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A fundamental motif in frustrated magnetism is the fully mutually coupled cluster of N spins, with each
spin coupled to every other spin. Clusters with N = 2 and 3 have been extensively studied as building blocks
of square and triangular lattice antiferromagnets. In both cases, large-S semiclassical descriptions have been
fruitfully constructed, providing insights into the physics of macroscopic magnetic systems. Here, we develop a
semiclassical theory for the N = 4 cluster. This problem has rich mathematical structure with a ground-state space
that has nontrivial topology. We show that ground states are appropriately parametrized by a unit vector order
parameter and a rotation matrix. Remarkably, in the low-energy description, the physics of the cluster reduces to
that of an emergent free spin-S spin and a rigid rotor. This successfully explains the spectrum of the quadrumer
and its associated degeneracies. However, this mapping does not hold in the vicinity of collinear ground states
due to a subtle effect that arises from the nonmanifold nature of the ground-state space. We demonstrate this by
an analysis of soft fluctuations, showing that collinear states have a larger number of soft modes. Nevertheless,
as these singularities only occur on a subset of measure zero, the mapping to a spin and a rotor provides a good
description of the quadrumer. We interpret thermodynamic properties of the quadrumer that are accessible in
molecular magnets, in terms of the rotor and spin degrees of freedom. Our study paves the way for field theoretic
descriptions of systems such as pyrochlore magnets.
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I. INTRODUCTION:

The principles underlying frustrated magnetism emerge
from a few prototypical models. Many of these share a common
feature: they are composed of clusters of N spins with each spin
equally coupled to every other spin. Such a cluster is described
by the Hamiltonian

HN = J

⎡
⎣ N∑

j=1

�Sj

⎤
⎦

2

. (1)

Frustration emerges when J > 0, representing antiferromag-
netic coupling between each pair of spins. When the clusters are
coupled among themselves, this typically leads to effects such
as macroscopic classical degeneracy. For example, clusters
of N = 2 spins occur in the square antiferromagnet and in
dimerized quantum systems such as SrCu2(BO3)2 [1,2]. Clus-
ters with N = 3 occur in the Majumdar Ghosh model [3], the
triangular antiferromagnet, and the kagome antiferromagnet.

For systems with N = 2 and N = 3 clusters, a particularly
fruitful approach has been to construct large-S semiclassical
field theories. The field theory for N = 2 systems, first derived
by Haldane [4], is formulated in terms of a unit vector field. On
the other hand, the N = 3 field theory is more appropriately
written in terms of an SO(3) rotor field as first shown by
Dombre and Read [5]. A similar field theoretic approach has
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so far not been realized for N = 4. This is an interesting and
topical problem due to its relevance to pyrochlore antiferro-
magnets [6], the checkerboard lattice antiferromagnet [7], and
the square J1-J2-J3 model [8]. In particular, it is relevant to
several pyrochlore materials with Heisenberg-like couplings
such as Mn2Sb2O7, CdYb2S4, Gd2Ti2O7, etc., which all have
intriguing properties [6].

Here, we derive a path integral description for the N =
4 cluster, which serves as a starting point for constructing
semiclassical field theories. Even at the level of a single cluster,
we find rich topological structure and an elegant physical
description.

II. CLUSTER GROUND STATES FOR N = 2,3

Classically, a spin is a vector of length S. The allowed
values of spin form a one-to-one and onto mapping to S2,
the two-dimensional sphere. An arbitrary spin position can be
described by two parameters, e.g., polar and azimuthal angles.
As the Hamiltonian HN is positive semidefinite, the lowest
possible classical energy is zero. In other words, a ground
state is reached when the total spin is zero, i.e.,

∑N
j=1

�Sj = 0.
The set of all such N -spin states constitutes the ground-state
space. Mathematically, this can be denoted as {S2 ⊗ S2 ⊗
. . . ⊗ S2| �S1 + . . . + �SN = 0}. The special features of the N =
4 cluster lie in the topology of its classical ground-state space.
We first recapitulate the properties of the N = 2 and N = 3
clusters to set the stage for N = 4.

For N = 2, the ground-state space is simply the set of
pairs of antipodal points on the sphere. Each ground state
is uniquely defined by the position of the first spin, with
the ground-state space being isomorphic to S2. This mapping
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brings out the topology of the ground-state space, e.g., showing
that it is simply connected. It also brings out its “manifold”
character as every point in S2 has a two-dimensional tangent
space. In physics terms, about any given ground state, we have
two independent “soft” fluctuations that do not cost energy.
This mapping to S2 underlies the semiclassical field theory
for the antiferromagnetic Heisenberg chain. First formulated
by Haldane [4], the field theory is written in terms of a
slowly-varying field, n̂(x,t) ∈ S2.

For N = 3, the ground states are 120◦ states—the three
spins lie in a plane forming the sides of an equilateral triangle.
All such states can be obtained from a global rotation operation
performed on a reference 120◦ state, say in the XY plane. Thus
each ground state can be uniquely mapped to an SO(3) rotation
matrix. The ground-state space is thus isomorphic to SO(3).
As before, this forms a manifold, i.e., at any point in SO(3),
there exists a three-dimensional tangent space. Every ground
state allows for three independent soft fluctuations. Naturally,
a semiclassical field theory for N = 3 systems, e.g., the trian-
gular lattice antiferromagnet and the Majumdar Ghosh model,
is formulated in terms of a matrix field, R(x,t) ∈ SO(3) [5,9].

III. PARAMETRIZING THE N = 4 CLASSICAL
GROUND-STATE SPACE

The N = 4 case presents a nontrivial step forward from the
N = 2 andN = 3 cases. We first enumerate the degrees of free-
dom. The total space is eight dimensional (S2 ⊗ S2 ⊗ S2 ⊗ S2)
as each spin has two independent parameters. The constraint
of zero total spin,

∑N
j=1

�Sj = 0, is, in fact, three independent
contraints—one for each component of the total spin. With
eight degrees of freedom and three constraints, the ground-state
space is five-dimensional. Naively, we may expect the set of
ground states to form a five-dimensional manifold. However,
we show below that a much more nuanced picture emerges.

Several parametrizations of the ground-state space, with
minor variations, are available in literature [8,10–15]. Here, we
present a parametrization that leads to an elegant semiclassical
description.

A generic ground state can be described using five param-
eters, as shown in Fig. 1. To construct this state, we initially
choose all four spins to lie in the XZ plane, with �S1 and �S2

subtending an angle 2θ while their sum points along the Z axis.
This constrains �S3 and �S4 to also subtend the same angle 2θ

with their sum pointing along −ẑ. We now introduce the second
degree of freedom φ; we rotate �S1 and �S2 by φ/4 about the Z

axis. At the same time, we rotate �S3 and �S4 by −φ/4. This
operation preserves �S1 + �S2 and �S3 + �S4. This prescription
leads to four unit vectors:

n̂1 = sin θ

(
cos

φ

4
x̂ + sin

φ

4
ŷ

)
+ cos θ ẑ,

n̂2 = sin θ

(
− cos

φ

4
x̂ − sin

φ

4
ŷ

)
+ cos θ ẑ,

(2)
n̂3 = sin θ

(
− cos

φ

4
x̂ + sin

φ

4
ŷ

)
− cos θ ẑ,

n̂4 = sin θ

(
cos

φ

4
x̂ − sin

φ

4
ŷ

)
− cos θ ẑ.

