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Thermalization in simple metals: Role of electron-phonon and phonon-phonon scattering

Shota Ono*

Department of Electrical, Electronic and Computer Engineering, Gifu University, Gifu 501-1193, Japan

(Received 6 November 2017; revised manuscript received 25 January 2018; published 20 February 2018)

We study the electron and phonon thermalization in simple metals excited by a laser pulse. The thermalization is
investigated numerically by solving the Boltzmann equation taking into account the relevant scattering mechanism:
electron-electron, electron-phonon (e-ph), phonon-electron (ph-e), and phonon-phonon (ph-ph) scattering. In the
initial stage of the relaxation, most of the excitation energy is transferred from the electrons to phonons through
the e-ph scattering. This creates hot high-frequency phonons due to the ph-e scattering, followed by an energy
redistribution between phonon subsystems through the ph-ph scattering. This yields an overshoot of the total
longitudinal-acoustic phonon energy at a time, across which a crossover occurs from a nonequilibrium state,
where the e-ph and ph-e scattering frequently occur, to a state, where the ph-ph scattering occurs to reach a
thermal equilibrium. This picture is quite different from the scenario of the well-known two-temperature model
(2TM). The behavior of the relaxation dynamics is compared with those calculated by several models, including
the 2TM, the four-temperature model, and nonequilibrium electron or phonon models. The relationship between
the relaxation time and the initial distribution function is also discussed.
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I. INTRODUCTION

Notwithstanding the fundamental interest in ultrafast dy-
namics of elementary excitations in solids excited by femtosec-
ond laser pulses the thermalization even in simple metals is not
well understood. The aim of this paper is to develop a theory
for the thermalization of metals beyond the well-known two-
temperature model (2TM), that is, beyond the quasiequilibrium
approximation.

The thermalization in metals after a pump pulse irradiation
is governed by the electron-electron (e-e), electron-phonon
(e-ph), phonon-electron (ph-e), and phonon-phonon (ph-ph)
scattering. The energy transfer between electrons and phonons
through the e-ph and ph-e scattering has been theoretically
studied by Kaganov et al. [1], motivated by the electron trans-
port experiment, where a deviation from the Ohm’s law was
observed in metals. Given that the e-e and ph-ph scattering keep
the electron and phonon distributions equal to quasiequilibrium
distributions, the energy relaxation can be described by the time
evolution of the electron and phonon temperatures. Based on
this picture, Anisimov et al. have first applied the 2TM to study
the energy relaxation of photoexcited systems [2]. Allen has
revealed the relationship between the e-ph coupling function
used in the 2TM and the Eliashberg function used in the strong
coupling theory of superconductivity [3], which has provided
how to interpret time-resolved experiments [4–7] and has been
a basis for studying the thermalization of condensed matters
theoretically [8–10].

However, it has been questionable whether the assumption
behind the 2TM is really valid or not. In fact, both the
experimental works using time-resolved photoemission
spectroscopy [11–14] and the theoretical works based on
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the Boltzmann equation (BOE) considering the e-e and e-ph
scattering [12,15–19] have revealed the breakdown of the 2TM.
Furthermore, recent studies have pointed out the importance of
the ph-ph scattering for better understanding the thermalization
in metals [20–23], semiconductors [24], and Dirac semimetals
[25]. Note also that several attempts have been made to extract
the e-ph coupling constant from experimental data [26–28] by
exploiting the nonequilibrium theory developed in Ref. [16].
In addition, thermalization in microscopic models based on
a Holstein-type Hamiltonian has been recently investigated
[29–31]. A picture for the thermalization in solids should
now be reconsidered without using the quasiequilibrium
approximation.

In this paper, we investigate the electron and phonon
thermalization in simple metals by solving the BOE taking
into account the e-e, e-ph, ph-e, and ph-ph scattering. Through
the e-ph scattering, most of the electron energy is transferred
into longitudinal acoustic (LA) phonons in the initial stage
of the relaxation. Simultaneously, the LA phonon decays into
transverse acoustic (TA) phonons via the ph-ph scattering.
This yields an overshoot of the total LA phonon energy at
a time. Such an overshoot is an indicator for a crossover from
a nonequilibrium state, where the e-ph and ph-e scattering
frequently occur, to a state, where the ph-ph scattering occurs to
reach a thermal equilibrium. Throughout the energy relaxation,
the effect of the e-e scattering can be negligible. The thermal-
ization scenario demonstrated is quite different from that of the
2TM [3]. A comparative study using several models shows that
the energy relaxation of quasiequilibrium states is faster than
that of nonequilibrium states. This implies that an application
of the 2TM to time-resolved experiments would lead to an
underestimation of the e-ph coupling constant of metals, which
is consistent with the results in Ref. [20]. It is also shown that
the relaxation time strongly depends on the initial electron and
phonon distribution functions as well as their initial energies.
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The paper is organized as follows. In Sec. II A, the e-e,
e-ph, and ph-ph interaction Hamiltonians are formulated. The
matrix elements derived are used for describing the multi-
particle scattering events. In Sec. II B, the BOE for the electron
and phonon is derived. For later use, several models for the
energy relaxation of solids are provided. In Sec. III A, a
picture for the thermalization is presented by investigating
the time evolution of the excess energy, the energy transfer
rate, and the distribution functions for electron and phonon.
In Sec. III B, the behavior of relaxation dynamics in the
nonequilibrium electron-phonon model is compared with those
in other models. The relationship between the relaxation time
and the initial distribution function is also discussed. The paper
is summarized in Sec. IV.

II. THEORY

We consider the nonequilibrium electron-phonon dynamics
in simple metals excited by a laser pulse. The low energy exci-
tation of the electron and the phonon is described by the jellium
model and the continuum elasticity model, respectively. The
ultrafast dynamics of those elementary particles is regulated by
the BOE with the e-e, e-ph, ph-e, and ph-ph collision integrals.
Thus, we first formulate the interaction Hamiltonian necessary
to describe the scattering processes.

A. Hamiltonian

The total Hamiltonian is written as

H = He + Hp + Hep, (1)

where He,Hp, and Hep denote the electron, the phonon, and
the e-ph interaction Hamiltonian, respectively. The former
two Hamiltonians include the e-e and ph-ph interaction part,
respectively. The expression for each Hamiltonian is given
below.

