-disorder mechanism [14]. The
degeneracy of the ground state can be lifted also by various per-
turbations. The states selected by the Dzyaloshinskii-Moriya
(DM) interaction are the 120◦ structures with k0 = (0,0,0)
[15]; the structures exhibit positive vector chirality in Fig. 1(b)
and negative vector chirality in Fig. 1(c). We name DM(+)-
and DM(−)-type 120◦ structures for the former and the latter,
respectively. The vector chirality is determined by the out-of-
plane component of the DM vector. In the DM(+) structure,
the easy-axis anisotropy is induced by the in-plane component
of the DM vector. The state selected by the MDD interaction is
the 120◦ structure exhibiting tail-chase geometry as shown in
Fig. 1(d) [16]. It has positive chirality but different easy-axis
anisotropy from the DM(+) structure. It is named the MDD-
type 120◦ structure. The structure is equivalent to magnetic
vortices on a honeycomb lattice with staggered polarity, which
can be a prototype of a natural magnonic crystal [5–7]. The
states selected by the second-neighbor interaction are the 120◦

structure with k0 for the antiferromagnetic case and that with
k1/3 for the ferromagnetic case [17].

The magnetic structures of the kagome antiferromagnet
have been intensively investigated by neutron diffraction on
many compounds. The DM(+) structure is realized in most
cases, AFe3(SO4)2(OH)6 (A = K, Na, Ag, Rb, NH4) [18–21],
KCr3(SO4)2(OH)6 [22], and Nd3Sb3Mg2O14 [23], which may
be due to the coincidence between the direction of spins
determined by DM interaction and the magnetic easy axis
allowed by the crystallographic symmetry. The DM(−) struc-
ture is observed in a couple of semimetals Mn3Sn and Mn3Ge
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FIG. 1. 120◦ structures in the kagome lattice. The directions of
the spins are represented by the red arrows. (a) 120◦ structure with the
enlarged unit cell by

√
3×√

3. (b) DM(+), (c) DM(−), and (d) MDD-
type 120◦ structure with the propagation vector k = 0. (e) Mn2+

ions in a kagome layer in NaBa2Mn3F11. Solid, thick-dashed, and
thin-dashed lines indicate the nearest-, second-, and third-neighbor
interactions. The lattice is equivalent to the regular kagome lattice
as a spin system (see text). (f) The linear perspective view of the
kagome layers. (g)–(i) 120◦ structures represented by the irreducible
representations for k = 0.

exhibiting a large anomalous Hall effect [24]. The
√

3×√
3

structure is found in the high-pressure phase in herbertsmithite
ZnCu3(OH)6Cl2 [25]. The tail-chase structure has been ob-
served in quinternary oxalate compounds with Fe2+ ion [26,27]
so far. Its tail-chase structure was, however, caused by a strong
single-ion anisotropy instead of the MDD interaction. To the
best of our knowledge, the experimental observation of the
tail-chase structure originating from the MDD interaction has
not yet been identified (by neutron diffraction), although it is of
primary importance to the understanding of the kagome family
of compounds.

NaBa2Mn3F11 crystallizes in a hexagonal structure with
the space group R3̄c [28]. Mn2+ ions carry spin S = 5/2,
and MnF7 pentagonal bipyramids form a kagome lattice in
the crystallographic ab plane as shown in Fig. 1(e). The path
of the nearest-neighbor interaction J1 indicated by the solid
line is Mn-F-Mn. Although the interior angles of the hexagon
in the kagome lattice are shifted from 120◦ and the lattice is
distorted, the length of the sides and the angles of Mn-F-Mn are
the same for all the bonds. This means that the magnitudes of
the nearest-neighbor interactions are the same. The spin system

is thus regarded as the regular kagome lattice. The six kagome
layers are stacked in the unit cell as shown in Fig. 1(f). The A,
B, and C layers and the A′, B ′, and C ′ layers are related by the
c glide.

