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First-principles momentum distributions and vibrationally corrected permittivities of hexagonal
and cubic ice
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Three-dimensionally resolved proton momentum distributions and end-to-end distributions have been calcu-
lated for hexagonal and cubic water ice. First-principles quantum nuclear wave functions have been used to
investigate the impact of vibrational anisotropy, anharmonicity, proton and stacking disorder, temperature, and
pressure on these distributions. Moreover, the effects of vibrations on the electronic density in hexagonal ice
are shown to lead to a 5% vibrational correction with respect to the static-lattice optical permittivity, and proton
disorder is found to be crucial in explaining its experimentally observed temperature dependence.
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I. INTRODUCTION

Hydrogen-bonded materials play an important role across
many fields of science. The importance of water ice, in
particular, spans disciplines ranging from astrophysics to
biology. Properties of hydrogen-bonded materials are linked
to those of the hydrogen bond [1,2], and are strongly affected
by the quantum nuclear motion of the light protons [3–7].
Anharmonic quantum nuclear effects play a key role in ice.
For example, they stabilize hexagonal ice (Ih) with respect to
cubic ice (Ic), which ultimately leads to the hexagonal shape
of ice crystals [7]. Anharmonicity also plays an important role
in the anomalous thermal expansion of ice Ih [8], in proton
and deuteron isotopic effects [9–11], and in shifts in infrared
and other vibrational spectra [7]. Quantum zero-point (ZP)
and thermal motion of the protons have a large impact on the
electronic properties of ice [12,13]. Here we study the effects of
vibrational motion on the electronic density and permittivity
of ice using first-principles density-functional-theory (DFT)
methods. Quantum ZP motion dominates the equilibrium
proton dynamics of ice up to the melting temperature [12].
Proton dynamics therefore provide a rare direct probe of their
quantum nature. We have compared the results of our first-
principles calculations of position and momentum distributions
with experimental data, which provides a stringent test of
computational descriptions of ice and the hydrogen bond.

II. PROTON REAL-SPACE AND MOMENTUM
DISTRIBUTIONS

The proton radial distribution function (RDF) provides
a real-space measure of proton dynamics, whereas the mo-
mentum distribution function (MDF) gives complementary
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reciprocal-space information [14]. Experimentally, the RDF
can be accessed by inversion of the neutron [15] and x-ray
structure factors [16], while neutron Compton scattering and
deep inelastic neutron scattering [17,18] can probe the MDF.
Path-integral molecular dynamics (PIMD) simulations have
been the method of choice for calculating both the RDF
[19–21] and MDF [22–24] and have provided important
insights into the RDF and MDF signatures of the interactions
of the protons with their environment. However, they have also
demonstrated that some of the most commonly used empirical
models of water do not accurately reproduce the experimental
MDF. Experimental data are currently limited to the spherically
averaged MDF and are insufficient to disentangle the effects
of environmental anisotropy and vibrational anharmonicity
[25]. This gives rise to severe difficulties in interpreting
experiments on nanoconfined and supercooled water [26,27].
Such experiments highlight the need for accurate ab initio
simulations of proton distribution functions, such as the path-
integral Car-Parinello molecular dynamics (PICPMD) studies
of Lin et al. [25] and Flammini et al. [18].

PIMD studies, including those of the PICPMD flavor, have
their limitations.

(i) They are expensive, which limits the number (and sizes)
of systems, temperatures, and pressures that can be studied.

(ii) The effects of anharmonicity cannot be extracted di-
rectly, as PIMD inherently simulates the behavior of the
anharmonic system.

(iii) At its core PIMD is a sophisticated phase-space
sampling method in which statistical uncertainty limits the
accuracy with which (complicated) quantities, such as the
spatially resolved MDF, can be determined.

To overcome these limitations, we calculate the MDF
directly from the fully anharmonic nuclear wave function
that is obtained using the vibrational self-consistent field
(VSCF) approach of Monserrat et al. [28]. This provides
the unprecedented level of microscopic insight required to
disentangle the effects of anisotropy, vibrational anharmonic-
ity, pressure, temperature, and stacking and proton disorder.
Our analytic description of the vibrational wave function also
greatly facilitates calculations of accurate three-dimensionally
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resolved MDFs. Moreover, the VSCF approach naturally lends
itself to the use of nondiagonal supercells [29], which enable
extensive sampling of the vibrational Brillouin zone (BZ)
without the need for large supercell simulations. This renders
the VSCF approach far less expensive than PIMD methods
when points in the vibrational BZ other than the � point need to
be sampled for converged results. Notably, calculations using
64-molecule simulation cells show that �-point calculations
using eight-molecule simulation cells suffice in the context of
proton RDFs and MDFs in ice Ih and Ic.