1. Electrons

In a simple metal, the valence electron can be treated as a
free electron in the zeroth-order approximation [32]. Since the
electrons interact with each other via the Coulomb interaction
forces, the electron Hamiltonian is written as [33]

He =
∑

σ

∫
d rψ†

σ (r)

(
− h̄2

2m
∇2

)
ψσ (r)

+ 1

2

∑
σ,σ ′

∫
d r

∫
d r ′ψ†

σ (r)ψ†
σ ′(r ′)V (|x|)ψσ ′(r ′)ψσ (r),

(2)

where h̄ is the Planck constant, and m is the electron mass.
The first and the second terms are the kinetic and the e-e
interaction energies, respectively. ψσ (r) is the field operator
and is expanded by the plane waves

ψσ (r) =
∑

k

akσ

eik·r
√

�
(3)

with the electron position r , the wave vector k, the spin σ , and
the crystal volume �. akσ (a†

kσ ) is the destruction (creation)

operator of the electron with k and σ . V (|x|) with x = r − r ′
is the screened Coulomb potential energy given as

V (|x|) = e2

4πε0

e−qTF |x|

|x| (4)

with the electron charge e and the dielectric constant of vacuum
ε0. qTF is the Thomas-Fermi wave number given by

qTFa0 =
(

12

π

)1/3 1√
rs

(5)

with the dimensionless Wigner-Seitz radius rs and the Bohr
radius a0 = 4πε0h̄

2/(me2). Using the Fourier transformation,
Eq. (2) is expressed as

He =
∑
kσ

εka
†
kσ akσ

+1

2

∑
k1σ1

∑
k2σ2

∑
q

Ṽ (q)a†
k1+qσ1

a
†
k2−qσ2

ak2σ2ak1σ1 , (6)

where εk = h̄2k2/(2m) is the free electron energy and Ṽ (q) is
the Fourier component of the screened Coulomb potential

Ṽ (q) = 1

�

e2

ε0
(
q2 + q2

TF

) , (7)

which is independent of the electron spin.

2. Phonons

The lattice dynamics in an atomistic system can be consid-
ered as an elastic wave propagation in a continuum medium
within a long wavelength limit [32,34]. The Hamiltonian for
the latter is given by

Hp = 1

2ρi

∑
i

∫
p∗

i (r)pi(r)d r

+ 1

2!

∑
ijkl

∫
d rCijklηij (r)ηkl(r)

+ 1

3!

∑
ijklmn

∫
d rCijklmnηij (r)ηkl(r)ηmn(r), (8)

where Cijkl (Cijklmn) is the forth-rank (six-rank) tensor and
serves as the second-order (third-order) elastic constants with
i,j,k,l,m,n = 1,2,3. ρi is the ion mass density given by ρi =
MiNi/� with the ion mass Mi and the number of the ions Ni

in a volume �. The strain tensor is defined as [35,36]

ηij (r) = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

+
∑

k

∂uk

∂xi

∂uk

∂xj

)
. (9)

Within the isotropic approximation, the forth-rank tensor is
given by

Cijkl = λLδij δkl + μL(δikδjl + δilδjk), (10)

where λL and μL are Lamé constants, while the six-rank tensor
is given as

Cijklmn = E1δij δklδmn

+E2[δij (δkmδln + δknδlm) + δkl(δimδjn + δinδjm)
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+ δmn(δikδjl + δilδjk)]

+E3[δik(δjmδln + δjnδlm) + δil(δjmδkn + δjnδkm)

+ δim(δjkδln + δjlδkn) + δin(δjkδlm + δjlδkm)],

(11)

where E1, E2, and E3 are the third-order elastic constants. The
displacement vector is written as

ui(r) =
∑
Q,γ

√
h̄

2ρi�ωγ ( Q)
(bQγ + b

†
− Qγ ) × ei( Q,γ )ei Q·r ,

(12)

where bQγ and b
†
Qγ are the destruction and creation operators

for the phonon with the wave vector Q = (Q1,Q2,Q3) and
the polarization γ = LA, TA1, and TA2. ei( Q,γ ) is the ith
component of the polarization vector e( Q,γ ). The momentum
operator in Eq. (8) is given by

pi(r) = −i
∑
Q,γ

√
h̄ρiωγ ( Q)

2�
(bQγ − b

†
− Qγ ) × ei( Q,γ )ei Q·r .

(13)

Using the orthonormality of the polarization vectors for a
given Q,

e∗( Q,γ ′) · e( Q,γ ) = δγ,γ ′ , (14)

and the elastic wave equation

ρiω
2
γ ( Q)ei( Q,γ ) =

∑
k

⎛
⎝∑

j l

CijklQjQl

⎞
⎠ek( Q,γ ), (15)

the unperturbed phonon Hamiltonian, that is, the sum of the
first and second terms in Eq. (8), is given by

H0
p =

∑
Qγ

h̄ωγ ( Q)

(
b
†
Qγ bQγ + 1

2

)
. (16)

The frequencies of the three phonon branches are given by

ωLA( Q) =
√

λL + 2μL

ρi
| Q| ≡ vLA| Q|,

ωTA1( Q) = ωTA2( Q) =
√

μL

ρi
| Q| ≡ vTA| Q|, (17)

where vLA and vTA are the phonon velocities. The Debye
frequency �γ,D for the polarization γ is determined by the
normalization condition Ni = ∫ �γ,D

0 Dγ (ω)dω, where Dγ (ω)
is the density of states (DOS) for phonons, resulting in �γ,D =
vγ (6π2Ni/�)1/3.

The time evolution of the phonon population is governed
by the three-phonon process. Substituting Eq. (12) into Eq. (8)
and defining

C̃ijklmn = Cijlkmn

+ λL(δij δkmδln + δimδjnδkl + δikδjlδmn)

+μL(δikδjmδln + δikδjnδlm + δilδjnδkm

+ δimδjkδln + δimδjlδkn + δinδjlδkm), (18)

one obtains the perturbed Hamiltonian

H′
p = 1

6

∑
Q, Q′, Q′′

∑
γ,γ ′,γ ′

A
γ,γ ′,γ ′′

Q, Q′, Q′′δQ+ Q′+ Q′′,0

×BQγ BQ′γ ′BQ′′γ ′′ , (19)

where BQγ = bQγ + b
†
− Qγ and the three-phonon matrix ele-

ments A
γ,γ ′,γ ′

Q, Q′, Q′′ that is explicitly given as [37]

A
γ,γ ′,γ ′′

Q, Q′, Q′′ = −i√
�

(
h̄

2ρi

)3/2
Aph√

ωγ ( Q)ωγ ′( Q′)ωγ ′′ ( Q′′)
(20)

with

Aph = E1(e · Q)(e′ · Q′)(e′′ · Q′′)

+E2(e · Q)[(e′ · e′′)( Q′ · Q′′) + (e′ · Q′′)(e′′ · Q′)]

+E2(e′ · Q′)[(e · e′′)( Q · Q′′) + (e · Q′′)(e′′ · Q)]

+E2(e′′ · Q′′)[(e · e′)( Q · Q′) + (e · Q′)(e′ · Q)]

+E3(e · e′)[(e′′ · Q)( Q′ · Q′′) + ( Q · Q′′)(e′′ · Q′)]

+E3(e · Q′)[(e′′ · Q)(e′ · Q′′) + ( Q · Q′′)(e′ · e′′)]

+E3(e · e′′)[(e′ · Q)( Q′ · Q′′) + ( Q · Q′)(e′ · Q′′)]

+E3(e · Q′′)[(e′ · Q)(e′′ · Q′) + ( Q · Q′)(e′ · e′′)]

+ λL[(e · Q)(e′ · e′′)( Q′ · Q′′)

+ (e · e′′)( Q · Q′′)(e′ · Q′) + (e · e′)( Q · Q′)(e′′ · Q′′)]

+μL[(e · e′)( Q · e′′)( Q′ · Q′′)

+ (e · e′)( Q · Q′′)( Q′ · e′′) + (e · Q′)( Q · Q′′)(e′ · e′′)

+ (e · e′′)( Q · e′)( Q′ · Q′′) + (e · e′′)( Q · Q′)(e′ · Q′′)

+ (e · Q′′)( Q · Q′)(e′ · e′′)] (21)

with the abbreviation e = e( Qγ ), e′ = e( Q′γ ′), and e′′ =
e( Q′′γ ′′). Note that Aph is symmetric under the exchanges
(e, Q) ↔ (e′, Q′), (e′, Q′) ↔ (e′′, Q′′), and (e, Q) ↔ (e′′, Q′′).