The exchange pathways of the second and third-neighbor
interaction are unusual; the second-neighbor interaction J2

indicated by the thick dashed line is Mn-F-Mn, and that of
the third-neighbor interaction J3 indicated by the thin dashed
line is Mn-F-F-Mn. The J3 is thus negligible, and the unique
network called the kagome-triangular lattice is realized [29].
The heat capacity and magnetic susceptibility measurements
exhibit antiferromagnetic transition at TN = 2 K. The Curie-
Weiss temperature θCW was estimated to be −32 K, which is
smaller than those of most kagome lattice magnets [18–23,25].
In addition, the bond angles of the nearest-neighbor exchange
pathways are close to 90◦ rather than 180◦ [29], suggesting the
nearest-neighbor interaction is weak antiferromagnet or ferro-
magnetic based on the Goodenough-Kanamori rules [30,31].
The exchange interaction in NaBa2Mn3F11 is thus relatively
small, and the MDD interaction may be important.

In this paper, we demonstrate that the tail-chase structure
with small incommensurate (IC) modulations is realized in
NaBa2Mn3F11 by using neutron diffraction. Combination of
the experiment and calculation suggests that the tail-chase
structure selected by the main perturbation of the short-range
MDD interaction including up to the fourth neighboring is
modulated by a smaller perturbation such as the long-range
MDD interaction or the interlayer interaction.

II. EXPERIMENTAL DETAILS

A polycrystalline sample was prepared by a solid state re-
action method [29]. The total mass of the obtained sample was
5.4 g. A 3He cryostat was used to achieve low temperatures.
Neutron diffraction experiments were performed using two
neutron diffractometers; a powder diffractometer ECHIDNA
installed in the OPAL reactor, Australian Nuclear Science and
Technology Organization for the preliminary measurement,
and the long-wavelength time-of-flight (TOF) diffractometer
WISH [32] installed at the ISIS Pulsed Neutron and Muon
Source, Rutherford Appleton Laboratory, for the precise mea-
surement. We chose a high-resolution double-frame mode at
WISH. The data for the Rietveld refinement in Figs. 2(a)
and 2(b) and the temperature dependence of the integrated
intensities in Fig. 3(a) were measured by using the detector
bank with an average scattering angle of 2θ = 90◦. The data
for the diffuse scattering in Fig. 3(b) were measured by using
the detector bank centered at 2θ = 27◦. The obtained data were
analyzed by the Rietveld method using FULLPROF software
[33]. Candidates for the magnetic structure compatible with
the lattice symmetry were obtained by SARAH software [34].

III. RESULTS AND ANALYSIS

The neutron diffraction profile measured at 20 K is reason-
ably fitted by the hexagonal structure with the space group R3c

as shown in Fig. 2(a). The profile factors are Rwp = 8.80% and
Re = 4.37%, and the obtained parameters are summarized in
the cif file in the Supplemental Material [35].
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FIG. 2. Neutron diffraction profiles for NaBa2Mn3F11 at (a) 20 K
and (b) 0.25 K. The solid squares and curves show the experimental
data and simulations, respectively. The vertical bars show the posi-
tions of the nuclear and magnetic Bragg peaks. The solid curves below
the bars show the difference between the data and simulations. The
green and blue arrows indicate the IC magnetic Bragg peaks with k1

and k2.

At 0.25 K, at least eight additional peaks are observed
as shown in Fig. 2(b). The peak intensities increase with
the decrease of the temperature below 2.25 K as shown in
Fig. 3(a). This means that a magnetic long-range order occurs
at TN = 2.25 K, which is consistent with the previous heat
capacity measurement [29]. The peaks at d = 3.8, 4.6, and
5.9 Å are indexed as (1 0 7), (1 0 5), and (1 0 1), meaning that
the magnetic propagation vector is k0 = (0,0,0). The peaks
indicated by the green and blue arrows in the long d region are
not indexed by the k0 vector but rather by IC vectors.

Temperature variations of the diffraction profiles are exhib-
ited in Fig. 3(b). At 100 K paramagnetic scattering is observed
in the low-Q region. On cooling it is suppressed, and, instead,

magnetic diffuse scattering is induced at Q ∼ 1.0 Å
−1

and is
more pronounced at 3 K. The diffuse scattering is suppressed
with further cooling, and magnetic Bragg peaks appear. The
short-range spin correlations thus develop at much higher
temperatures than the transition temperature, suggesting the
existence of strong geometrical frustration. The behavior is
consistent with the heat capacity in which most of the magnetic
entropy was released above TN [29].