FIG. 1. Parametrizing the ground-state space. (a) We initially take
all spins to lie in the XZ plane with �S1 = −�S3 and �S2 = −�S4. The
angle between �S1 and �S2 is taken to be 2θ . (b) We now rotate the spins
pairwise about an axis that lies along �S1 + �S2. As a result, the plane
containing �S1 and �S2 makes an angle φ/2 with the plane containing
�S3 and �S4. Up to a global rotation, all ground states are described by
choosing appropriate values of θ and φ.

It is easy to see that these four vectors have unit length and add
to zero. This configuration describes a generic ground state,
modulo a global spin rotation.

Here, we constrain θ ∈ [0,π ) and φ ∈ [0,2π ]. These ranges
allow for a faithful representation of allowed ground states
without double counting [16]. The parameters θ and φ describe
relative angles between spins. However, as seen from their
specified ranges, they resemble a unit vector with polar angle
θ and azimuthal angle φ, which encodes the internal state of
the cluster.

Finally, the four spins in the cluster are given by �Sj = SRn̂j ,
incorporating three degrees of freedom into R, an SO(3)
rotation matrix. It can be seen that all possible ground states
are described by appropriate choices of these five parameters:
θ, φ, and three Euler angles describing R. In this sense, the
ground-state space is indeed five dimensional. Naively, we may
guess that the space is simply SO(3) ⊗ S2 with S2 being the
space of the vector described by θ and φ. However, as we
show below, the ground state space has nontrivial topology
with nonmanifold character.

Some representative members of the ground-state space
are (i) a tetrahedral state with spins pointing towards the
corners of a regular tetrahedron, (ii) a coplanar state with
spins forming the sides of a square, and (iii) a collinear state
with �S1 = �S2 = −�S3 = −�S4. As discussed in Ref. [8], the
ground states may be classified as noncoplanar, coplanar and
collinear. In particular, all coplanar states can be accessed
either by setting φ = 0 or by setting θ = π/2 in the above
parametrization. To have a collinear state, the four spins must
form two pairs of parallel spins which are antialigned with
respect to each other. This leads to three distinct collinear
states (up to a global spin rotation)—this is the number of
ways of forming two pairs from four objects. The three distinct
collinear states correspond to {�S1 = �S2 = −�S3 = −�S4}, { �S1 =
�S3 = −�S2 = −�S4} and { �S1 = �S4 = −�S2 = −�S3}. We will see
below that these collinear states play a key role in the topology
of the ground-state space.
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IV. PATH INTEGRAL DESCRIPTION

To describe the N = 4 cluster in the large-S semiclassi-
cal limit, we develop a path integral formulation. We first
parametrize the spins as

�Sj = S�̂j ≈ SR

(
n̂j + Mj

�L
S

)
. (3)

Here, R represents an SO(3) rotation matrix while n̂j ’s
represent unit vectors determined by θ and φ, as defined in
Eq. (2). The vector �L is a new parameter that encodes net
magnetization. In other words, �L represents the deviation from
the ground-state space. Note that �L has three independent
components. Together with θ, φ, and R, this accounts for
the eight degrees of freedom that determine the space of all
allowed configurations. As we are interested in a low-energy
effective theory, we take �L to be small. We take the spin
length to be large, S � 1, while assuming �L ∼ O(1) so that
the deviation from the ground-state space is O(1). The factor
of 1/S that comes with �L serves as a convenient bookkeeping
tool. Below, we derive the path integral partition function as
an expansion in powers of S, keeping terms upto O(S0) in the
action and neglecting all terms with lower powers of S.

We have introduced a matrix, Mj , given by M
αβ

j = δαβ −
nα

j n
β

j . This matrix is, in fact, the projector onto the plane per-

pendicular to n̂j . It guarantees that the vector �̂j is normalized
to O(S0). In all calculations below, we take S to be large and
keep terms to O(S0) in the action.

The magnetization of the cluster is now given by
4∑

j=1

�Sj = R

4∑
j=1

Mj
�L ≡ R(M �L), (4)

where Mαβ = ∑4
j=1 M

αβ

j = 4δαβ − ∑
j nα

j n
β

j . We note here
that the magnetization vector is an angular momentum variable
as it is a sum of spins. Upon quantization, its components
should satisfy angular momentum commutation relations.

We follow the well-established semiclassical path integral
formalism for spin-S spins [17]. For our cluster of N = 4 spins,
the partition function is given by

Z =
∫

D�̂1 D�̂2 D�̂3 D�̂4δ
(
�2

1 − 1
)
δ
(
�2

2 − 1
)

× δ
(
�2

3 − 1
)
δ
(
�2

4 − 1
)
e−S , (5)

where S is the action given by

S =
∫ β

0
dτ

⎛
⎝i

4∑
j=1

�A(�̂j ) · ∂τ
�Sj + J

⎛
⎝ 4∑

j=1

�Sj

⎞
⎠

2⎞
⎠. (6)

The path integral is over the three components of �̂1,...,4, which
are integrated over the real line at every imaginary time slice.
The δ functions in the integrand ensure normalization.

A. Berry phase term

The first term in the action is the Berry phase with �A defined
as εαβγ ∂βAγ (�̂) = �α . Essentially, �A is the vector potential
of a magnetic monopole at the origin, with total flux 4π . The
integral,

∫ β

0 dτ i �A(�̂j ) · ∂τ
�Sj , is a geometric quantity, equal to

iS times the area covered by �̂j (τ ) on the surface of the unit
sphere.

We evaluate the Berry phase to O(S0),

i

∫ β

0
dτ

∑
j

�A(�̂j ) · ∂τ
�Sj =

∫ β

0
dτ

⎡
⎣iS

4∑
j=1

�A(Rn̂j ) ·∂τ (Rn̂j )

+ 4i �L · �U − i �V · RM �L
]
, (7)

where we have defined two vector quantities, �U =
1
4

∑
j ∂τ n̂j × n̂j and Vβ = − 1

2εβσδ{(∂τR)R−1}σδ . Repeated
indices are to be summed over. The vectorVβ has an identifiable
form; it is the angular velocity of a rigid body whose orientation
is described by the matrix R. To arrive at Eq. (7), we have
used two identities: εασρR

αβRρδRσσ ′ = εβσ ′δ and εαβγ ∂βAγ

(�̂) = �α .
The vector �U depends purely on n̂j ’s, and thereby on θ and

φ. Remarkably, �U uniformly vanishes for any choice of θ and
φ. This is ultimately due to the symmetric parametrization of
n̂j ’s in terms of the θ and φ. Following further simplifications
(see Appendix A), the Berry phase term comes out to be∫ β

0
dτ (−iS cos θφ̇ − iRM �L · �V ). (8)

Note that the Berry phase decouples into two terms: the first
only depends on the parameters θ and φ, while the second
contains the SO(3) matrix variable R. The second term also
depends on θ and φ, via the matrix M . Remarkably, the first
term is precisely the Berry phase of a spin-S spin. We had
earlier discussed that θ and φ variables resemble a unit vector
order parameter. Here, from the form of the Berry phase term,
we see that this vector, in fact, behaves as a spin-S spin.

B. Energy term

The energy term in the action is simply
∫ β

0 dτJ (M �L)2. The
energy scales as the square of �L, which represents deviation
from the ground-state space. Notably, the Hamiltonian also
depends on the ground-state parameters θ and φ, which
determine the matrix M .

C. Path integral measure

The partition function, in terms of the new variables,
becomes

Z =
∫ {∏

τ

J (θτ ,φτ ,ατ ,βτ ,γτ , �Lτ )

× dθτ dφτ dατ dβτ dγτ d �Lτ

}
e−S , (9)

where the index τ denotes imaginary time slices. The action S
is given by

S =
∫ β

0
dτ (−iS cos θφ̇ − iRM �L · �V + J (M �L)2). (10)

We have introduced three angles, α, β and γ , to parametrize
the rotation matrix R. The parameters α and β determine an
axis of rotation, while γ specifies the angle of rotation about
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TABLE I. Quadrumer spectrum from “full quantum” and semiclassical approaches (see text). Both approaches give the same energies,
shown in the second column. The degeneracy from the two approaches is shown in the third and fourth columns.