3. Electron-phonon interaction

The electron-lattice interaction Hamiltonian is expanded
into two terms: the static and dynamical lattice potential. The
former and the latter contribute to the Bloch electron formation
and the energy exchange during the relaxation. The leading
term in the latter is the deformation potential interaction [38].
The e-ph interaction Hamiltonian is given by

Hep =
∑

σ

∫
d rψ†

σ (r)(D0∇ · u)ψσ (r)

=
∑
k,σ

∑
Q,γ

g( Q,γ )a†
k+ Qσ akσBQγ , (22)

where D0 is the deformation potential, which describes
the interaction between the electron and LA phonon
through the local density fluctuations of continuum medium.
Within the free-electron approximation, D0 = 2εF /3 with εF

being the Fermi energy. Then, one obtains

|g( Q,γ )|2 = D2
0

h̄| Q|
2ρi�vLA

δγ,LA. (23)
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The matrix elements of the electron-TA phonon interaction is
finite when one considers the umklapp processes. To treat it
phenomenologically, we introduce the polarization-dependent
deformation potential Dγ and assume

|g( Q,γ )|2 = D2
γ

h̄| Q|
2ρi�vγ

, (24)

where DLA = D0 and DTA = (vTA/vLA)βD0. The parameter
β is determined to yield a realistic value of the e-ph coupling
constant described below.

B. Models

We will formulate five models depending on the approxima-
tion level. In the first model given in Sec. II B 1, the presence of
the quasiequilibrium states is not assumed, while in the 2TM
given in Sec. II B 5 it is assumed a priori.

1. NEP model

We first present the nonequilibrium electron and phonon
(NEP) model, where the relevant scattering processes are
considered. We thus expect that the NEP model would yield
a relaxation dynamics quite similar to the ultrafast dynamics

observed in time-resolved experiments. The BOE for electron
and phonon systems is written as [35]

∂fk,σ

∂t
=

(
∂f

∂t

)
e−e

+
(

∂f

∂t

)
e−ph

, (25)

∂nQ,γ

∂t
=

(
∂n

∂t

)
ph−e

+
(

∂n

∂t

)
ph−ph

, (26)

where no contribution from the diffusion and external field
terms is assumed. fk,σ denotes the distribution function of
the electron state with (k,σ ). nQ,γ denotes the distribution
function of the phonon state with ( Q,γ ). The first and second
terms in Eq. (25) indicate the e-e and e-ph collision integrals,
respectively, while the first and second terms in Eq. (26)
indicate the ph-e and ph-ph collision integrals, respectively.

Given no magnetic impurities and weak exchange inter-
action between electrons in the system, it is reasonable to
assume that the electron distribution is independent of the spin
coordinate, that is,

fk,↑ = fk,↓ ≡ fk. (27)

The transition probability for the scattering events is formu-
lated within the Fermi’s golden rule. Using Eqs. (6), (19), (22),
and (24), the e-e, e-ph, ph-e, and ph-ph collision integrals are
written as

(
∂f

∂t

)
e−e

=
∑
k′,q

2π

h̄
|Ṽ (q)|2δ(�ε)[−fkfk′ (1 − fk+q)(1 − fk′−q) + (1 − fk)(1 − fk′)fk+qfk′−q], (28)

(
∂f

∂t

)
e−ph

=
∑
Q,γ

2π

h̄
|g( Q,γ )|2{−fk(1 − fk+ Q)

[
n

(+)
Q δ(εk − εk+ Q − h̄ωQγ ) + nQδ(εk − εk+ Q + h̄ωQγ )

]

+ (1 − fk)fk+ Q
[
n

(+)
Q δ(εk − εk+ Q + h̄ωQγ ) + nQδ(εk − εk+ Q − h̄ωQγ )

]}
, (29)(

∂n

∂t

)
ph−e

=
∑

k

4π

h̄
|g( Q,γ )|2fk(1 − fk+ Q)

[−nQ,γ δ(εk − εk+ Q + h̄ωQγ ) + n
(+)
Q,γ δ(εk − εk+ Q − h̄ωQγ )

]
, (30)

(
∂n

∂t

)
ph−ph

=
∑
Q′γ ′

∑
γ ′′

2π

h̄

∣∣Aγ,γ ′,γ ′′

Q, Q′,−( Q+ Q′)

∣∣2{ 1
2

[
n

(+)
Q,γ n− Q′,γ ′nQ+ Q′,γ ′′ − nQ,γ n

(+)
− Q′,γ ′n

(+)
Q+ Q′,γ ′′

]
× δ(h̄ωQ,γ − h̄ω− Q′,γ ′ − h̄ωQ+ Q′,γ ′′ )

+ [
n

(+)
Q,γ n

(+)
Q′,γ ′nQ+ Q′,γ ′′ − nQ,γ nQ′,γ ′n

(+)
Q+ Q′,γ ′′

]
δ(h̄ωQ,γ + h̄ωQ′,γ ′ − h̄ωQ+ Q′,γ ′′ )

}
, (31)

where �ε = εk + εk′ − εk+q − εk′−q and n
(+)
Q,γ = nQ,γ + 1. Equation (28) describes the electron scattering (k,k′) � (k + q,k′ −

q) governed by the screened Coulomb interaction potential Ṽ (q) in Eq. (7). Equations (29) and (30) describes the e-ph and ph-e
scattering, where the electron with k is scattered into that with k + Q by an absorption of the phonon with Q or an emission of
the phonon with − Q, and vice versa. The first and second terms in Eq. (31) denote the anharmonic phonon decay and inelastic
scattering, respectively, with the total wave vector conserved. For the former process, the phonon mode with ( Q,γ ) decays into
two phonons of ( Q′,γ ′) and ( Q − Q′,γ ′′), while for the latter one, the two phonon modes with ( Q,γ ) and ( Q′,γ ′) are merged
into a phonon with ( Q + Q′,γ ′′). In the derivation of the collision terms, Eqs. (29), (30), and (31), the relations ωQγ = ω− Qγ

and nQ,γ = n− Q,γ arising from the inversion symmetry are used.
Note that, for a simple metal, there are no three-phonon processes in which all three phonons belong to the same polarization

branches. This is due to the dispersion effect near the zone boundary [35]. In the present study, one can neglect the three-phonon
processes, such as LA (TA) � LA (TA) + LA (TA). Besides, there are no scattering processes in which one TA phonon creates
two LA phonons, and vice versa, due to the energy conservation law [35].
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When fk is averaged over the electron states having the energy ε, one obtains the distribution function for the electron state
with the energy ε [16,18]

f (ε) = 1

N (ε)