FIG. 3. (a) Temperature evolution of the integrated intensities at
d = 4.6, 5.9, 8.0, 9.9 and 10.4 Å. The error bars are inside the markers.
Each of the integrated intensities is normalized to their values at 0.25 K
and subtracted by their background at 2.25 K. (b) Neutron diffraction
profiles at T = 100, 20, 3, and 0.25 K. The profiles are shifted by
vertical offsets.

In the magnetic structure analysis, it is assumed that the
peaks with k0 mainly construct the magnetic structure, since
the intensities of the peaks with k0 are larger than those
with the IC vectors. The representation analysis [34] with
the space group R3̄c and the propagation vector k0 leads
to six irreducible representations (IRs): �1 + �2 + �3 + �4 +
2�5 + 2�6. The IRs and the basis vectors are summarized in
Table I. The basis vectors for �1 or �2 provide the MDD-
type 120◦ structure in Fig. 1(g), and �3 or �4 provide the
DM(+)-type structure in Fig. 1(h), whereas the basis vectors
associated with �5 or �6 correspond to the 120◦ structure
with the negative vector chirality as shown in Fig. 1(i). The
magnetic structure in the α layer (α = A,B,C) and that in the
α′ layer (α′ = A′,B ′,C ′) are the same for �1, �3, and �5. In
contrast, the structure in the α′ layer is the inverse structure
of the α layer for �2, �4, and �6. In testing the models of the
magnetic structures inferred by the various IRs, it is assumed
that the magnitudes of the magnetic moments on the Mn2+

ions are all the same. From the Rietveld refinements, we find
that only �2 gives a satisfactory agreement with the observed
pattern. The refined magnetic structure with k0 exhibits the
120◦ structure in the ab plane as shown in Fig. 1(g). The
refined magnitude of the moment is 4.14(1) μB at 0.25 K,
which is 83% of the full moment of the Mn2+ ion. According to
the J1-J2 phase diagram in the Heisenberg kagome-triangular
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TABLE I. Basis vectors for the space group R3c with k = (0,0,0). The atoms of the nonprimitive basis are defined accord-
ing to Mn1 (0.4438,0,0.25), Mn2 (0,0.4438,0.25), Mn3 (0.5562,0.5562,0.25), Mn4 (0.5562,0,0.75), Mn5 (0,0.5562,0.75), and Mn6
(0.4438,0.4438,0.75).

Basis vectors [ma mb mc]

IRs Mn1 Mn2 Mn3 Mn4 Mn5 Mn6

�1 �1 [2 0 0] [0 2 0] [−2 −2 0] [2 0 0] [0 2 0] [−2 −2 0]

�2 �2 [2 0 0] [0 2 0] [−2 −2 0] [−2 0 0] [0 −2 0] [2 2 0]

�3 �3 [1 2 0] [−2 −1 0] [1 −1 0] [1 2 0] [−2 −1 0] [1 −1 0]

�4 [0 0 2] [0 0 2] [0 0 2] [0 0 2] [0 0 2] [0 0 2]

�4 �5 [1 2 0] [−2 −1 0] [1 −1 0] [−1 −2 0] [2 1 0] [−1 1 0]

�6 [0 0 2] [0 0 2] [0 0 2] [0 0 −2] [0 0 −2] [0 0 −2]

�5 �7 [0.5 0 0] [0 −1 0] [−0.5 −0.5 0] [0.5 0 0] [0 −1 0] [−0.5 −0.5 0]

�8 [0.5 1.5 0] [0 0.5 0] [−0.5 1 0] [0.5 1.5 0] [0 0.5 0] [−0.5 1 0]

�9 [0 0 1.5] [0 0 0] [0 0 −1.5] [0 0 1.5] [0 0 0] [0 0 −1.5]

�10

[−√
3

2 0 0
]

[0 0 0]
[−√

3
2 −

√
3

2 0
] [−√

3
2 0 0

]
[0 0 0]