A. Computational methods

We use DFT as implemented in the CASTEP plane-wave
pseudopotential package [30] (version 7.03) with the PBE
exchange-correlation (xc) functional [31], which reproduces
the experimental lattice parameters of ice Ih and Ic rather well
[7]. Geometry optimizations and the mapping of the Born-
Oppenheimer potential-energy surface (PES) were performed
with a plane-wave energy cutoff of 1600 eV, a Monkhorst-Pack

k-point grid [32] spacing of less than 2π × 0.04 Å
−1

, and on-
the-fly generated ultrasoft pseudopotentials [33]. The resulting
energy differences between frozen-phonon configurations are
converged to below 10−4 eV/H2O, the atomic positions are
converged to within 10−5Å, and the residual forces are con-
verged to within 10−4 eV/Å.

For an N -atom system, the 3N harmonic vibrational normal
modes (n,K) with branch index n, first vibrational BZ mo-
mentum K, and frequencies ωnK are calculated using a finite
displacement approach [34]. The harmonic approximation is
used to define normal-mode coordinates qnK, which measure
the collective atomic displacements along the normal modes
(n,K). They are related to the Cartesian displacement of the
nucleus i with mass Mi from its equilibrium position, ui , by

qnK =
∑

i

√
Mi exp(−iK · Ri)ui · w−Kni, (1)

where w−KnIμ is the displacement pattern of mode (n,K). The
momentum K is suppressed in the following as we restrict
ourselves to �-point calculations.

The light mass of the protons,Mp = 1837.3621238166 a.u.,
leads to large displacements due to quantum zero-point motion,
implying that anharmonicity in the PES is important. In ice
Ih and Ic anharmonic vibrations can be calculated within the
independent-mode approximation due to the small coupling
between normal modes [7]. Accordingly, the PES is expressed
as a function of q = (qi, . . . ,q3N ), expanded in independent-
mode terms V (1)(qn), pairwise couplings V (2)(qn,qn′ ), etc., and
then truncated after the V (1)(qn) ≡ V (0, . . . ,qn, . . . ,0) − V (0)
term:

V (q) = V (0) +
∑

n

V (1)(qn)

�������������
+ 1

2

∑
n

∑
n′ �=n

V (2)(qn,qn′ ) + · · ·.

(2)
The 3N anharmonic independent-mode potentials V (1)(qn) are
mapped up to large amplitudes of four times the harmonic rms
displacements and fitted using cubic splines. Mapping each
V (1)(qn) using 11 equally spaced points was found to lead to

converged results. The vibronic Schrödinger equation(
−

∑
n

1

2
∇2

qn
+ V (q)

)
|�S〉 = ES|�S〉 (3)

is solved following the vibrational self-consistent field method
described in Ref. [28]. The anharmonic vibrational wave
function is expanded as a product,

|�S(q)〉 =
∏
n

|ψSn
(qn)〉, (4)

of single-particle anharmonic eigenstates, |ψSn
(qn)〉, each us-

ing a basis of 25 simple harmonic oscillator eigenstates. S
denotes the vibrational eigenstate the elements Sn of which
label the states of the independent modes.

Notably, the choice of xc functional affects nuclear vibra-
tions in ice Ih and Ic very little for fixed unit-cell parameters [7].

B. Comparison with experiment and PICPMD results

Using the anharmonic (unless explicitly stated) vibrational
wave function, the distribution ni(p) of the momentum p of
proton i can be calculated as the Fourier transform of the one-
body reduced density matrix ρi(ri ,r′

i):

ρi(ri ,r′
i) =

∫
(d3rj �=i)〈r′

i |�〉〈�|ri〉,

ni(p) =
∫

d3rid
3r′

i exp

[
− i

h̄
p · (ri − r′

i)

]
ρi(ri ,r′

i),

(5)

where
∫

(d3rj �=i) denotes integration over the atomic positions
rj of all 3N atoms in the simulation cell except atom i. In the
following we refer to

ni(r) =
∫

d3riρi(ri ,ri + r) (6)

as the “end-to-end distribution” in analogy with open-ended
path-integral simulations [35], and the absence of the index i

denotes quantities that have been averaged over all protons.
In practice ni(r) and ni(p) are both discretized in real and
reciprocal space, respectively. Measurements of the spatially
resolved MDF, n(p), are not yet available for ice, but the
spherically averaged distribution np(p) ≡ ∫

dθ dφ p2n(p) has
been measured, for example, by Reiter et al. [17] and Senesi
et al. [36]. Their data for np(p), the anisotropy of n(p), and the
kinetic energy of the protons provide a measure of the accuracy
of computational approaches.