∑
k

δ(ε − εk)fk, (32)

where N (ε) = �(2m)3/2√ε/(4π2h̄3) is the electron DOS per spin. Similarly, the phonon distribution function for the phonon
states with the frequency ω is defined as [16,18]

nγ (ω) = 1

Dγ (ω)

∑
Q

δ(ω − ωQγ )nQ,γ , (33)

where Dγ (ω) = �ω2/(2π2v3
γ )θH(�γ,D − ω) is the phonon DOS for the polarization γ . θH(x) is the Heaviside step function:

θ (x) = 1 for x � 1 and θ (x) = 0 for x < 1. By using Eqs. (32) and (33), the time (t) evolution for the electron and phonon
distribution functions are given by, respectively,

∂f (ε)

∂t
= 2π

∫
dε′

∫
dξ

∫
dξ ′Ce−e(ε,ε′,ξ,ξ ′)δ(ε + ε′ − ξ − ξ ′){−f (ε)f (ε′)[1 − f (ξ )][1 − f (ξ ′)]

+ [1 − f (ε)][1 − f (ε′)]f (ξ )f (ξ ′)} + 2π
∑

γ

∫
dξ

∫
dωCe−ph(ε,ξ,ω,γ )

(
δ(ε − ξ − h̄ω){[f (ξ ) − f (ε)]nγ (ω)

− f (ε)[1 − f (ξ )]} + δ(ε − ξ + h̄ω){[f (ξ ) − f (ε)]nγ (ω) + f (ξ )[1 − f (ε)]}) (34)

and
∂nγ (ω)

∂t
= 4π

∫
dε

∫
dξCph−e(ε,ξ,ω,γ )f (ε)[1 − f (ξ )]{−nγ (ω)δ(ε − ξ + h̄ω) + [nγ (ω) + 1]δ(ε − ξ − h̄ω)}

+ 2π
∑
γ ′

∑
γ ′′

∫
dω′

∫
dω′′Cph−ph(ω,ω′,ω′′,γ,γ ′,γ ′′)

× {
1
2

[
n(+)

γ (ω)nγ ′(ω′)n′′
γ (ω′′) − nγ (ω)n(+)

γ ′ (ω′)n(+)
γ ′′ (ω′′)

]
δ(h̄ω − h̄ω′ − h̄ω′′)

+ [
n(+)

γ (ω)n(+)
γ ′ (ω′)n′′

γ (ω′′) − nγ (ω)nγ ′(ω′)n(+)
γ ′′ (ω′′)

]
δ(h̄ω + h̄ω′ − h̄ω′′)

}
(35)

with γ = LA, TA1, and TA2. We introduced the coupling functions defined as

Ce−e(ε,ε′,ξ,ξ ′) = 1

h̄N (ε)

∑
k,k′,q

|Ṽ (q)|2δ(ε − εk)δ(ε′ − εk′)δ(ξ − εk+q)δ(ξ ′ − εk′−q), (36)

Ce−ph(ε,ξ,ω,γ ) = 1

h̄N (ε)

∑
k, Q

|g̃( Q,γ )|2δ(ε − εk)δ(ξ − εk+ Q)δ(ω − ωQγ ), (37)

Cph−e(ε,ξ,ω,γ ) = 1

h̄Dγ (ω)

∑
k, Q

|g̃( Q,γ )|2δ(ε − εk)δ(ξ − εk+ Q)δ(ω − ωQγ ), (38)

Cph−ph(ω,ω′,ω′′,γ,γ ′,γ ′′) = 1

h̄Dγ (ω)

∑
Q, Q′

|Ãγ,γ ′,γ ′′

Q, Q′,−( Q+ Q′)|2δ(ω − ωQγ )δ(ω′ − ωQ′γ ′)δ(ω′′ − ωQ+ Q′γ ′′). (39)

For an isotropic system, these coupling functions are expressed
as follows: The e-e coupling function in Eq. (36),

Ce−e(ε,ε′; ξ,ξ ′) = 1

4π2ε2
F

√
εF

ε

h̄

ma2
0

∫ ∞

0
ds

[
1

s2+(qTF/kF)2

]2

× θH[1 − h1(ε,ξ,s)]θH[1 + h1(ε,ξ,s)]

× θH[1 − h1(ε′,ξ ′,s)]θH[1 + h1(ε′,ξ ′,s)],

(40)

with the Fermi wavenumber kF, the e-ph coupling function in
Eq. (37),

Ce−ph(ε,ξ,ω,γ ) = 3Zval

128

√
εF

ε

(
Dγ

εF

)2 (h̄ω)2(
1
2Miv2

γ

)(
1
2mv2

γ

)
× θH[1 − h2(ε,ξ,ω)]θH[1 + h2(ε,ξ,ω)],

(41)

where Zval is the number of the valence electron, and the ph-e
coupling function in Eq. (38),

Cph−e(ε,ξ,ω,γ ) = N (ε)

Dγ (ω)
Ce−ph(ε,ξ,ω,γ ), (42)
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where the functions h1 and h2 in Eqs. (40) and (41) are given
by

h1(ε,ξ,s) = 1

2s

√
εF

ε

(
ξ

εF

− ε

εF

− s2

)
, (43)

h2(ε,ξ,ω) =
√

Kγ ε2
F

(h̄ω)2ε

[
ξ

εF

− ε

εF

− (h̄ω)2

4Kγ εF

]
(44)

with Kγ = mv2
γ /2. Note that when ε = ξ =

εF , Ce−ph(ε,ξ,ω,γ ) is related to the Eliashberg function
for the polarization γ [16,18]

Ce−ph(εF ,εF ,ω,γ ) = α2F (ω,γ ) (45)

with α2F (ω) = ∑
γ α2F (ω,γ ). Using this approximation, the

e-ph coupling constants are defined by

λγ 〈ωn〉 = 2
∫ �γ,D

0
dωα2F (ω,γ )ωn−1 (46)

with λ〈ωn〉 = ∑
γ λγ 〈ωn〉. When the deviation of the single

particle energy from the Fermi energy is not negligible, we use
the expression of

Ce−ph(ε,ξ,ω,γ ) 
√

εF

ε
α2F (ω,γ ), (47)

where the factor
√

εF/ε is multiplied [see the expression of
Eq. (41)], which will be used in Sec. II B 2.

The ph-ph coupling function satisfies, by definition, the
following properties

Cph−ph(ω,ω′,ω′′,γ,γ ′,γ ′′)

= Cph−ph(ω,ω′′,ω′,γ,γ ′′,γ ′)

= Dγ ′(ω′)
Dγ (ω)

Cph−ph(ω′,ω,ω′′,γ ′,γ,γ ′′). (48)

The derivation of a simple expression for the ph-ph coupling
function is difficult, so that we evaluate Cph−ph in Eq. (39)
numerically. The details including the derivation of Eqs. (40)
and (41), and the numerical implementation of Eq. (39), will
be provided in Appendix.