State Energy Degeneracy: full quantum Degeneracy: semiclassical

Ground state 0 (2S + 1) (2S + 1)
First excited 2J h̄2 32(2S + 1) − 9 32(2S + 1)
Second excited 6J h̄2 52(2S + 1) − 45 52(2S + 1)
...

...
...

...

this axis. This parametrization leads to a convenient form for
the path integral measure [18].

The quantity J (θτ ,φτ ,ατ ,βτ ,γτ , �Lτ ) denotes the Jaco-
bian for the transformation given by Eq. (3). To O(S0),
the Jacobian for a given time slice takes the form J ∝

1
4π2 sin2( γ

2 ) sin α Det(M) sin θ , see Appendix B for a detailed
derivation. We only keep O(S0) terms in the Jacobian. Higher-
order corrections, upon exponentiation, give rise to subleading
O(S−1) terms in the action. These terms can be ignored as we
only keep terms up to O(S0) in the action. We find

J (θτ ,φτ ,ατ ,βτ ,γτ , �Lτ )

≈ 1

4π2
sin2(γτ /2) sin ατ sin θτ Det(M). (11)

This form has an elegant interpretation as a measure for the
path integral. It contains the SO(3) group-invariant measure
[18]: dR ∼ 1

4π2 sin2(γ /2) sin α dα dβ dγ . We also identify a
measure for the emergent vector defined by θ and φ: d�̂θ,φ =
sin θ dθ dφ. The factor Det(M) can be absorbed into the
infinitesimal d �L by redefining �L′ = R(M �L), which is the net
moment of the cluster defined in Eq. (4). Note that M is a 3 × 3
matrix that depends on θ and φ. As R is an SO(3) rotation
matrix, its determinant is unity.

The partition function becomes

Z =
∫ (∏

τ

d�̂θτ ,φτ
d �L′

τ dRτ

)
e−S

=
∫

D�̂θ,φ D �L′ DR e−S . (12)

Note that we have implicitly assumed an order of integration,
viz., that �L′ will be integrated out before �̂θ,φ variables. This is
necessary as the definition of �L′ involves the matrix M which
depends on θ and φ—we will see below that this dependence
brings out the nonmanifold character of the ground-state space.

The path integral action is given by S =∫ β

0 dτ (−iS cos θφ̇ − i �L′ · �V + JL′2), where the vector �V is
defined above. Remarkably, with our choice of order of integra-
tion, the partition function apparently decouples into two parts:

Z =
(∫

D�̂(θ,φ) e
∫ β

0 dτ iS cos θφ̇

)

×
(∫

D �L′ DR e− ∫ β

0 dτ (−i �L′ · �V +JL′2)

)
≡ Z1 × Z2. (13)

Both Z1 and Z2 are well-known paradigmatic forms. Z1 is
the partition function of a free spin-S moment. This spin is
“emergent”—it is not a microscopic variable, but an encoding

of the internal degrees of freedom, θ and φ. Z2 represents
the partition function of a spherical top (a rigid rotor with the
three principal moments equal) with moment of inertia 1

2J
.

The matrix R represents angular position, while �L′ represents
angular momentum. Note that �L′ is the total moment of the
cluster, with its components obeying angular momentum
commutation relations. It represents “hard modes” that can be
integrated out to obtain a zero-temperature description.

This is the main result of this article: the system of four
spins coupled by mutual antiferromagnetic interactions, in the
semiclassical low-energy limit, decouples into a rigid rotor and
an emergent free spin-S spin!

V. COMPARISON WITH CONVENTIONAL QUANTUM
ANALYSIS

To check for consistency of the mapping to a spin and a rotor,
we compare the energy spectrum given by this mapping to that
obtained from a conventional quantum analysis. Convention-
ally, finding the spectrum of the Hamiltonian H4 = J (�S1 +
�S2 + �S3 + �S4)2 reduces to a problem of angular momentum
addition. The energy eigenvalues are simply Jj (j + 1)h̄2 with
j = 0, . . . ,4S being the total spin quantum number.

In the semiclassical approach, we have a free spin-S moment
and a rigid rotor. The free spin does not contribute to energy as
its Hamiltonian is zero. The rigid rotor with moment of inertia

1
2J

does contribute, with the spectrum known to be precisely
Jj (j + 1)h̄2 with j = 0, . . . ,∞ [19]. Thus we obtain the same
low-energy spectrum from the semiclassical as well as the fully
quantum approach.

To further characterize the spectrum, we obtain the de-
generacy of each level using both approaches. The obtained
degeneracies are compared in Table I. The calculation of
degeneracy using the conventional “full quantum” approach
is discussed in Appendix C. As for the semiclassical approach,
the degeneracy of the rigid rotor problem [19] is well known to
be (2j + 1)2. This is to be multiplied by (2S + 1) on account of
the free spin. While the free spin does not contribute to energy,
it modifies the degeneracy with a multiplicative factor.

As seen in Table I, both approaches give the same de-
generacy for the ground state. However, for excited states,
the two approaches agree to O(S). As the semiclassical limit
is strictly justified for large S spins, we conclude that the
degeneracies match. Nevertheless, the O(S0) discrepancy is
significant. It shows that the quadrumer problem (N = 4) is
markedly different from the dimer and the trimer. For both
N = 2 and 3, the appropriate semiclassical description accu-
rately captures the degeneracies in the spectrum. For N = 2,
conventional quantum analysis gives eigenvalues Jj (j + 1)h̄2
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with j = 0,1, . . . ,2S, with level degeneracy (2j + 1). From
the semiclassical point of view, this problem maps to a particle
on a sphere with the same form of the eigenenergies and degen-
eracies, except that j runs from 0, . . . ,∞. For N = 3, the con-
ventional quantum approach gives eigenvalues Jj (j + 1)h̄2,
where j = 0,1, . . . ,3S. The low lying states, with j � S, have
degeneracy (2j + 1)2. Semiclassically, this problem maps to
a spherical top rigid rotor. Once again, this gives the same
expressions for the eigenenergies and degeneracies. However,
j runs from 0, . . . ,∞. In both cases, the low-energy spectrum
(j � S) is accurately captured by the semiclassical mapping.
However, for N = 4, we find subleading discrepancies in the
degeneracy. This could be due to two reasons.

(a) Order by disorder: For N = 2,3, all classical ground
states are symmetry-related. As a consequence, quantum
fluctuations, arising from terms with lower powers of S in
the action, cannot lift their degeneracy. However, for N = 4,
ground states with differing values of (θ,φ) are not related
by any symmetry. This allows quantum fluctuations to have
a stronger role. In principle, higher-order (lower power in S)
corrections can induce a preference for certain values of (θ,φ)
via the well-known phenomenon of “order by disorder.” Such
corrections could alter the form of the action, for instance, by
coupling the rotor and spin degrees of freedom. This could give
rise to the observed corrections in the level degeneracies.

A rigorous derivation of 1/S corrections is beyond the scope
of this study. Nevertheless, we make the following observa-
tions. With regard to the ground-state degeneracy, we find
perfect agreement between the semiclassical and full quantum
results despite the possibility of order by disorder effects. In the
semiclassical picture, the ground-state degeneracy arises from
the emergent free spin while the rotor is in its nondegenerate
ground state. This suggests that quantum fluctuations do not
play a role when the rotor is in its ground state, leaving
the free moment intact. When the rotor is excited, quantum
fluctuations could couple it to the free spin, leading to the
observed corrections in the degeneracies.