[−√
3

2 −
√

3
2 0

]
�11

[√
3

2

√
3

2 0
] [√

3
√

3
2 0

] [√
3

2 0 0
] [√

3
2

√
3

2 0
] [√

3
√

3
2 0

] [√
3

2 0 0
]

�12

[
0 0

√
3

2

]
[0 0 −√

3]
[
0 0

√
3

2

] [
0 0

√
3

2

]
[0 0 −√

3] [0 0
√

3
2 ]

�6 �13 [0.5 0 0] [0 −1 0] [−0.5 −0.5 0] [−0.5 0 0] [0 1 0] [0.5 0.5 0]

�14 [0.5 1.5 0] [0 0.5 0] [−0.5 1 0] [−0.5 −1.5 0] [0 −0.5 0] [0.5 −1 0]

�15 [0 0 1.5] [0 0 0] [0 0 −1.5] [0 0 −1.5] [0 0 0] [0 0 1.5]

�16

[−√
3

2 0 0
]

[0 0 0]
[−√

3
2 −

√
3

2 0
] [√

3
2 0 0

]
[0 0 0]

[√
3

2

√
3

2 0
]

�17

[√
3

2

√
3

2 0
] [√

3
√

3
2 0

] [√
3

2 0 0
] [−√

3
2 −

√
3

2 0
] [−√

3 −
√

3
2 0

] [−√
3

2 0 0
]

�18

[
0 0

√
3

2

]
[0 0 −√

3]
[
0 0

√
3

2

] [
0 0 −

√
3

2

]
[0 0

√
3]

[
0 0 −

√
3

2

]

lattice [29], the 120◦ structure with k0 is favored in the case that
both J1 and J2 are antiferromagnetic. This means that both J1

and J2 in this compound are antiferromagnetic in the absence
of MDD interaction.

We search the propagation vectors of the IC peaks’ corre-
sponding high-symmetry points/lines/planes of the Brillouin
zone. The IC peaks are indexed by two propagation vectors:
k1 = [0.3209(2),0.3209(2),0] for the peaks at d = 8.0 and
9.9 Å and k2 = [0.3338(4),0.3338(4),0] for those at d =
9.0, 10.0, and 10.4 Å. The IC vectors are close to k1/3 =
(1/3,1/3,0). The representation analysis with the space group
R3̄c and the propagation vectors k1 and k2 leads to separation
of the equivalent Mn sites into the four nonequivalent Mn sites
and two IRs, �1 + �2, at each of the four Mn sites. The IRs and
the basis vectors are summarized in Table II. We construct the
models of the magnetic structure by the linear combinations
of the basis vectors in each single IR. The explicit formulas of
the magnetic models that are compatible with both propagation
vectors and the space group in the case of �2 are as follows:

mMn1a = c
(1)
4 �

(1)
4 + c

(1)
5 �

(1)
5 + c

(1)
6 �

(1)
6 , (1)

mMn1b = c
(1)
4 �

(1)
4 + c

(1)
5 �

(1)
5 + c

(1)
6 �

(1)
6 , (2)

mMn2 = c
(2)
2 �

(2)
2 + c

(2)
3 �

(2)
3 , (3)

mMn3a = (
c

(1)
4′ �

(3)
4 + c

(1)
5′ �

(3)
5

) + c
(1)
6′ �

(3)
6 , (4)

mMn3b = (
c

(1)
4′ �

(3)
4 + c

(1)
5′ �

(3)
5

) + c
(1)
6′ �

(3)
6 , (5)

mMn4 = c
(2)
2′ �

(4)
2 + c

(2)
3′ �

(4)
3 . (6)

Here the coordinations of the Mn atoms and the basis vectors
�

(j )
i are exhibited in Table II. c

(1)
4 , c

(1)
5 , c

(1)
6 , c

(1)
4′ , c

(1)
5′ , c

(1)
6′ , c

(2)
2 ,

c
(2)
3 , c

(2)
2′ , and c

(2)
3′ are coefficients of the linear combination of

the basis vectors. The number of the fitting parameters is 10,
which is too many for the number of the observed IC peaks.
We therefore assume that the magnetic structures in the six

TABLE II. Basis vectors for the space group R3c with
k = (h,h,0). The atoms of the nonprimitive basis are defined
according to Mn1a (0.4438,0,0.25), Mn1b (0,0.4438,0.25),
Mn2 (0.5562,0.5562,0.25), Mn3a (0.5562,0,0.75), Mn3b
(0,0.5562,0.75), and Mn4 (0.4438,0.4438,0.75).