2. NE+3T model

Second, we present a model that consists of the nonequilib-
rium electrons and the quasiequilibrium phonons characterized
by three phonon temperatures (NE+3T model). We assume
that the effect of the e-e and ph-ph scattering on the thermal-
ization is negligible in the initial relaxation. Then, Eq. (34) is
simplified into

∂f (ε)

∂t
= 2π

∑
γ

∑
s=±

∫
dω

√
εF

ε
α2F (ω,γ )U (ε,ω,γ,s),

(49)

where

U (ε,ω,γ,s) = [f (ε + sh̄ω) − f (ε)]nBE
(
ω,T

(γ )
ph

)
+sf (ε)[1 − f (ε + sh̄ω)] (50)

with the Bose-Einstein (BE) function nBE(ω,T
(γ )

ph ). T
(γ )

ph
is the phonon temperature for the polarization γ . Since

the net phonon energy with γ is defined by E
(net)
ph,γ =∫

dωh̄ωDγ (ω)nBE(ω,T
(γ )

ph ), the t evolution of T
(γ )

ph can be
expressed as, by using Eq. (35),

C
(γ )
ph

∂T
(γ )

ph

∂t
= 4πN (εF )

∫
dε

∫
dωh̄ω

×
√

εF

ε
α2F (ω,γ )U (ε,ω,γ,+), (51)

where C
(γ )
ph = ∂E

(net)
ph,γ /∂T

(γ )
ph is the specific heat of the phonon

with γ .

3. NP+1T model

Third, we present a model that consists of the
nonequilibrium phonons and the quasiequilibrium elec-
trons (NP+1T model). The net electron energy is E(net)

e =
2

∫
dεεN (ε)fFD(ε,Te), where Te is the electron temperature

and fFD is the Fermi-Dirac (FD) function. The t evolution of
E(net)

e is expressed by

∂E(net)
e

∂t
= −4πN (εF )

∑
γ

∫
dωα2F (ω,γ )(h̄ω)2νγ (ω,Te),

(52)

where

νγ (ω,Te) = nBE(ω,Te) − nγ (ω). (53)

In the derivation of Eq. (52), we assumed that the e-ph
coupling function is approximated to the Eliashberg function
α2F (ω,γ ). Again, the contribution from the e-e and ph-
ph scattering are omitted in Eq. (52). Thus, Eq. (52) is a
natural extension of Eq. (10) in Ref. [3], since the formula is
appropriate for the presence of nonequilibrium phonons. Using
the Sommerfeld expansion [32], E(net)

e is expressed by the
t-dependent temperature Te(t), that is, E(net)

e (t) = 3NeεF /5 +
π2N (εF )[kBTe(t)]2/3 with the total number of the electrons
Ne. Then, one obtains

∂Te

∂t
= − 6

πk2
BTe

∑
γ

∫
dωα2F (ω,γ )(h̄ω)2νγ (ω,Te).

(54)

Using Eq. (35), the t evolution of nγ (ω) is simply written as

∂nγ (ω)

∂t
= 4πN (εF )h̄ω

Dγ (ω)
α2F (ω,γ )νγ (ω,Te). (55)

4. 4TM

To further simplify the model, we assume that the electron
and each phonon subset are also quasiequilibrium. We replace
f (ε) in Eq. (51) and nγ (ω) in Eq. (54) with fFD(ε,Te) and
nBE(ω,T

(γ )
ph ), respectively. Using the high temperature approx-

imation h̄ω/(kBT ) � 1, that is, nBE  kBT/(h̄ω), one obtains
the 4TM

Ce
∂Te

∂t
= −

∑
γ

gγ

(
Te − T

(γ )
ph

)
,

C
(γ )
ph

∂T
(γ )

ph

∂t
= gγ

(
Te − T

(γ )
ph

)
, (56)
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where Ce is the specific heat of the electron. The coefficient
gγ is written as

gγ

Ce
= 3h̄λγ 〈ω2〉

πkBTe
. (57)

5. 2TM

In the original derivation of the 2TM by Allen [3], all the
phonon temperatures are assumed to be the same. Then, one
obtains

Ce
∂Te

∂t
= −G(Te − Tph),

Cph
∂Tph

∂t
= G(Te − Tph), (58)

where G = ∑
γ gγ . The important fact is that the coefficient

G in the 2TM contains the e-ph coupling constant λ〈ω2〉 =∑
γ λγ 〈ω2〉. The measurement of Te as a function of t will

make it possible to determine the magnitude of λ〈ω2〉, if many
assumptions above, which might be difficult to be satisfied, are
correct.

C. Computational details

In the present model, the material properties are described
by six parameters which will be provided below. We study
the thermalization of aluminum (Al), the most studied simple
metal. Thus, we set rs = 2.07 [32]. To determine the elastic
constants of the isotropic system from those of a real solid, we
minimize X2 and X3 defined as [37]

X2 =
∑
ijkl

(Gijkl − Cijkl)
2,

X3 =
∑

ijklmn

(Gijklmn − Cijklmn)2, (59)

where Gijkl and Gijklmn are the elastic constants of a realistic
system. For cubic crystals, one obtains

λL = 1
5 (C11 + 4C12 − 2C44),

μL = 1
5 (C11 − C12 + 3C44),

E1 = 1
35 C111 + 18

35 C112 + 16
35 C123

− 6
7 C144 − 12

35 C244 + 16
35 C456,

E2 = 1
35 C111 + 4

35 C112 − 1
7 C123

+ 19
35 C144 + 2

35 C244 − 12
35 C456,

E3 = 1
35 C111 − 3

35 C112 + 2
35 C123

− 9
35 C144 + 9

35 C244 + 9
35 C456, (60)

where the Voigt notation (11 → 1,22 → 2,33 → 3,12 →
4,23 → 5,31 → 6) is used. The values of Cij and Cijk in
the right-hand side of Eq. (60) have been computed from
density-functional theory calculations [39]. Using the values
listed in Table I, we obtain the values of λL, μL, E1, E2, and
E3. All the parameters are listed in Table II. As mentioned, the
contribution from the term proportional to (e · Q)(e′ · Q′)(e′′ ·
Q′′) in Eq. (21) can be ignored in the elasticity theory approach.
Thus, we can set E1 = 0.

TABLE I. The second- and third-order elastic constants of Al [39]
in units of GPa.

C11 110.4 C12 54.5 C44 31.3
C111 −1253 C112 −426 C123 153
C144 −12 C166 −493 C456 −21

To determine the magnitude of the deformation potential for
the TA phonons, DTA, introduced phenomenologically below
Eq. (24), we set β = 1.5. The use of Eq. (46) yields λ = 0.383
(λLA = 0.191 and λTA = 0.096) and λ〈ω2〉 = 510.0 meV2

(λLA〈ω2〉 = 404.9 meV2 and λTA〈ω2〉 = 52.5 meV2), which
are similar values reported in Al [8,40].