(b) Imperfect semiclassical mapping: For N = 2 and 3,
the semiclassical large-S path integral precisely reduces to a
particle on a sphere and a rigid rotor, respectively. However, for
N = 4, the mapping to a rotor and a free spin is approximate
due to a subtle effect that arises from the nontrivial topology
of the ground-state space. This is discussed in detail in the next
section. As the mapping itself is only approximate, we can
have discrepancies between the semiclassical and quantum
spectra. This could also lead to the observed discrepancies in
degeneracies.

VI. SINGULARITIES IN THE GROUND-STATE SPACE

There is a nontrivial subtlety in the identification of Z2 in
Eq. (13) as the path integral of a rigid rotor. The rotor angular
momentum is given by �L′ = RM �L. The 3 × 3 matrix M here
depends on the variables θ and φ. For generic values of θ

and φ,M has three nonzero eigenvalues. This leads to three
independent components of �L′, as required to describe the
angular momentum of a rigid rotor. However, the matrix M

becomes singular at three isolated values of (θ,φ) at which
the spin configuration is collinear. At these points, one of the
eigenvalues of M vanishes, leaving us with only two degrees

of freedom in �L′; it can no longer be identified as the angular
momentum of a rigid rotor. Strictly speaking, this forbids the
identification of Z2 in Eq. (13) with a rigid rotor.

This effect originates from the parametrization in Eq. (3).
Suppose all four unit vectors, n̂j ’s, are collinear and aligned
along ±ẑ. In this case, the z component of �L becomes
redundant in Eq. (3). Note that it is the projection of �L onto
the plane perpendicular to n̂j that enters �Sj . With all spins
parallel to ẑ, we can assign any value to Lz without changing
any of the spins. This can be understood by visualizing all
possible small fluctuations about a collinear state. The system
can only develop a nonzero magnetization in two directions,
while preserving the length of each spin. These form the two
independent components of �L′.

While our semiclassical mapping fails at collinear states,
this is nevertheless a minor effect as the number of such ground
states is very small. In fact, collinear ground states form a set
of measure zero as they occur for three isolated values of (θ,φ).
By neglecting this set in the integration space of Eq. (13), we
can persist with our identification of the system with a spin-S
spin and a rigid rotor. That this is a good approximation can be
seen from the excellent agreement in the spectrum as shown
in Table I.

VII. SOFT FLUCTUATIONS

To understand the topology of the ground-state space, it is
instructive to look at “soft” fluctuations. Given a ground-state
configuration of the four spins in the cluster {�Sj }, we consider
small deviations of the spins, {δ �Sj } with j = 1, . . . ,4. As we
have eight degrees of freedom in total (two per spin), we always
have eight independent fluctuation modes labeled as {δ �Sα

j },
with α = 1, . . . ,8. We identify independent modes using the
condition

∑N
j=1{δ �Sα

j · δ �Sβ

j } = δα,β .
These small fluctuation modes can be naturally classified

as hard and soft. Hard modes take us out of the ground-state
space—they induce a net magnetization in the cluster, i.e.,∑

j {δ �Sα
j } = 0. In contrast, soft modes preserve the zero-total-

spin condition and keep us within the ground-state space.
In Figs. 2 and 3, we pictorially depict the soft modes around

(a) a coplanar state and (b) a collinear state respectively. There
are five soft modes about the coplanar state corresponding to
varying θ , varying φ, and three independent rotations. Indeed,
this is true of all noncollinear ground-states; each state allows
for five soft modes which can be understood in the same way.
However, collinear states allow for six soft modes as shown
in Fig. 3 (see Appendix E for explicit expressions). These
correspond to two independent rotations and four independent
deformations.

Mathematically, the set of soft modes describes the tangent
space around a given element of the ground-state space. For
the ground-state space to be a manifold, the tangent space at
every point must have the same dimensionality. To be precise,
the neighborhood of every point must be isomorphic to Rn,
where n is the dimension of the space. Here, we have an extra
sixth dimension whenever the state is collinear. We assert that
this demonstrates a deep mathematical property, viz., the non-
manifold character of the ground-state space. In Appendix D,
we provide a rigorous proof that the ground-state space, with
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FIG. 2. Soft fluctuations about a coplanar state. (a) A reference coplanar state, (b) a variation in θ , changing the angular separation between
spins, (c) variation in φ, changing the twist angle between planes of pairs of spins, (d)–(f) rigid rotations about the X, Y , and Z axes. These are
five independent soft modes.

collinear configurations removed, forms a five-dimensional
manifold. We show this using the implicit function theorem
which provides a sufficient condition for manifold character.

To illustrate the singularities that occur at collinear states,
we discuss a “spin-wave approach” in Appendix F. Assuming
that the cluster always remains in the vicinity of a collinear
state, we develop a path integral description. With only two
rotational degrees of freedom, the system maps to a rigid rod
rather than a rigid body.

VIII. THERMODYNAMICS

We have shown that the semiclassical description succeeds
in describing the low-energy spectrum of the quadrumer. We
can now reinterpret thermodynamic properties as arising from
the semiclassically obtained free spin-S moment and rigid
rotor. From this point of view, the partition function of the
quadrumer is given by

Z =
∑

j

(2S + 1)(2j + 1)2e−j (j+1)βJ h̄2
. (14)

At zero temperature, the quadrumer has nonzero entropy,
kB log(2S + 1), arising from the degeneracy of the free spin-S
spin. This nonvanishing entropy can be seen in specific heat
measurements on candidate materials.

To find low-temperature properties, we may retain the
first few j values in Eq. (14). For example, retaining
only j = 0,1, the entropy can be approximated as
Sent ≈ kB[ln(2S + 1) + ln(1 + 9e−2βJ h̄2

) + 18Jβh̄2

e2Jβh̄2 +9
], where

the first term is the free spin contribution and the rest is the
rigid rotor contribution. Similarly, the specific heat at low

temperatures comes out to be Cv = 36kB(Jβh̄2) e2βJ h̄2

(9+e2βJ h̄2 )2
.

The free spin does not contribute to specific heat as it does not
contribute to energy.

Our formalism also allows us to directly calculate mag-
netic susceptibility. Assuming a small magnetic field of
strength B along ẑ, it enters the Hamiltonian as a new term,
−BL′

z, where L′
z is the z component of the magnetization.

The partition function changes to Z = ∑
j (2S + 1)(2j +

1)e−j (j+1)βJ h̄2
(
∑j

m=−j emβBh̄), where the eigenvalues of L′
z are

given by mh̄. The low-temperature susceptibility comes out
to be χ = 1

β
∂2
B lnZ|B→0 = 6βh̄2

e2βJ h̄2 +9
, in agreement with known

results in the large-S limit [20,21]. The free spin does not
contribute to the susceptibility as well. As the emergent spin
only signifies internal coordinates (relative angles between
spins), it does not couple to an external magnetic field.

IX. SUMMARY AND DISCUSSION

We have presented a path integral description for the quan-
tum spin quadrumer. The ground-state space of this system has
nontrivial topology, reflected in the differing number of soft
fluctuations around collinear and noncollinear ground states.
This provides a simple and an experimentally realizable exam-
ple of dynamics on a nonmanifold space. Earlier studies of the
quadrumer with Dzyaloshinskii-Moriya couplings have dis-
cussed one-dimensional ground-state spaces with nonmanifold
character [22,23]. Our study with purely Heisenberg couplings
brings out a larger five-dimensional nonmanifold space.