Basis vectors [ma mb mc]

IRs Mn1a Mn1b Mn3a Mn3b

�1 �
(1)
1 [1 0 0] [0 1 0] �

(3)
1 [1 0 0] [0 1 0]

�
(1)
2 [0 1 0] [1 0 0] �

(3)
2 [0 1 0] [1 0 0]

�
(1)
3 [0 0 1] [0 0 −1] �

(3)
3 [0 0 1] [0 0 −1]

�2 �
(1)
4 [1 0 0] [0 −1 0] �

(3)
4 [1 0 0] [0 −1 0]

�
(1)
5 [0 1 0] [−1 0 0] �

(3)
5 [0 1 0] [−1 0 0]

�
(1)
6 [0 0 1] [0 0 1] �

(3)
6 [0 0 1] [0 0 1]

Mn2 Mn4

�1 �
(2)
1 [1 1 0] �

(4)
1 [1 1 0]

�2 �
(2)
2

[
1√
3

− 1√
3

0
]

�
(4)
2

[
1√
3

− 1√
3

0
]

�
(2)
3 [0 0 1] �

(4)
3 [0 0 1]

054411-4



MAGNETIC STATE SELECTED BY MAGNETIC DIPOLE … PHYSICAL REVIEW B 97, 054411 (2018)

TABLE III. Refined coefficients of the basis vectors for the
magnetic models with k1 and k2.

k1 t1 t2 c
(1)
4 c

(1)
5 c

(1)
6 c

(2)
2 c

(2)
3

−1 −1 −2.20(14) −2.86(34) −0.63(34) 3.33(34) −1.34(43)

k2 t1 t2 c
(1)
4 c

(1)
5 c

(1)
6 c

(2)
2 c

(2)
3

−1 1 0.82(14) 1.76(15) 0.59(24) −0.23(62) 2.42(20)

layers are as similar as possible, and the formulas used for the
refinement are reduced to

mMn1a = c
(1)
4 �

(1)
4 + c

(1)
5 �

(1)
5 + c

(1)
6 �

(1)
6 , (7)

mMn1b = c
(1)
4 �

(1)
4 + c

(1)
5 �

(1)
5 + c

(1)
6 �

(1)
6 , (8)

mMn2 = c
(2)
2 �

(2)
2 + c

(2)
3 �

(2)
3 , (9)

mMn3a = t1
(
c

(1)
4 �

(3)
4 + c

(1)
5 �

(3)
5

) + t2c
(1)
6 �

(3)
6 , (10)

mMn3b = t1
(
c

(1)
4 �

(3)
4 + c

(1)
5 �

(3)
5

) + t2c
(1)
6 �

(3)
6 , (11)

mMn4 = t1c
(2)
2 �

(4)
2 + t2c

(2)
3 �

(4)
3 , (12)

where t1 and t2 take +1 or −1. This reduces the number of
parameters down to 5 and renders the refinement possible. We
similarly construct the magnetic models in the case of �1. The
best fit is obtained for �2, and the parameters are listed in
Table III. The profiles at 0.25 K and the fitting results of the
model combined with k0, k1, and k2 are shown in Fig. 2(b).
The R factors for the whole profile are Rwp = 7.61% and Re =
1.02%. The magnetic R factors Rmag for k0, k1, and k2 are
2.71%, 7.62%, and 12.8%. For reference, the best Rmag’s for k0

are 57% for �1, 89% for �3, 80% for �4, 79% for �5, and 36%
for �6. The refined magnetic moments in each IC structure with
k1 and k2 form the two-in-one-out (one-in-two-out) structure
similar to the kagome spin ice [36]. In addition, they have an
out-of-plane component, the directions of which are all up or
all down, and the magnitudes of the moments are modulated.