The BOE given by Eqs. (34) and (35) is solved by the
fourth-order Runge-Kutta method, setting the time step of
0.2419 fs. In the present model, the Fermi energy is εF =
11.695 eV and the Debye energy for the LA phonon is
E0 = h̄�LA,D = 65 meV. Within an electron energy window of
ε ∈ [εF − 10E0,εF + 10E0], 1600 discrete electron energies
are considered. On one hand, 80 and 41 discrete phonon
energies for the LA and TA modes are considered.

III. RESULTS AND DISCUSSION

Using f (ε) and nγ (ω) at t , the excess electron and phonon
energies, measured from the total energies in thermal equilib-
rium, are computed by

Ee = 2
∫

dεεN (ε)[f (ε) − fFD(ε,T0)], (61)

Eph,γ =
∫

dωh̄ωDγ (ω)[nγ (ω) − nBE(ω,T0)]. (62)

The factor of 2 in Eq. (61) comes from the spin degeneracy. In
the present study, we set T0 = 25 meV.

It should be noted that the effect of the e-e scattering
on the electron thermalization was found to be negligibly
small, that is, the t-Ee curves with and without the e-e
scattering effect almost overlap. This seems to be different
from the results presented in Ref. [17], where the e-e scattering
influences the thermalization. The disagreement with their
results would be due to different approximations used for
the evaluation of the collision integral: The six-dimensional
integral in Eq. (28) is reduced to a three-dimensional [see
Eq. (34)] and two-dimensional integral in the present study
and Ref. [17], respectively. It should be noted that within the
present model the magnitude of the Coulomb pseudopotential
μC defined in Refs. [16,18] was estimated to be about 0.33,
which is a reasonable value in realistic materials. To better
understand the thermalization in realistic metals, the use of
the wave-vector-dependent coupling functions is desirable, but
such a study is out of the scope of this paper.

TABLE II. Material parameters. λL, μL, E1, E2, and E3 are in
units of GPa.

rs 2.07
λL 53.16 μL 29.96
E1 −15.23 E2 −133.83 E3 −119.63
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FIG. 1. (a) The t dependence of Ee, Eph,LA, and Eph,TA(=
Eph,TA1 = Eph,TA2) computed by Eqs. (61) and (62). (b) The magnified
view of t-Ee curve below Ee/� = 10 J/cm3 in a log-log plot.

A. Thermalization

As a model study, we start from the initial electron distribu-
tion function with Gaussian-type peaks above and below the
Fermi level, which is given by

f (ε) = fFD(ε,T0) +
∑
s=±

sAs exp

[
−

(
ε − sε0

2We

)2
]
, (63)

where ε0 and We are the peak position and the width, respec-
tively. Given a peak height A−, A+ is uniquely determined by
the electron number conservation law. We confirmed that the
form of Eq. (63) is similar to laser-excited electron distributions
around the Fermi energy described in Refs. [15,17], where
the electron-photon scattering processes have been considered
explicitly. In addition, similar types of the model functions
have been used to study the thermalization in metals [12]. In
this subsection, we set A− = 0.1, ε0 = 300 meV, and We =
50 meV, where the effective electron temperature amounts
to approximately 800 K. The initial phonon distribution is
assumed to be nBE(ω,T0). In Sec. III B, the effect of the initial
electron and phonon distributions on the thermalization will
be investigated.

Figure 1(a) shows the t evolution of Ee, Eph,LA, and Eph,TA1

defined as Eqs. (61) and (62). Since the contribution from
Eph,TA2 is the same as Eph,TA1, the former is not shown in
Fig. 1(a). Hereafter, we denote Eph,TA1 and Eph,TA2 as Eph,TA.
In the initial stage of the relaxation, t � 0.2 ps, Ee decreases
drastically, while Eph,LA and Eph,TA gradually increases. Most
of the electron energy is transferred into the LA phonons,
resulting in the overshoot of Eph,LA at t = τ0 = 0.21 ps,
followed by a slow decay of Eph,LA and a slow increase in the
Eph,TA. After t = 3 ps, the values of Eel, Eph,LA, and Eph,TA

are almost constant, indicating the thermal equilibrium of the
system.

To understand the overshoot of the LA phonon energy, we
decompose the energy transfer rate ∂Eph,γ /∂t into a sum of
the contribution from the ph-e and ph-ph scattering, which is

4
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R
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FIG. 2. (a) The t dependence of Rph−e,γ and Rph−ph,γ with γ =
LA and TA1 computed from Eqs. (64) and (65). For the inelastic
scattering, the curves of Rph−ph,LA and Rph−ph,TA almost overlap.
(b) The magnified view of Rph−e,γ up to t = 3 ps.

defined as, respectively,

Rph−e,γ =
(

∂Eph,γ

∂t

)
ph−e

, (64)

Rph−ph,γ =
(

∂Eph,γ

∂t

)
ph−ph

. (65)

The latter, Eq. (65), is further decomposed into two con-
tributions: the anharmonic decay Rph−ph,γ (anharmonic) and
the inelastic scattering Rph−ph,γ (inelastic). Similarly, we can
define the energy transfer rate of the electronic system due
to the e-ph scattering, but the quantity is exactly equal to
−Rph−e,γ .

Figure 2(a) shows Rph−e,γ and Rph−ph,γ as a function
of t . Within the initial relaxation (t � τ0 ps), Rph−e,LA is
positive and much larger than the other rates, indicating
that the LA phonons obtain a large amount of the electron
energy via the ph-e scattering. Simultaneously, the magnitude
of |Rph−ph,LA(anharmonic)| increases with increasing t . A
negative value of Rph−ph,LA(anharmonic) indicates that the LA
phonon decays into low-frequency LA and TA phonons. Cor-
respondingly, both of Rph−ph,LA(inelastic) Rph−ph,TA(inelastic)
increase with time. The sum of the contribution from the
anharmonic and the inelastic processes, |Rph−ph,LA|, becomes
larger than the value of Rph−e,LA after t = τ0 ps. In this way, the
overshoot of Eph,LA, shown in Fig. 1(a), is due to a crossover
from the energy gain via the ph-e scattering to the energy loss
via the anharmonic decay into TA phonons.

Figure 1(b) is a magnified view of Ee shown in Fig. 1(a).
Before t  0.4 ps, Ee decreases linearly in a log-log plot,
while before reaching the thermal equilibrium (t = 3 ps) the
relaxation behavior slows. Figure 2(b) also shows a magnified
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FIG. 3. (a) f (ε) and (b) nLA(ω) for various ts. The FD and BE
functions with several T s are also shown. f (ε) is nearly an odd
function with respect to ε = 0.

view of Rph−e,LA and Rph−e,TA in Fig. 1(b). Negative value of
Rph−e,LA is observed during the time interval t ∈ [0.38,4.7]
ps. This means that the energy stored in the LA phonons is
transferred, in turn, into the electronic system. The time interval
showing Rph−e,LA < 0 is almost the same as the interval when
the electron relaxation slows [Fig. 1(b)]. Thus the appearance
of the backward energy flow is an indicator for reaching a ther-
mal equilibrium. A similar scenario involving the backward
energy flow has been reported in phononic systems [21]. Note
that the negative Rph−e,LA is also observed after t = 8.7 ps,
while the value is quite small: Rph−e,LA ∼ −10−4 J/(cm3 ps).
This is similar to the dynamics of the damped oscillators in the
classical mechanics when Rph−e,LA in Eq. (64) is regarded as
the amplitude of the oscillation.