We have shown that the quadrumer decouples into a free
spin-S spin and a rigid rotor. This provides a beautiful example
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FIG. 3. Soft fluctuations about a collinear state. (a) A reference collinear state with moments aligned along the Z axis, (b, c) rigid rotations
about the X and Y axes, (d) a distortion in the XZ plane, (e) a similar distortion but with �S3 and �S4 switched, (f) a distortion in the YZ plane,
and (g) a similar distortion but with �S3 and �S4 switched. These form six independent soft modes.

of “emergence”—the internal spin configuration manifests as
a spin-S order parameter in the low-energy description. This
spin character does not appear directly in the microscopic de-
scription; it cannot be deduced from a conventional study of the
cluster and its dynamics. Indeed, although the quadrumer has
been extensively studied, this property has not been brought out
so far. An early indication of an emergent spin may be found in
the equations for semiclassical dynamics derived in Ref. [24].

We have considered a spin-S cluster in which every spin
is coupled to every other spin. This structure arises naturally
in tetrahedral molecules/clusters, which have four spins at
the corners of a regular tetrahedron. Several experimental
realizations are known to exist. The canonical examples are
transition metal tetrahedra [25]. Notably, Ni4Mo12 realizes
a near-perfect tetrahedron of S = 1 moments [26,27]. A
S = 1/2 tetramer is also realized in Cu4OCl6daca4 [28].
More recently, several lanthanide-based compounds have been
synthesized. A Dy-based molecular magnet [29] realizes a
S = 5/2 tetrahedron, but with Ising-like anisotropy. These
molecular magnets closely resemble our problem. Most of their
experimental properties can be explained with a conventional
quantum analysis of four spins (e.g., as in Ref. [30]). Our work
reinterprets these as emanating from an emergent rigid rotor
and a free spin.

An exciting development is the synthesis of “breathing”
pyrochlore magnets with weakly coupled tetrahedra. An ex-
ample from the lanthanide family is Ba3Yb2Zn5O11 in which
each Yb atom forms a pseudospin-1/2 moment [31–34]. The
intertetrahedron coupling is so weak that the tetrahedra are
essentially isolated; this is reflected in the neutron scattering

intensity showing flat momentum-independent modes. Our
analysis may not be directly applicable here, due to the pres-
ence of strong Dzyaloshinskii-Moriya interactions. Likewise,
LiGaCr4O8 and LiInCr4O8 form breathing pyrochlores with
Cr3+ S = 3/2 moments. They vary in the degree of breathing
and show intriguing ordering properties [35]. Theoretical
proposals have been put forward to explain their ordering
[36–38]. Our results will help to develop a field theoretic
description for these systems. The additional couplings in these
materials such as anisotropies, dipolar interactions, etc., will
modify our semiclassical picture and couple the rotor and the
spin fields.

The real promise of our study is that it provides a starting
point for semiclassical field theories. The N = 4 cluster is the
building block of pyrochlore magnets, the checkerboard lattice
[7,39–44], the four-leg tube [14], and the square J1-J2-J3

antiferromagnet [8]. In particular, the Heisenberg pyrochlore
magnet is of great interest as a canonical model of frustration
with realizations in spinel compounds [10,45–55]. Its ground-
state and ordering properties continue to be debated [56–58].
With new experimental realizations emerging [59], we hope
that a suitable field theoretic approach will throw light on this
model and its intriguing properties.
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APPENDIX A: BERRY PHASE

For a single spin, the first term in the Berry phase in Eq. (7)
can be written in the following way [60]:

SB = −S

∫ β

0
dτ tr(∂τUU †σ z), (A1)

where U is a matrix that encodes the j th spin. The coordinates
of the spin, in the reference frame, are denoted by polar angle θ̃j

and azimuthal angle φ̃j . This moment is rotated by the rotation
matrix R. The matrix U is defined so as to transform ẑ to
n̂j = n̂(θ̃j ,φ̃j ), followed by a global rotation to give Rn̂. This
operation is given below:

U
†
R

(
e−i

φ̃j

2 σ z)(
e−i

θ̃j

2 σy )
σ z

(
ei

θ̃j

2 σy )(
ei

φ̃j

2 σ z)
UR. (A2)

Here, U = ei
θ̃j

2 σy

ei
φ̃j

2 σ z

UR = U (θ̃j ,φ̃j )UR , where UR is the
unitary transformation corresponding to rotation and σ ’s are
Pauli matrices:

Now, tr(∂τUU †σ z)

= tr({∂τ (U (θ̃j ,φ̃j )UR)}(U †
RU †(θ̃j ,φ̃j ))σ z)

= tr(∂τU (θ̃j ,φ̃j )U †(θ̃j ,φ̃j )σ z)

+ tr(∂τURU
†
RU †(θ̃j ,φ̃j )σ zU (θ̃j ,φ̃j )). (A3)

It can be easily checked that U †(θ̃j ,φ̃j )σ zU (θ̃j ,φ̃j ) = n̂j · σ .
The second term in Eq. (A3) becomes tr(∂τURU

†
Rn̂j · σ ). So

far, we calculated the Berry phase term for a single spin. Adding
the contributions from four spins, we get

4∑
j=1

tr(∂τURU
†
Rn̂j · σ ) = tr

⎛
⎝∂τURU

†
R

∑
j

n̂j · σ

⎞
⎠

= 0. (A4)

This follows from the ground-state condition,
∑

j n̂j = 0. The

first term in Eq. (A3) can be shown to be (i cos θ̃j
˙̃φj ).

SB = −iS

∫ β

0
dτ cos θ̃j

˙̃φj , (A5)

this term is again for a single spin with θ̃j and φ̃j being the
polar and azimuthal angles. We now add contributions from
four spins with the corresponding polar and azimuthal angles:
(θ,

φ

4 ),(θ,π + φ

4 ),(π − θ,π − φ

4 ), and (π − θ,2π − φ

4 ):

S
four spins
B =

4∑
j=1

S
j

B = −iS

∫ β

0
dτ cos θ φ̇, (A6)

where θ and φ are the parameters used to describe a generic
ground state in Fig. 1.

APPENDIX B: JACOBIAN DERIVATION

At any given imaginary time slice, the path integral measure
takes the form∫

d�1x d�1y d�1z d�2x d�2y d�2z d�3x d�3y d�3zd�4x

× d�4y d�4z δ
(
�2

1−1
)
δ
(
�2

2−1
)
δ
(
�2

3−1
)
δ(�2

4 − 1).

(B1)

Let us rewrite the spin parametrization of Eq. (3) in the
following way:

�̂1 = R

(
�n + M1

�L
S

)
,

�̂2 = R

(
ρT1�n + M2

�L
S

)
,

(B2)

�̂3 = R

(
σT2�n + M3

�L
S

)
,

�̂4 = R

(
λT3�n + M4

�L
S

)
,

where �n = (nx,ny,nz). This vector �n has polar angle θ and
azimuthal angle φ/4, where θ and φ are the angles that
parametrize the ground-state space as shown in Fig. 1. As
described in the main text, �̂1,...,4 are taken to be normalized
to O(S0). We have introduced three new scalar variables,
ρ, σ , and λ, in order to have twelve new variables. As we
now have the same number of old and new variables, we
can evaluate the Jacobian of the transformation. We have
used T1 = diag[−1,−1,1], T2 = diag[−1,1,−1], and T3 =
diag[1,−1,−1]. In terms of the new variables, the integral (B1)
becomes∫

J1(ρ,σ,λ,γ,α,β, �L,�n) dγ dα dβ

× dρ dσ dλ d �L d �n δ(ρ2 − 1) δ(σ 2−1) δ(λ2−1) δ(n2−1).