The spherically averaged MDF, np(p), is conventionally
described by

np(p) = −1

2πp

d

dp

[
exp

(− y2

2σ 2

)
√

2πσ

∑
n

an

22nn!
H2n

(
y√
2σ

)]
,

(7)

where σ and the dimensionless an are fitting parameters
and the Hn are the usual Hermite polynomials. The widths
σ obtained in this paper and listed in Table I agree well
with recent experimental [18] and PICPMD [25] data. We
find that the kinetic energy of the protons Tp, which can
be calculated as Tp = ∫ ∞

0 p2/(2M)np(p)dp or (within the
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TABLE I. The kinetic energies of the protons T σ
p = 3h̄2/(2M)σ 2 are calculated from the estimated width σ of the MDF obtained by fitting

Eq. (7) to np(p) at 268 K, while Tp denotes direct, nonparametric estimates of the kinetic energy of the protons. σ‖ and σ⊥ measure the widths
of n(p) parallel and perpendicular to the O-H direction, averaged over proton orderings. Errors arise from fitting Eq. (8) to noisy data due to the
experimental resolution (Exp), statistical uncertainty from finite sampling (PICPMD), and discretization of n(r) and n(p) (VSCF), respectively.

σ (Å
−1

) a2 a3 T σ
p (meV) Tp (meV) σ‖ (Å

−1
) σ⊥ (Å

−1
) σ‖/σ⊥

Exp [17] 4.58 0.060(1) −0.07(2) 6.29 ± 0.51 3.53 ± 0.31 1.8 ± 0.3
Exp [18] 4.99 0.064(2) 0.00(1) 156(2) 156(9) 6.47 ± 0.11 4.30 ± 0.19 1.5 ± 0.1
Harmonic VSCF 4.85 0.057(1) 0.00(1) 147(1) 6.58 ± 0.02 3.89 ± 0.02 1.7 ± 0.1
Anharmonic VSCF 4.96 0.063(1) 0.00(1) 154(1) 6.79 ± 0.02 4.03 ± 0.15 1.7 ± 0.1
PICPMD [18,25] 4.98 155(2) 143(2) 6.28 ± 0.12 4.18 ± 0.14 1.5 ± 0.1

harmonic approximation) via Tp = 3h̄2/(2M)σ 2, matches the
experimental and PICPMD data [18,25].

The insensitivity of np(p) to anisotropy in the momen-
tum distribution popularized the mean force f (x) as a more
sensitive probe of the local environment of a proton [35].
Experimentally, f (x) can be extracted via its relationship with
the Fourier transform of the neutron Compton profile. Its
slope at x = 0 determines the curvature of the proton potential
around the equilibrium position and thereby provides a second
measure of the kinetic energy of the protons. A comparison of
the mean force obtained using the VSCF vibrational method
to that from PICPMD simulations [18] is shown in the inset of
Fig. 1.

The anisotropy of n(p) is conventionally described in terms
of the widths of the three-dimensional anisotropic Gaussian fit
to ni(p):

ni(p) = cos2
(

pzd

2h̄

)
1 + exp

(−d2σz
2

2h̄2

) ∏
α=x,y,z

exp
(−pα

2

2σα
2

)
(2πσα)2 , (8)
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FIG. 1. Comparison of the spherically averaged momentum dis-
tribution np(p) from experiment (yellow [23], orange [17], and red
[18]) and path-integral Car-Parinello molecular dynamics (PICPMD)
simulations (blue) [18] to VSCF vibrational calculations (black).
The inset compares the mean force f (x) with error bars inferred
from neutron Compton scattering (red) [18] to PICPMD data (blue)
[18] and VSCF calculations. The deviation of f (x) from linearity
indicates that the proton potential exhibits substantial anharmonicity.
The uncertainties in the experimental distributions arise from fitting
models to data with finite experimental resolution. The PICPMD
data exhibit small statistical errors, while the VSCF results exhibit
negligibly small errors due to the discretization of n(r) and n(p).