The temperature evolutions of the integrated intensities
associated with the propagation vectors k0, k1, and k2 are
the same as those shown in Fig. 3(a). This suggests that the
low-temperature state is a single ordered state, i.e., a multiple-k
state, where the Mn2+ moments form a 120◦ structure in the
ab plane, and the IC propagation vectors modulate this 120◦
structure. The averaged magnitude of the magnetic moment of
the Mn2+ ion is 4.54 μB at 0.25 K, which is 91% of the Mn2+

moment (S = 5/2).

IV. DISCUSSION

For the calculation of the ground state we assume isotropic
Heisenberg interactions, since the orbital angular momentum
of the Mn2+ ion is zero, at least for the ground state of the
isolated Mn2+ ion, and the anisotropy and/or asymmetric terms
derived from the perturbation of spin-orbit coupling should
be small. As described in the Introduction, the geometry of
the main framework of NaBa2Mn3F11 is a kagome-triangular
lattice and the MDD interaction is not negligible. The following
Hamiltonian in a kagome plane is thus a good approximation

FIG. 4. Eigenvalues of the interaction matrix J
αβ

ij along lines in
the Brillouin zone. Spectra in (a) the kagome lattice and (b) the
kagome-triangular lattice where the exchange interactions are J1 =
J2 = 2 K and the MDD interaction is JMDD = 56 mK. (c) and (d)
Detailed structures of the spectra around the � point.

for this system:

H =
∑
n.n.

J1 Si · Sj +
∑
n.n.n.

J2 Si · Sj

+
∑
i,j

μ0

4π

(gμB)2

|r ij |3
[

Si · Sj − 3
(Si · r ij )(Sj · r ij )

|r ij |2
]
, (13)

where J1 and J2 are the exchange interactions in the nearest-
and second-neighbor paths. The third term is the MDD in-
teraction up to the fourth-neighbor path and r ij is the bond
vector between the spins. The strength of the nearest-neighbor
MDD interaction JMDD is 56 mK, which is determined from
the distance of the nearest-neighbor path rn.n. as follows:

JMDD ≡ μ0

4π

(gμB)2

r3
n.n.

= 56 mK. (14)

In the calculation, the interlayer interaction is not included. To
calculate the ground state of the system, we use a Luttinger-
Tisza-type theory [8] and investigate the eigenenergies and
eigenvectors of the interaction matrix in the wave vector space.
The Fourier-transformed Hamiltonian can be written as

H =
∑

k

∑
i,j

∑
α,β

J
αβ

ij (k)Sα
i (−k)Sβ

j (k), (15)

where J
αβ

ij is the sum of J1, J2, and JMDD. Here, α and β

are the Cartesian indices of the spins and i and j run over
the three basis sites in the unit cell of the kagome lattice. The
spin vector is the Fourier component of the real space, and
k runs over the Brillouin zone of the kagome lattice. Thus,
for a given value of k, J

αβ

ij is a 9×9 matrix that needs to
be diagonalized. We calculate the following two cases: the
kagome lattice with second-neighbor interaction in Fig. 4(a)
and the kagome-triangular lattice in Fig. 4(b). The (0,0,0),
(1/3,1/3,0), and (1/2,0,0) points of the Brillouin zone are
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FIG. 5. (a) Phase diagram of the kagome-triangular antiferromag-
net having J3 interaction. MDD interaction is not included. (b) and
(c) Eigenvalues of the interaction matrix J

αβ

ij for the kagome-
triangular antiferromagnet having J3 and the MDD interaction along
lines in the Brillouin zone, where the parameters are J1 = 2 K and
J2 = J3 = −JMDD/2. Panel (b) is for the wide energy range and the
panel (c) is for the low-energy range. A double-minima structure is
observed.

labeled as �, X, and Y , respectively. In order to realize the 120◦
structure with k = 0, we set antiferromagnetic interactions
for both J1 and J2 [17,29]. Since varying J2/J1 does not
make a significant difference to the results within a wide
range of values, the exchange interactions are parametrized
at J1 = J2 for simplicity. We also put J1 > JMDD because the
Curie-Weiss temperature θCW = −32 K [29] is larger than the
JMDD = 56 mK.