(B3)

Here α, β, and γ parametrize the rotation matrix R. (α,β)
define an axis of rotation, while γ represents the rotation angle.
After finding the Jacobian J1, we can integrate out ρ, σ , and
λ by replacing ρ = σ = λ = 1 in the Jacobian. The Jacobian
matrix can be written in the following form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂�̂1
∂γ

∂�̂1
∂α

∂�̂1
∂β

∂�̂1
∂ρ

∂�̂1
∂σ

∂�̂1
∂λ

∂�̂1
∂nx

∂�̂1
∂ny

∂�̂1
∂nz

∂�̂1
∂Lx

∂�̂1
∂Ly

∂�̂1
∂Lz

∂�̂2
∂γ

∂�̂2
∂α

∂�̂2
∂β

∂�̂2
∂ρ

∂�̂2
∂σ

∂�̂2
∂λ

∂�̂2
∂nx

∂�̂2
∂ny

∂�̂2
∂nz

∂�̂2
∂Lx

∂�̂2
∂Ly

∂�̂2
∂Lz

∂�̂3
∂γ

∂�̂3
∂α

∂�̂3
∂β

∂�̂3
∂ρ

∂�̂3
∂σ

∂�̂3
∂λ

∂�̂3
∂nx

∂�̂3
∂ny

∂�̂3
∂nz

∂�̂3
∂Lx

∂�̂3
∂Ly

∂�̂3
∂Lz

∂�̂4
∂γ

∂�̂4
∂α

∂�̂4
∂β

∂�̂4
∂ρ

∂�̂4
∂σ

∂�̂4
∂λ

∂�̂4
∂nx

∂�̂4
∂ny

∂�̂4
∂nz

∂�̂4
∂Lx

∂�̂4
∂Ly

∂�̂4
∂Lz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (B4)

In the above matrix, each element represents three consecutive entries along the column, corresponding to the three components
of the �̂j vector. Using the transformation relations in Eqs. (B2), we write the matrix in Eq. (B4) as

[A12×6|B12×6],
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where

A|ρ=σ=λ=1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂R
∂γ

(
n̂ + M1

�L
S

)
∂R
∂α

(
n̂ + M1

�L
S

)
∂R
∂β

(
n̂ + M1

�L
S

)
0 0 0

∂R
∂γ

(
T1n̂ + M2

�L
S

)
∂R
∂α

(
T1n̂ + M2

�L
S

)
∂R
∂β

(
T1n̂ + M2

�L
S

)
RT1n̂ 0 0

∂R
∂γ

(
T2n̂ + M3

�L
S

)
∂R
∂α

(
T2n̂ + M3

�L
S

)
∂R
∂β

(
T2n̂ + M3

�L
S

)
0 RT2n̂ 0

∂R
∂γ

(
T3n̂ + M4

�L
S

)
∂R
∂α

(
T3n̂ + M4

�L
S

)
∂R
∂β

(
T3n̂ + M4

�L
S

)
0 0 RT3n̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(B5)

and

B|ρ=σ=λ=1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

R
(
1f c + ∂M1

∂nx

�L
S

)
R

(
1sc + ∂M1

∂ny

�L
S

)
R

(
1tc + ∂M1

∂nz

�L
S

)
1
S
RM1

R
(
T1f c + ∂M2

∂nx

�L
S

)
R

(
T1sc + ∂M2

∂ny

�L
S

)
R

(
T1tc + ∂M2

∂nz

�L
S

)
1
S
RM2

R
(
T2f c + ∂M3

∂nx

�L
S

)
R

(
T2sc + ∂M3

∂ny

�L
S

)
R

(
T2tc + ∂M3

∂nz

�L
S

)
1
S
RM3

R
(
T3f c + ∂M4

∂nx

�L
S

)
R

(
T3sc + ∂M4

∂ny

�L
S

)
R

(
T3tc + ∂M4

∂nz

�L
S

)
1
S
RM4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (B6)

Here, f c, sc, and tc denote the first, second, and third columns of the corresponding T matrix respectively. 0 is a 3 × 1 column
matrix with all entries equal to zero while 1 is a 3 × 3 identity matrix. At this stage, the Jacobian matrix can be written as a
product of two matrices, C and D, which are given as follows:

C =
⎡
⎣R 0 0

0 R 0
0 0 R

⎤
⎦, (B7)

a block diagonal matrix. The 3 × 3 diagonal blocks are rotation matrices. Matrix D is given by D ≡ [E12×6|F12×6], where

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

R−1 ∂R
∂γ

(
n̂ + M1

�L
S

)
R−1 ∂R

∂α

(
n̂ + M1

�L
S

)
R−1 ∂R

∂β

(
n̂ + M1

�L
S

)
0 0 0

R−1 ∂R
∂γ

(
T1n̂ + M2

�L
S

)
R−1 ∂R

∂α

(
T1n̂ + M2

�L
S

)
R−1 ∂R

∂β

(
T1n̂ + M2

�L
S

)
T1n̂ 0 0

R−1 ∂R
∂γ

(
T2n̂ + M3

�L
S

)
R−1 ∂R

∂α

(
T2n̂ + M3

�L
S

)
R−1 ∂R

∂β

(
T2n̂ + M3

�L
S

)
0 T2n̂ 0

R−1 ∂R
∂γ

(
T3n̂ + M4

�L
S

)
R−1 ∂R

∂α

(
T3n̂ + M4

�L
S

)
R−1 ∂R

∂β

(
T3n̂ + M4

�L
S

)
0 0 T3n̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(B8)

and

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
1f c + ∂M1

∂nx

�L
S

) (
1sc + ∂M1

∂ny

�L
S

) (
1tc + ∂M1

∂nz

�L
S

)
1
S
M1(

T1f c + ∂M2
∂nx

�L
S

) (
T1sc + ∂M2

∂ny

�L
S

) (
T1tc + ∂M2

∂nz

�L
S

)
1
S
M2(

T2f c + ∂M3
∂nx

�L
S

) (
T2sc + ∂M3

∂ny

�L
S

) (
T2tc + ∂M3

∂nz

�L
S

)
1
S
M3(

T3f c + ∂M4
∂nx

�L
S

) (
T3sc + ∂M4

∂ny

�L
S

) (
T3tc + ∂M4

∂nz

�L
S

)
1
S
M4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (B9)

The Jacobian J1 = Det(CD) = Det(D) as Det(C) =
(Det(R))3 = 1. The determinant of D is much simpler to
evaluate than that of the Jacobian matrix we started out
with. Using Mathematica, Det(D) can be shown to be
∝ 1

4π2 sin2( γ

2 ) sin α Det(M), to O(S0). Now, we can rewrite
Eq. (B3), apart from a constant multiplicative factor, as∫

1

4π2
sin2

(
γ

2

)
sin α Det(M) d �Ldα dβ dγ d �n δ(n2 − 1)

∼
∫

1

4π2
sin2

(
γ

2

)
sin α Det(M) sin θ dθ dφ d �Ldα dβ dγ.

(B10)

Finally, the full Jacobian J is proportional to
1

4π2 sin2( γ

2 ) sin α Det(M) sin θ .

APPENDIX C: DEGENERACY FROM THE
CONVENTIONAL QUANTUM APPROACH

Let us count the degeneracies of the first few states using
standard angular momentum addition. Adding pairs of spins,
we have

S ⊗ S ⊗ S ⊗ S = (0 ⊕ 1 ⊕ 2 ⊕ 3 ⊕ · · · ⊕ 2S)

⊗ (0 ⊕ 1 ⊕ 2 ⊕ 3 ⊕ · · · ⊕ 2S).