where d and the widths σα are fitting parameters. The
O-H · · · O axis is characterized by σ‖, while the two normal
axes are typically characterized by a single parameter σ⊥.
The differences between the in- and out-of-molecular plane
environments of each proton imply that the two normal axes
are inequivalent, and the widths of ni(p) along the normal
axes indeed differ by about 10%. Disregarding this, Table I
demonstrates that the MDF from the VSCF method is about
as good as the PICPMD counterparts, provided vibrational
anharmonicity is accounted for. It also demonstrates good
agreement with the more recent neutron Compton scattering
(NCS) data from Ref. [18], with the exception of the anisotropy
of n(p). The differences in σ‖ and σ⊥ are likely due to the
finite number of proton orderings considered.

Measurements of the spatially resolved momentum dis-
tribution in KH2PO4 [37], which in its crystalline form is
used in optical modulators and for nonlinear optics such as
second-harmonic generation, and Rb3H(SO4)2 [38] suggest
that ni(p) in Ih should become accessible in the future with
improved experimental techniques.

C. End-to-end distributions

In line with Eq. (8), the end-to-end distribution, as defined
in Eq. (6), of a proton i in proton-disordered ice is well approxi-
mated by an anisotropic Gaussian, ni(r) ≈ exp(−1/2rT C−1

i r)
[25], where Ci,α,β = 〈ri,αri,β〉 is the correlation matrix of
proton i. The principal axes of the anisotropic Gaussian
form reflect the molecular orientation of the particular proton.
However, in proton-ordered ice the local environments of the
protons are generally inequivalent, which is reflected in the
end-to-end distribution of individual protons. To highlight
the anisotropy of ni(r) and the role of the local proton
environment, we factorize ni(r) into an isotropic free-particle
contribution and an anisotropic environmental component
ñi(r), ni(r) ≡ ñi(r) exp(MpkBT r2), where Mp is the proton
mass and T is the temperature. Figure 2(a) shows that ñi(r)
for an individual proton in Ih Cmc21—the lowest energy
proton ordering known in Ih—deviates substantially from the
purely anisotropic Gaussian form and reflects, in particular,
the positions of the next-nearest-neighbor protons. Moreover,
in a particular proton-ordered configuration of Ih, such as
Cmc21, not all possible environments are realized, so that
even the proton-averaged ñ(r) shown in Fig. 2(b) deviates
from the hexagonal symmetry expected from an anisotropic
Gaussian form [25]. Averaging over the 16 eight-molecule
proton orderings of Ih used by Hirsch and Ojamäe [39] as
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FIG. 2. Projection of the proton environmental end-to-end distributions ñ(r) onto the basal plane (a) of a single proton, (b) averaged over all
protons in Ih Cmc21 (low-temperature, proton-ordered form of Ih), and (c) averaged over all protons in the 16 eight-molecule proton orderings
of Hirsch and Ojamäe [39]. In (b) blue and red shading indicate larger and smaller densities with respect to the ñ(r) of proton-disordered Ih
shown in (c), respectively. This highlights deviations from hexagonal symmetry due to the small number of local proton environments realized
in Ih Cmc21, irrespective of simulation cell size. Ih Cmc21 simulation cells containing eight and 64 molecules, respectively, exhibit practically
identical ñ(r).

shown in Fig. 2(c) recovers the hexagonal symmetry expected
from proton-disordered Ih.

D. Stacking and proton disorder and
vibrational anharmonicity

As shown in Fig. 3(a) the proton momentum distributions
of different proton orderings of Ih are indistinguishable. The
differences between the structures of Ih and Ic are very small
but are reflected even in the spherically averaged MDFs. The
stronger localization of the protons in Ic evidenced by 2%
smaller rms displacements [7] manifests itself in a MDF that
is around 2% wider in Ic than in Ih. Real ice “Ic” samples
are typically stacking disordered [40,41]. They contain both
Ih and Ic, which differ only in the stacking of molecular
layers and which form the end members of the infinite set
of stacking-disordered structures generated by introducing
stacking faults into the ground-state structure Ih. The MDFs
of Ih and Ic thus limit the effects of stacking disorder on the
spherically averaged proton MDFs of real ice samples.