The eigenenergyλ(k) is minimized for k = 0 in both lattices
as shown in Figs. 4(a) and 4(b), which implies that the MDD-
type 120◦ structure in Fig. 1(d) is realized for both kagome
and kagome-triangular lattices. This result is consistent with
the previous study [16]. Although the six states are degenerated
at k = 0 in the absence of MDD interaction, the degeneracy is
lifted by the interaction as shown in Figs. 4(c) and 4(d). The
calculated ground states correspond to the magnetic structure
having k0 in the experiment, but they do not reproduce the
multiple-k structure.

For the multiple-k structure, we calculated the ground
state of the kagome-triangular antiferromagnet including J3

interaction in Fig. 1(e). The obtained phase diagram of J3/J1 -
J2/J1, where J1 is antiferromagnetic, is shown in Fig. 5(a). We
have presumed that J1 ∼ J2 � |J3| so far, and the observed
k0 structure is confirmed by the calculation in this region.
In case that J2 and J3 are ferromagnetic, i.e., in the third

quadrant, the state of k1/3 = (1/3,1/3,0) which is close to
the experimentally observed IC vectors k1 and k2 appears.
The ground energy has, however, a single minimum in the
k space, and the observed a multiple-k structure cannot be
explained. Then the MDD interaction up to the 4th-neighbor
paths is included, and the eigenvalues of the interaction matrix
for J1 = 2 K, J2 = J3 = −JMDD/2 is obtained as shown in
Figs. 5(b) and 5(c). Local minima appear at k = (1/3,1/3,0)
and (0,0,0), indicating the multiple-k structure. We found
that the MDD interaction mixes the k0 structure in the first
quadrant and k1/3 structure in the third quadrant in the J3/J1

- J2/J1 phase diagram. The spin structure for k0 is the
tail-chase structure which is consistent with the experiment.
The one for k1/3 has solely out-of-plane component, and it
exhibits up-up-down structure. This is inconsistent with the
experimentally obtained structure. We have surveyed a series
of parameters and exact match to the experimental structure
could not be found. Thus, the terms in Eq. (13) do not
explain the observed multiple-k structure, and neither does
J3. Detailed theoretical studies considering further interactions
including the long-range MDD interaction and/or the interlayer
interaction are necessary to reproduce the observed multiple-k
structure including IC modulation for the future work.

The reason why the MDD interaction is the main pertur-
bation in NaBa2Mn3F11 is due to the fact that the exchange
interaction is weak compared with most of kagome antifer-
romagnets having O2− as anion that transfers the exchange
integral [18–23]. Hybridization of the d and p orbitals is small
in fluorides compared with oxides since covalency of F− ion
is weaker than that of O2− ion. In addition, the edge-sharing
of the pentagonal bipyramids MnF7 in the nearest neighbor
path weakens the antiferromagnetic exchange interaction. The
superexchange interaction is thus weak and, consequently, the
DM interaction, which is the resulting term of the perturbative
treatment of the exchange interaction and spin-orbit interaction
in the Heisenberg spin Hamiltonian, is also weak. Furthermore,
the charge distribution of the Mn2+ ion is spherical and
prevents the appearance of single-ion anisotropy, since the 3d

orbitals are half filled, with five electrons coupled, giving rise
to an angular momentum L = 0. The MDD interaction hence
causes the main perturbation in NaBa2Mn3F11.

V. CONCLUSION

In conclusion the MDD-type 120◦ structure with an IC
modulation was identified in NaBa2Mn3F11 by the combi-
nation of the neutron diffraction measurement and magnetic
structure analysis. Classical calculations showed that the MDD
interaction is the main perturbative term for the selection
of the magnetic ground state. To elucidate the precise IC
structure and to identify its origin, further investigations, for
instance, single crystal neutron diffraction, are required. The-
oretical calculation including long-range MDD interactions
may elucidate the IC structure, as was the case with the
field-induced IC structure in the gadolinium gallium garnet
[37,38]. Consideration of the interlayer interaction would also
be important. In addition, the study of magnetic dynamics
would be beneficial for the search for exotic states induced
by the MDD interaction.
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