If we are to obtain a net singlet, the net S must be chosen to
be 0. This arises in the following cases: (0 ⊗ 0),(1 ⊗ 1),(2 ⊗
2), · · · ,(2S ⊗ 2S). Thus we have 2S + 1 possible ways of
having zero net spin. This is the degeneracy of the ground
state. The first excited state requires the net spin to be unity.
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This arises from

(0 ⊗ 1),

(1 ⊗ 0),(1 ⊗ 1) and (1 ⊗ 2),

(2 ⊗ 1),(2 ⊗ 2) and (2 ⊗ 3),

(3 ⊗ 2),(3 ⊗ 3) and (3 ⊗ 4),

...

(2S − 1 ⊗ 2S − 2),(2S − 1 ⊗ 2S − 1), and (2S − 1 ⊗ 2S),

(2S ⊗ 2S − 1) and (2S ⊗ 2S).

This accounts for 3(2S − 1) + 3 = 3(2S + 1) − 3 possibilities. In addition, each state with net spin unity has a threefold
degeneracy corresponding to three choices of the Sz quantum number. The full degeneracy of the first excited state is given
by 32(2S + 1) − 9.

The second excited state must have net spin 2. This arises from

(0 ⊗ 2),

(1 ⊗ 1),(1 ⊗ 2) and (1 ⊗ 3),

(2 ⊗ 0),(2 ⊗ 1),(2 ⊗ 2),(2 ⊗ 3) and (2 ⊗ 4),

(3 ⊗ 1),(3 ⊗ 2),(3 ⊗ 3),(3 ⊗ 4) and (3 ⊗ 5),

...

(2S − 2 ⊗ 2S − 4),(2S − 2 ⊗ 2S − 3),(2S − 2 ⊗ 2S − 2),(2S − 2 ⊗ 2S − 1) and (2S − 2 ⊗ 2S),

(2S − 1 ⊗ 2S − 3),(2S − 1⊗2S − 2),(2S − 1 ⊗ 2S − 1) and (2S − 1 ⊗ 2S),

(2S ⊗ 2S − 2),(2S ⊗ 2S − 1) and (2S ⊗ 2S).

This amounts to 5(2S − 3) + 1 + 3 + 4 + 3 = 5(2S + 1) − 9 possibilities. Each of these states has a fivefold degeneracy. On the
whole, the second excited state has degeneracy 52(2S + 1) − 45. The degeneracy for higher excited states can be enumerated in
a similar fashion.

APPENDIX D: IMPLICIT FUNCTION THEOREM ON THE QUADRUMER GROUND-STATE SPACE

Let us denote the positions of four spins in our problem as �S1 ≡ (x1,y1,z1), �S2 ≡ (x2,y2,z2), �S3 ≡ (x3,y3,z3) and �S4 ≡
(x4,y4,z4). Let x := (x1,y1,z1,x2,y2,z2, · · · ,x4,y4,z4) ∈ R12 and f be a map from R12 �→ R7 given by

f := (f1,f2,f3,f4,f5,f6,f7), (D1)

where

f1 := x1 + x2 + x3 + x4,

f2 := y1 + y2 + y3 + y4,

f3 := z1 + z2 + z3 + z4,

f4 := x2
1 + y2

1 + z2
1, (D2)

f5 := x2
2 + y2

2 + z2
2,

f6 := x2
3 + y2

3 + z2
3,

f7 := x2
4 + y2

4 + z2
4.

The quantities f1−3 represent the vector sum of the four spins. Likewise, f4−7 represent the magnitudes of the four spins. Using
the implicit function theorem, we wish to examine if f−1(0,0,0,1,1,1,1) is a manifold. We are interested in the inverse image of a
specific point (0,0,0,1,1,1,1) as it corresponds to the ground-state criterion in our quadrumer problem. In other words, we wish
to know if our ground-state space forms a manifold in the precise mathematical sense.

The implicit function theorem requires the construction of a “Jacobian matrix.” If this matrix has full rank (for an m × n

matrix, it is m(n) if m � (�)n) at every point in the ground-state space, then the space is a manifold. In particular, it is a manifold
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of dimension D − C, where D is the dimension of the embedding space (12 in our case) and C is the number of constraints
(seven in our case). Here, the Jacobian matrix is given by

J (f)7×12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1

∂x1

∂f1

∂y1

∂f1

∂z1

∂f1

∂x2

∂f1

∂y2

∂f1

∂z2
· · · ∂f1

∂z4

∂f2

∂x1

∂f2

∂y1

∂f2

∂z1

∂f2

∂x2

∂f2

∂y2

∂f2

∂z2
· · · ∂f2

∂z4

∂f3

∂x1

∂f3

∂y1

∂f3

∂z1

∂f3

∂x2

∂f3

∂y2

∂f3

∂z2
· · · ∂f3

∂z4

∂f4

∂x1

∂f4

∂y1

∂f4

∂z1

∂f4

∂x2

∂f4

∂y2

∂f4

∂z2
· · · ∂f4

∂z4

∂f5

∂x1

∂f5

∂y1

∂f5

∂z1

∂f5

∂x2

∂f5

∂y2

∂f5

∂z2
· · · ∂f5

∂z4

∂f6

∂x1

∂f6

∂y1

∂f6

∂z1

∂f6

∂x2

∂f6

∂y2

∂f6

∂z2
· · · ∂f6

∂z4

∂f7

∂x1

∂f7

∂y1

∂f7

∂z1

∂f7

∂x2

∂f7

∂y2

∂f7

∂z2
· · · ∂f7

∂z4
.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1

2x1 2y1 2z1 0 0 0 0 0 0 0 0 0
0 0 0 2x2 2y2 2z2 0 0 0 0 0 0
0 0 0 0 0 0 2x3 2y3 2z3 0 0 0
0 0 0 0 0 0 0 0 0 2x4 2y4 2z4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

To determine the rank of the matrix, we determine the number
of independent rows here. We denote the rows as twelve-
component vectors ri , with i = 1, . . . ,7. We consider the set
of linear equations

7∑
i=1

λiri = 0. (D3)

If this possesses a nontrivial solution (i.e., with at least one λ

being nonzero), the rows are not independent and the Jacobian
matrix does not have full rank. Equation (D3) reduces to the
following twelve equations:

λ1 + 2x1λ4 = 0, λ1 + 2x2λ5 = 0, λ1 + 2x3λ6 = 0,

λ1 + 2x4λ7 = 0,

λ2 + 2y1λ4 = 0, λ2 + 2y2λ5 = 0, λ2 + 2y3λ6 = 0,

λ2 + 2y4λ7 = 0,

λ3 + 2z1λ4 = 0, λ3 + 2z2λ5 = 0, λ3 + 2z3λ6 = 0,

λ3 + 2z4λ7 = 0. (D4)

We consider these equations at points on the ground-state
space, i.e., at points which satisfy

4∑
i=1

xi = 0,

4∑
i=1

yi = 0,

4∑
i=1

zi = 0, (D5)

x2
j + y2

j + z2
j = 1, j = 1,2,3,4. (D6)

We first consider collinear ground states and show that a
nontrivial solution for Eq. (D3) exists. In this case, we show
that the rank of the Jacobian matrix is six. We next consider
noncollinear states and show that we only have a trivial
solution.