The rms proton displacements of Ref. [7], moreover, in-
dicate that vibrational anharmonicity localizes the protons
in Ih by around 2% with respect to the harmonic proton
density distribution, suggesting that vibrational anharmonicity
should widen the distribution n(p). Figure 3(b) shows that the
anharmonic np(p) is indeed about 4% wider than its harmonic
counterpart. The corresponding harmonic and anharmonic
n(p) in the basal and prism planes are shown in Figs. 3(c)–3(d).
While Figs. 3(c) and 3(d) highlight the symmetry of n(p),
Figs. 3(e) and 3(f) highlight that n(p) widens predominantly
in the O-H bond direction.

Overall, the differences between the MDFs of different
proton orderings of Ih and Ic are too small to distinguish in
experiment, but the effects of vibrational anharmonicity, while
still small, are already of comparable size to the uncertainty in
recent NCS data [18]. This suggests that it should be possible
to discern them in future experiments.

E. Temperature and pressure dependence

The effects of vibrational anharmonicity and stacking dis-
order on np(p) are small, begging the question of the roles
played by temperature, thermal expansion, and pressure.

In ice only the softest modes, i.e., pseudotranslations, are
thermally excited up to melting. Their contribution to proton
motion is small, so that any temperature dependence must
arise from thermal expansion. The volume expansion of Ih
between zero temperature and melting is around 2%. However,
neither np(p) nor n(p) exhibits any discernible temperature
dependence across this temperature range.

Conversely, external pressures of up to ∼200 MPa lead to
volume compressions of up to 1.8%, at which point the Ih-II
or Ih-III transition occurs. However, np(p) and n(p) show no
significant pressure dependence, even though the rms proton
displacements decrease by up to 0.5%.

The insensitivity of np(p) to pressure and temperature
arises from the same principle: while pseudotranslations and
librational modes soften upon expansion, the molecular modes
harden, leading to cancellation of their effects on proton
motion. Evidence of this is provided in the Supplemental
Material (SM) [42].

III. VIBRATIONAL RENORMALIZATION OF
ELECTRONIC PROPERTIES

Studies of vibrational corrections to band gaps of bulk ice
Ih and Ic [12] and their surface band gaps [13] demonstrate
that the electronic density is substantially renormalized by
quantum nuclear motion. We make use of the explicit form
of the anharmonic nuclear wave function provided by the
VSCF approach and the adiabatic approximation to sample
the electronic density, Born effective charges, and permittivity
using Monte Carlo methods.

Within the Born-Oppenheimer approximation, expectation
values of vibrationally renormalized properties, O(T ), at
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FIG. 3. Panel (a) shows the (anharmonic) np(p) for different Ih (blue) and Ic (red) proton orderings. Panel (b) shows the harmonic (blue)
and anharmonic (red) np(p) of Ih Cmc21. Panels (c) and (d) show the harmonic (blue) and anharmonic (red) n(p) of Ih Cmc21 projected onto
the basal and prism plane, respectively, while panels (e) and (f) show the corresponding anharmonic corrections to n(p).

temperature T may be written as

O(T ) = 1

Z(T )

∑
S

〈�S(q)|Ô(q)|�S(q)〉e−βES
, (9)

where

Z(T ) =
∑

S

〈�S(q)|�S(q)〉e−βES
, β = 1

kBT
(10)

is the partition function, and Ôg(q) is the value of observable
O for a frozen-phonon structure with atomic positions q =
(. . . ,qnk, . . .). The summation over vibrational eigenstates S
includes the ground and excited states.

Here we use Monte Carlo sampling of O(T ) with Ns frozen-
phonon structures, {qi}, randomly drawn from the vibrational
density, as 1/Z(T )

∑
S |�S(q)|2e−βES

, which gives

O(T ) = 1

Ns

Ns∑
i=1

Ô(qi). (11)

We initially sample the electronic density, Born effective
charges, and permittivity using the harmonic (har) vibrational
density at a high temperature T ′ = 260 K, and then obtain
the harmonic or (where explicitly stated) anharmonic (anh)

expectation values at lower temperatures T using

O(T ) = 1

Ns

Ns∑
i=1

wi(qi ,T )Ô
(
qi

har

)
,

wi(qi ,T ) = Zhar(T ′)
Z(T )

∑
S |�S(q)|2e−βES

∑
S

∣∣�S
har(q)

∣∣2
e−β ′ES

har

, (12)

where β ′ = 1/(kBT ′). This reweighting approach is accurate,
because the target vibrational density distributions are nar-
rower than the harmonic distribution at 260 K, from which
the frozen-phonon samples are drawn originally.