The decay process discussed above could be understood in
terms of the nonequilibrium distribution functions. Figures 3(a)
and 3(b) show f (ε) and nLA(ω) for various ts, computed by
Eqs. (34) and (35), respectively. For comparison, the FD and
BE distribution functions with several T s are also shown. The
Gaussian peak observed at ε/E0 = 5 in f (ε) is immediately
smeared out within 0.2 ps, while the deviation from the FD
function is still not negligible, which is similar to the numerical
results in Ref. [18]. After t = 0.36 ps, the quasiequilibrium
treatment for f (ε) may be valid, shown in Fig. 3(a). In contrast,
the LA phonon population increases due to the ph-e scattering
up to t = 0.36 ps, after which it decreases, as shown in
Fig. 3(b). To understand the phonon dynamics quantitatively,
we show the t dependence of nγ (ω) at ω = �LA,D/2 in
Fig. 4(a). Quite similarly to the t-Eph,LA curve in Fig. 1(a),
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FIG. 4. (a) nLA(�LA,D/2) and nTA(�LA,D/2) as a function of t .
The values of nBE(�LA,D/2,T ) for T = 25,26,27,28 meV are shown.
(b) The deviation of nLA(ω) from the BE function with T = 27 meV
for several ts.

an overshoot of the LA phonon population is observed around
t = 0.34 ps, while the change in nTA(�LA,D/2) is moderate.
Figure 4(b) shows the deviation of nLA(ω) from the BE statis-
tics at T = 27 meV for several ts. The phonon population at
ω = �LA,D increases with time and is maximum at t = 0.12 ps,
after which it decreases. Since the ph-ph scattering such as
LA � LA + TA frequently occur after the creation of the hot
high-frequency LA phonon, the population of the LA phonon
with lower frequency (ω  �LA,D/2) increases with time.

B. Impact of the nonequilibrium distribution

The total energy dynamics within the 4TM and 2TM,
described in Secs. II B 4 and II B 5, respectively, are shown
in Figs. 5(a). The t-Ee, Eph,LA, and Eph,TA curves in the NEP
model are also shown. Clearly, the initial electron relaxation
derived from the 2TM and 4TM is faster than that derived from
the NEP model. Figure 5(b) shows the relaxation dynamics in
the NE+3T and NP+1T models described in Secs. II B 2 and
II B 3, respectively. The former model reproduces the initial
relaxation in the NEP model, while the latter model improves
the relaxation behavior slightly, compared with the 2TM. What
is important in these comparative studies is that the energy
relaxation in the quasiequilibrium treatment is faster than
that in the nonequilibrium treatment. This would lead to an
underestimation of the e-ph coupling constant when the 2TM
or 4TM are applied to time-resolved experiments. This result,
the underestimation of λ〈ω2〉, is consistent with the results
reported in Ref. [20].

Finally, we study how the energy relaxation dynamics is
changed in response to the initial distribution functions. To
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FIG. 5. The t dependence of the excess energies of the electrons
(red) and phonons (blue for LA and green for TA) computed within
(a) the NEP model, 4TM, and 2TM and (b) the NEP, NE+3T, and
NP+1T models, and 2TM. The deviations from the NEP model in Ee

for t > 0.3 ps and Eph,γ for t > 0.1 ps are due to the lack of the ph-ph
scattering effect in the NE+3T and NP+1T models.

characterize it, we define τ0, at which Eph,LA is the maximum,
as the initial relaxation time, which may be determined from
time-resolved diffraction experiments [41,42]. In Eq. (63), we
tune three parameters: (i) A−, (ii) ε0, and (iii) We. We also
studied the case of (iv) f (ε,t = 0) equal to the quasiequi-
librium distribution with Te(t = 0) higher than T0. Table III
lists the tuned parameters, which determines the magnitude
of the excess electron energy given in Eq. (61) at t = 0.
Figure 6 shows τ0 as a function of Ee(t = 0) for various
f (ε,t = 0). As expected, τ0 increases with increasing Ee(t =
0) for all cases (i)–(iv). However, the curves of τ0-Ee(t = 0)
cannot be described by a single function, implying that τ0

is a functional of f (ε,t = 0). Unfortunately, we could not
find a clear relationship between them, whose derivation or
microscopic understanding will be a future work. As shown
in Fig. 6, the quasiequilibrium approximation, the case (iv),
gives the lowest value of τ0 with Ee fixed. A similar result has
been reported in Ref. [15], while the initial distribution used is
different from that used in the present study.

More realistically, the electron distribution will change due
to the electron-photon interaction within a pulse width [15,17].

TABLE III. Tuned parameters for determining the initial electron
distribution function from case (i) to case (iv). ε0, We, and kBTe are
in units of meV.

(i) A− ∈ [0.02,0.2] ε0 = 300 We = 50
(ii) A− = 0.1 ε0 ∈ [100,450] We = 50
(iii) A− = 0.1 ε0 = 300 We ∈ [10,100]
(iv) kBTe(t = 0) ∈ [30,100]
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FIG. 6. τ0 as a function of Ee(t = 0) for various initial conditions,
f (ε,t = 0)s, from case (i) to case (iv) listed in Table III. The initial
phonon distribution function is assumed to be the BE function
with T0.

During the finite pulse width, the phonons are also created
through the ph-e scattering, disturbing the phonon distribution
function. To consider this effect, we assume that the initial LA
phonon distribution is given as

nLA(ω) = nBE(ω,T0) + B exp

[
−

(
ω − �LA,D

2Wph/h̄

)2
]
, (66)

where B and Wph are the peak height and the width. We
also consider the case that the initial distribution is equal to
the quasiequilibrium distribution nLA(ω) = nBE(ω,Tph) with
Tph � T0. nTA(ω) is assumed to be equal to nBE(ω,T0) at t = 0
ps because the magnitude of the electron-TA phonon coupling
is smaller than that of the electron-LA phonon coupling. The
initial electron distribution is still expressed as Eq. (63), where
A− = 0.1, ε0 = 300 meV, and We = 50 meV, yielding Ee(t =
0)/�  40 J/cm3. Table IV lists the tuned parameters for the
initial phonon distribution function: From case (v) to case (vii).
Positive B or Tph − T0 yields a positive value of Eph(t = 0).
Figure 7 shows τ0 as a function of Ee(t = 0) + Eph(t = 0).
Contrary to the cases of (i)–(iv), τ0 decreases as the sum of
the excess energies increases. This means that the anharmonic
decay event occurs frequently with increasing Eph,LA(t = 0),
as a result of which τ0 becomes shorter. The overshoot ofEph,LA

will thus vanish if Eph,LA(t = 0)/Ee(t = 0) � 1. Based on this
scenario, it is easy to understand the result of the case (vii): The
quasiequilibrium distribution approximation gives the highest
value of τ0 with Ee + Eph fixed, since the anharmonic decay
rate slows. What is suggested by these special conditions is

TABLE IV. Tuned parameters for determining the initial phonon
distribution function from case (v) to case (vii). Wph and kBTph are in
units of meV.