Collinear states: Without loss of generality, we consider a
collinear state with �S1 = �S2 = −�S3 = −�S4, i.e.,

x1 = x2 = −x3 = −x4,

y1 = y2 = −y3 = −y4,

z1 = z2 = −z3 = −z4. (D7)

The following proof can be easily extended to other cases as
well. Using Eqs. (D7) and (D4) (note that xj , yj , and zj cannot
all be zero), we obtain

λ4 = λ5 = −λ6 = −λ7. (D8)

If λ7 is zero, we immediately find that all λ’s vanish, leading to
a trivial solution. Assuming a nonzero value for λ7, it is easy to
find suitable values of all other λ’s using Eqs. (D8) and (D4).
Thus a nontrivial solution exists and the seven rows are not
linearly independent. In other words, the rank of the matrix is
less than seven. In this light, we check if the first six rows of the
matrix are linearly independent. Taking Eq. (D4) with seventh
row excluded, we obtain the following set of equations:

λ1 + 2x1λ4 = 0, λ1 + 2x2λ5 = 0, λ1 + 2x3λ6 = 0,

λ1 = 0,

λ2 + 2y1λ4 = 0, λ2 + 2y2λ5 = 0, λ2 + 2y3λ6 = 0,

λ2 = 0,

λ3 + 2z1λ4 = 0, λ3 + 2z2λ5 = 0, λ3 + 2z3λ6 = 0,

λ3 = 0. (D9)

It is clear from Eq. (D9) that all λ’s must vanish. Therefore
we have six linearly independent rows in the Jacobian matrix.
We conclude that the rank of the Jacobian matrix is 6 for any
collinear state.

Noncollinear states: We have a strong constraint on the λ’s,
viz., λ4, λ5, λ6, and λ7 must be nonzero for a nontrivial solution
to exist. If any one of them is zero, Eq. (D4) immediately forces
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all λ’s to be zero. We now rewrite Eqs. (D5) using Eq. (D4) to
obtain

λ1

(
1

λ4
+ 1

λ5
+ 1

λ6
+ 1

λ7

)
= 0,

λ2

(
1

λ4
+ 1

λ5
+ 1

λ6
+ 1

λ7

)
= 0, (D10)

λ3

(
1

λ4
+ 1

λ5
+ 1

λ6
+ 1

λ7

)
= 0.

We argue that ( 1
λ4

+ 1
λ5

+ 1
λ6

+ 1
λ7

) must vanish. Otherwise, we
will have λ1 = λ2 = λ3 = 0. This will in turn force λ4,...,7 to
also vanish due to Eq. (D4), leading to a trivial solution. As a
result, a nontrivial solution requires(

1

λ4
+ 1

λ5
+ 1

λ6
+ 1

λ7

)
= 0. (D11)

From Eqs. (D4) and (D6), we have λ2
1 + λ2

2 + λ2
3 = 2λ2

4 =
2λ2

5 = 2λ2
6 = 2λ2

7. We find that λ4,...,7 have the same magni-
tude. In order to satisfy Eq. (D11), we must have

λ4 = λ5 = −λ6 = −λ7, (D12)

or equivalently, we could pick two others to be negative. Using
Eq. (D4), this relation reduces to Eq. (D7)—a collinearity
condition for the ground state. We have shown that a nontrivial
solution for λ’s exists only at collinear ground states. There-
fore, at all noncollinear ground states, the Jacobian matrix has
full rank. This guarantees that the ground-state space, after
excluding collinear states, is a five-dimensional manifold.

APPENDIX E: SOFT FLUCTUATIONS AROUND A
COLLINEAR STATE

A general state of the system is represented by a twelve-
dimensional vector (�S1,�S2,�S3,�S4). A collinear choice for the
ground state is given by �� = (0,0,1,0,0,1,0,0,−1,0,0,−1).
This state is shown pictorially in Fig. 3, along with six “soft”
deformations, which do not cost energy. These six fluctuations
about this state are explicitly given by

�σ1 = (0,−1,0,0,−1,0,0,1,0,0,1,0),

�σ2 = (1,0,0,1,0,0,−1,0,0,−1,0,0),

�σ3 = (1,0,0,−1,0,0,−1,0,0,1,0,0),
(E1)�σ4 = (1,0,0,−1,0,0,1,0,0,−1,0,0),

�σ5 = (0,−1,0,0,1,0,0,1,0,0,−1,0),

�σ6 = (0,−1,0,0,1,0,0,−1,0,0,1,0).

These fluctuation modes, in this same order, are shown in
Figs. 3(b)–3(g). They are easily seen to be independent, as
they are orthogonal in the twelve-dimensional embedding
space. To see their soft character, we consider a point �P =
�� + ∑6

i=1 δi �σi , a deviation from the collinear state ��. The
δi’s are the amplitudes of small deviations along these six
directions. It is easy to see that this new point �P satisfies
the seven ground-state constraints given in Eqs. (D2) to linear
order in δi’s. Thus �P also lies on the ground-state manifold
for infinitesimal δi’s. This demonstrates that �σ ’s form a six-
dimensional tangent space around ��. Apart from these modes,
the system can have six more independent fluctuations as the
space is twelve-dimensional. Two of these represent “hard”

modes as they lead to a nonzero total spin and thereby incur an
energy cost. The remaining four are unphysical as they violate
fixed spin-length constraints.

APPENDIX F: SPIN WAVE THEORY ABOUT A
COLLINEAR STATE

The path integral for the quadrumer presented in Eq. (13)
is valid at all ground states. However, the identification with a
rigid rotor fails at collinear states. Another important difference
emerges at the next step when integrating out hard modes.
The number of hard modes is different at collinear states. This
prevents a uniform low-energy description (in terms of soft
modes alone) encompassing both collinear and noncollinear
states. Here, we describe a “spin-wave” description of the path
integral assuming that the system always remains in the vicinity
of a collinear state.

We consider a Néel-like configuration with ordered mo-
ments along the X axis. We reexpress the rotation matrix
R = eW , where W lives in the Lie algebra space of SO(3).
We write W = i

∑
j πjTj , where Tj ’s are the generators of

rotation about coordinate axes. The rotation amplitudes πj are
assumed to remain small, so that we are always in the vicinity
of the reference state:

Tx =
⎡
⎣0 0 0

0 0 i

0 −i 0

⎤
⎦, Ty =

⎡
⎣0 0 −i

0 0 0
i 0 0

⎤
⎦,

Tz =
⎡
⎣ 0 i 0

−i 0 0
0 0 0

⎤
⎦.

πx, πy , and πz are rotations about X, Y , and Z axes, re-
spectively. Our reference state is described by (θ = π

2 ,φ =
0). To second order in fluctuations (δθ = θ − π

2 ,δφ = φ −
0,πx,πy,πz,Lx,Ly,Lz), we get the action

S =
∫ β

0
dτ

(
iS δθ δφ̇ − 4(Lyπ̇y + Lzπ̇z) + 16J

(
L2

y + L2
z

))
.

(F1)

The Jacobian, to second order in fluctuations, comes out to
be proportional to 16(δθ )2 + (δφ)2. The partition function in
terms of the fluctuations is

Z =
∫ [∏

τ

{
16(δθ )2

τ + (δφ)2
τ

}
dπxτ dπyτ

dπzτ

×d(δθ )τ d(δφ)τ d �Lτ

]
e−S . (F2)

The dependence on (Li,πi) variables has an identifiable form.
It is the path integral of a “rigid rod” with only two rotation
degrees of freedom. The parameter Lx does not appear in the
action. This is in line with our parametrization of collinear
states, with one component of �L becoming redundant. Simi-
larly, πx does not appear as it corresponds to a trivial rotation
about the axis of collinear order. The hard modes are Ly and
Lz, which can now be integrated out. This form of the path
integral is drastically different from that obtained around any
noncollinear state, wherein all three components of �L represent
hard modes. This brings out the nonmanifold character of the
ground-state space.
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