In practice at least 350 frozen-phonon configurations qi

were sampled to determine various properties for each proton
ordering, reducing statistical uncertainties to less than 0.5%.
By considering the same frozen-phonon configurations for
different functionals, five configurations using the hybrid
HSE06 functional [43,44] and about 20 configurations for each
additional semilocal functional other than PBE are sufficient
to gain insight into the role of the xc functional. More detail
regarding the choice of functional can be found in the SM [42].

A. Vibrationally corrected electronic density

As shown in Fig. 4, nuclear vibrational motion reduces the
valence electron density, in particular, around the equilibrium
proton positions and the O-H covalent bonds. The dominant
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FIG. 4. Vibrational corrections to the static-lattice valence elec-
tron density in electrons per unit cell. The oxygen sublattice is
indicated by solid gray lines. The large amplitude vibrational motion
of the protons, in particular, smears out the electron-density localized
on the equilibrium proton positions and on the hydrogen bridge bonds.

(librational/O-H bond bending) motion of the protons is normal
to the respective O-H · · · O axes and delocalises the electronic
density around the O-H · · · O axes.

Delocalization of the valence electron density due to quan-
tum nuclear motion has a striking effect not only on the valence-
band maximum in ice and its electronic quasiparticle band gap
[12] but also on the electronic and nuclear polarizability of
ice. The nuclear polarizability, in particular, is affected by
the renormalization of the Born effective charges, Z. The
dependence of Z(qi) on the displacement along a particular
vibrational mode, qi , is typically dominated by a linear term,
which does not contribute to the renormalization of Z due
to the symmetry of the vibrational wave function. Moreover,
calculating Z(qi,qj ) for simultaneous displacements qi,qj

along pairs of vibrational modes suggests that cross-terms play
a negligible role. Instead, the subdominant, higher-order terms
in Z(qi) lead to a significant renormalization of Z, which is
reflected in the increase in the nuclear polarizability by around
10% due to ZP nuclear vibrations. Evidence of this is supplied
in the SM [42].

Vibrational corrections to the core electron density around
the oxygen nuclei are too small to be resolved in the coarse-
grained Fig. 4 due to the small rms displacements of the oxygen
nuclei and affect neither the electronic quasiparticle band gap
nor the polarizability of ice.

B. Vibrationally corrected permittivity

The experimentally observed permittivity, ε, of ice samples
which contain various point and stacking defects exhibits
a nontrivial dispersion. The low-frequency behavior around
50 Hz arises from proton (dis-)order and Bjerrum and/or ionic
defects. At intermediate frequencies between around 1 MHz
and around 0.3 THz the relative permittivity is roughly constant
at a value of around 3.2, and is well described as the sum of the
electronic response and the Debye relaxation of the dipoles
of the water molecules. Above 0.3 THz crystal vibrational
modes (or “pseudotranslations”) begin to be excited, although
the onset of the nuclear vibrational response occurs with the
excitation of librational modes at above 10 THz. The nuclear
vibrational response determines the detailed permittivity of

ice up to around 100 THz before dying off, leaving only the
electronic contribution to the permittivity of ice of around 1.7
arising from its electronic polarizability.

Here we focus on the permittivity of ice in the intermediate-
frequency regime between 1 MHz and 10 THz, which we
label simply as ε, although the electronic contribution to the
permittivity provides insight into the optical permittivity of
ice between 400 THz (red light) and 700 THz (blue light). The
intermediate-frequency and optical regimes of the permittivity
of ice play an important role, for example, in modeling cloud
radiative processes and microwave propagation in atmospheric
physics/climate science, as well as cloud measurements [45].

Recent work has probed both the permittivity of ice up to
the THz regime [46] and its temperature dependence between
190 and 260 K [47]. These experimental data provide reference
points for computation and provide crucial information for
understanding the role of proton disorder in determining the
permittivity of ice.

Here, the permittivities of the Monte Carlo sampled frozen-
phonon configurations were calculated within the framework
of Ref. [48] and using the CASTEP code to evaluate  and ε in
the high-frequency limit, ε∞.