(v) B ∈ [0,0.16] Wph = 50
(vi) B = 0.1 Wph ∈ [0.02,0.20]
(vii) kBTph(t = 0) ∈ [25,35]

054310-10



THERMALIZATION IN SIMPLE METALS: ROLE OF … PHYSICAL REVIEW B 97, 054310 (2018)

0.22

0.20

0.18

0.16

0.14

τ 0
 (

ps
)

8070605040

(Ee+Eph)/Ω (J/cm
3
)

 (v) B
 (vi) Wph

 (vii) Tph

FIG. 7. τ0 as a function of Ee(t = 0) + Eph(t = 0) for various
nLA(ω,t = 0)s from case (v) to case (vii) listed in Table IV. The
parameters for the initial electron distribution are set to be A− =
0.1, ε0 = 300 meV, and We = 50 meV, which yields Ee(t = 0)/� 
40 J/cm3. The plotted curves for (v) and (vi) almost overlap.

that the anharmonic phonon decay would play an important
role in understanding the thermalization in metals.

IV. SUMMARY

We have studied the electron and phonon thermaliza-
tion in photoexcited metals by solving the BOE taking
into account the e-e, e-ph, ph-e, and ph-ph scattering.
We have found that in the initial stage of the relaxation,
most of the electron energy is transferred into the LA
phonons through the e-ph and ph-e scattering. Simultane-
ously, the LA phonon decays into TA phonons via the
ph-ph scattering. This yields an overshoot of the total LA
phonon energy at a time τ0. The behavior of the thermalization
is not affected by the presence of the e-e scattering. The picture
for the thermalization demonstrated in the present study is quite
different from the 2TM scenario [3].

By systematically investigating the relaxation dynamics of
several models, we have shown that the energy relaxation
within the quasiequilibrium approximation is found to be faster
than that in a realistic situation. This implies that the use of
the 2TM underestimates the e-ph coupling constant in metals,
consistent with the results in Ref. [20].

We have also found that the relaxation time τ0 strongly
depends on the initial distribution functions f (ε,t = 0) and
nγ (ω,t = 0) as well as the initial energy. An open question
is to find a functional form to estimate τ0. Such a functional
must also contain the information about the e-ph and ph-ph
interactions.
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APPENDIX: DETAILS OF THE COUPLING FUNCTIONS

We first outline the derivation of Eq. (40) from Eq. (36).
Due to the spherical symmetry, it is reasonable to express the

summation in Eq. (40) by

∑
k

→ �

(2π )3

∫ ∞

0
dkk2

∫ π

0
dθk sin θk

∫ 2π

0
dφk. (A1)

Similarly, the summations with respect to k′ and q are
transformed into the integrals. Without loss of generality, we
consider that q is parallel to the z axis. Then, θk, φk, θq , and φq

can be regarded as the relative angle for q. Then, one obtains

Ce−e(ε,ε′; ξ,ξ ′) = 4π3

h̄N (ε)

(
2m2

h̄4

)2 ∫ π

0
dθk

∫ π

0
dθk′

×
∫ ∞

0
dq|Ṽ (q)|2δ(θk − θ0

k

)
δ
(
θk′ − θ0

k′
)
,

(A2)

where θ0
k and θ0

k′ are given by

θ0
k = arccos

[ √
2m

2h̄q
√

ε
(ξ − ε − εq)

]
,

θ0
k′ = arccos

[
−

√
2m

2h̄q
√

ε′ (ξ
′ − ε′ − εq)

]
, (A3)

respectively. If 0 � θ0
k � π and 0 � θ0

k′ � π , the integration
with respect to θk and θk′ becomes unity. Thus, one obtains
Eq. (40) in the main text. It would be straightforward to derive
Eq. (41) from Eq. (37).

We next consider the numerical implementation of Eq. (39).
Using the spherical coordinates, we express the phonon wave
vector and the polarization vectors as follows

Q = Qer ,

e( Q,LA) = er = (sin θ cos φ, sin θ sin φ, cos θ ),

e( Q,TA1) = eθ = (cos θ cos φ, cos θ sin φ,− sin θ ),

e( Q,TA2) = eφ = (− sin φ, cos φ,0), (A4)

where the abbreviation of θ = θQ and φ = φQ is used. Simi-
larly, we define

Q′ = Q′e′
r ,

e( Q′,LA) = (sin θ ′ cos φ′, sin θ ′ sin φ′, cos θ ′),

e( Q′,TA1) = (cos θ ′ cos φ′, cos θ ′ sin φ′,− sin θ ′),

e( Q′,TA2) = (− sin φ′, cos φ′,0), (A5)

where θ ′ = θQ′ and φ′ = φQ′ . Using these expressions, we can
obtain the expressions for Q + Q′ and e( Q + Q′,γ ′′) in terms
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of Q,Q′,θ,θ ′,φ, and φ′. Then one obtains

Cph−ph(ω,ω′,ω′′,γ,γ ′,γ ′′)

= �

(2π )6h̄Dγ (ω)

(
h̄

2ρi

)3 ∫
dS

∫
dS ′

× ωω′

(vγ vγ ′)3

|Aph|2
vγ ′′ | Q + Q′|δ(ω′′ − vγ ′′ | Q + Q′|),

(A6)

where
∫

dS = ∫
dθ sin θ

∫
dφ. The numerical integrals for

θ and φ are efficiently performed by using the spher-
ical design [43]. In the present work, 86 points on a
sphere were used. The Dirac-delta function in Eq. (A6) is

approximated to the Gaussian function with the broadening
of 0.02E0. To reduce the numerical errors of the total energy,
we used the symmetry properties of f (ω,ω′,ω′′,γ,γ ′,γ ′′) =
Dγ (ω)Cph−ph(ω,ω′,ω′′,γ,γ ′,γ ′′) with the replacement of
(ω,γ ) ↔ (ω′,γ ′) ↔ (ω′′,γ ′′). Using the averaged value of f s,
that is,

1
6 [f (ω,ω′,ω′′,γ,γ ′,γ ′′) + f (ω,ω′′,ω′,γ,γ ′′,γ ′)

+f (ω′,ω,ω′′,γ ′,γ,γ ′′) + f (ω′,ω′′,ω,γ ′,γ ′′,γ )

+f (ω′′,ω,ω′,γ ′′,γ,γ ′) + f (ω′′,ω′,ω,γ ′′,γ ′,γ )],

we redefine the ph-ph coupling function as
Cph−ph(ω,ω′,ω′′,γ,γ ′,γ ′′) = f (ω,ω′,ω′′,γ,γ ′,γ ′′)/Dγ (ω).
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