Figure S5 in the Supplemental Material [42] shows ε for the
16 eight-molecule proton orderings of Hirsch and Ojamäe [39]
and demonstrates that ε (unlike, for example, the electronic
band gap [12]) depends sensitively on the particular proton
ordering. In contrast, the increase in ε due to nuclear motion
is very similar for all proton orderings and is larger than 5%
of the static-lattice value in all cases considered.

The temperature dependence of ε for a particular proton
ordering of Ih is negligible in comparison to the differences
between values of ε of up to 18% among proton orderings.
The permittivity of a particular proton ordering generally
changes by no more than 0.5% from zero temperature up
to melting. This contrasts with the experimental increase in
permittivity of proton-disordered ice of close to 2% over
the same temperature range [46]. Boltzmann averaging over
the 16 eight-molecule proton orderings considered results in
a temperature-dependent ε which compares reasonably well
with experiment (see Fig. 5), although it does not exhibit the
clean quadratic increase of the experimental data. This is likely
due to (a) the finite set of proton orderings used [49] and
(b) uncertainties in proton-ordering energetics. Nevertheless,
Fig. 5(a) highlights the importance of proton disorder and
thermally induced changes in proton order.

In contrast to the total ε(=εelec + εdipole), the electronic
contribution to the relative permittivity, εelec, of 1.87 (exp:
1.72 ± 0.02 [50]) is insensitive to the particular proton order-
ing. εelec differs by less than 0.3% between different proton
orderings. The differences in the total ε arise from differences
in the dipole contribution, εdipole, between different proton or-
derings. Also, εelec has a negligibly small intrinsic temperature
dependence, irrespective of the particular proton ordering, so
that εelec exhibits a negligible temperature dependence both for
proton-ordered and proton-disordered ice.

Analogously to the mean ε, its anisotropy, �ε ≡ ε‖ − ε⊥,
where ε‖ and ε⊥ denote the permittivity along the principal
axes parallel and orthogonal to the c axis, varies substantially
across proton orderings and exhibits a negligible temperature
dependence. Again, the Boltzmann average of the values of �ε
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FIG. 5. Comparison of the computed temperature dependence of
(a) ε and (b) the anisotropy of ε, �ε, for proton-ordered (Cmc21) and
disordered Ih to experimental THz data (blue) [46,47]. The geometric
average (Geom), 1

16

∑16
i=1 εi , and Boltzmann average (Boltzmann),

1
Z

∑16
i=1 e−βEi

εi , of the εi of the different proton orderings of Ih
are shown in gray and red, respectively. Here, β = 1/(kBT ), Z =∑16

i=1 e−βEi
, and Ei are the configurational energies of the different

proton orderings, which differ by up to around 10 meV/H2O. The
shaded regions indicate the statistical uncertainty from Monte Carlo
sampling and the experimental uncertainty due to sample preparation,
respectively.

compares reasonably well with the data for proton-disordered
ice of Fujita et al. [47], as shown in Fig. 5(b).

Both the static-lattice ε and its vibrational correction are
sensitive to the choice of xc functional. However, by constrain-

ing the simulation cell volume to the experimental value we
largely eliminate the dependence on the xc functional. The role
of the xc functional is further investigated in the Supplemental
Material [42].

IV. CONCLUSIONS

Proton disorder, unlike temperature and pressure, substan-
tially affects the proton position and momentum distributions
in Ih. It is also crucial for the temperature dependence of the
permittivity of Ih. Accurate static-lattice permittivities can be
calculated for a particular proton ordering using theoretical
methods such as GW many-body perturbation theory [51],
or quantum chemical methods, but the 5% increase in the
permittivity of Ih due to nuclear vibrational motion makes it
imperative to account for vibrational effects when comparing
to experiment.

The VSCF method provides a detailed understanding of
the roles of anisotropy and vibrational anharmonicity for
the proton momentum distribution, which will facilitate the
interpretation of experiments, for example, on nanoconfined
and supercooled water. Anharmonic vibrations are crucial in
understanding the relative stability of Ih and Ic and many
other phenomena. The VSCF vibrational method enables us
to directly study their signatures in position and momentum
distributions. Finally, the VSCF vibrational method provides
the basis for efficient calculations of accurate position and
momentum distributions and the means to understand the
equilibrium proton dynamics in technologically important
materials, such as KH2PO4 [37] and other hydrogen-bonded
materials which are considered candidates for cheap, environ-
mentally friendly, organic electronics [52–54].
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