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We enquire into the quasi many-body localization in topologically ordered states of matter, revolving around the
case of Kitaev toric code on the ladder geometry, where different types of anyonic defects carry different masses
induced by environmental errors. Our study verifies that the presence of anyons generates a complex energy
landscape solely through braiding statistics, which suffices to suppress the diffusion of defects in such clean,
multicomponent anyonic liquid. This nonergodic dynamics suggests a promising scenario for investigation of
quasi many-body localization. Computing standard diagnostics evidences that a typical initial inhomogeneity of
anyons gives birth to a glassy dynamics with an exponentially diverging time scale of the full relaxation. Our results
unveil how self-generated disorder ameliorates the vulnerability of topological order away from equilibrium. This
setting provides a new platform which paves the way toward impeding logical errors by self-localization of anyons
in a generic, high energy state, originated exclusively in their exotic statistics.
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I. INTRODUCTION

Many-body localization (MBL) [1–6] generalizes the con-
cept of single particle localization [7] to isolated interacting
systems, where many-body eigenstates in the presence of
sufficiently strong disorder can be localized in a region of
Hilbert space even at nonzero temperature. An MBL system
comes along with universal characteristic properties such as
area-law entanglement of highly excited states (HES) [5,8],
power-law decay and revival of local observables [9,10],
logarithmic growth of entanglement [11–14], as well as the
violation of “eigenstates thermalization hypothesis” (ETH)
[15–17]. The latter raises the appealing prospect of pro-
tecting quantum order as well as storing and manipulating
coherent information in out-of-equilibrium many-body states
[18–22].

Recently it has been questioned [23–32] whether quench
disorder is essential to trigger ergodicity breaking or one might
observe glassy dynamics in translationally invariant systems,
too. In such models initial random arrangement of particles
effectively fosters strong tendency toward self-localization
characterized by MBL-like entanglement dynamics, exponen-
tially slow relaxation of a typical initial inhomogeneity, and
arrival of inevitable thermalization. This asymptotic MBL—
tagged quasi MBL [30]—in contrast to the genuine ones, is
not necessarily accompanied by the emergence of an infinite
number of conserved quantities [33–36].

Here we present a mechanism toward quasi MBL in a family
of clean self-correcting memories, in particular the Kitaev toric
code [37,38] on ladder geometry, a.k.a. the Kitaev ladder (KL)
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[39,40]. The elementary excitations of KL are associated with
pointlike quasiparticles, known as electric (e) and magnetic (m)
charges. Our main interest has its roots in the role of nontrivial
statistics between anyons that naturally live in (highly) excited
states of such models.

Stable topological memories, by definition, need to preserve
the coherence of encoded quantum state for macroscopic
timescales. However, due to their thermal fragility [41–45],
specially far-from-equilibrium [46,47], the problem of iden-
tifying a stable low-dimensional quantum memory is still
unsecure. One of the major obstacles to this end is that they
do not withstand dynamic effects of perturbations whenever
a nonzero density of anyons is initially present in the system.
Indeed, propagation of even one pair of deconfined anyons
around noncontractible loops of the system leads to logical
error [47]. In addition, system’s dynamics under generic
perturbations could be so tangled that the quantum memory
equilibrates in the thermal Gibbs state, in which no topological
order survives [45].

So far, extensive searches have been carried out to combat
the mentioned shortcomings, such as: considering clean cubic
[48,49] or higher dimensional codes [50,51] with a more
complex structure than the toric one, 2D codes consisting of
N-level spins [52] as well as coupling 2D codes to a massless
scalar field [53–55]. In particular, exerting an external disorder
on a stabilizer code strengthens the stability of topological
phase [56] and ensures the single particle localization of
Abelian anyons as long as their initial density is below a
critical value [57,58]. This disorder-induced glassiness that
exponentially suppresses the motion of deconfined anyons
(and thus impedes logical errors) makes a topological quantum
memory fault tolerant, provided that the perturbed system re-
mains noninteracting. An outstanding question is whether one
can exponentially suppress dynamic effects of generic local
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FIG. 1. (a) KL with periodic-boundary condition in leg and open-
boundary condition along rungs. Spin-1/2 particles are placed on the
3L nodes of the lattice. (b) Multiplying Z operators along the red
(blue) line yields dual spin μx

r/b,i , and a similar string of X operators
along the green line defines μx

g,i . (c) The pictorial demonstration of
the dual KL, Eq. (4), for tm = 0.

perturbations in the presence of arbitrary (increasing) density
of preparatory anyons while preserving essential properties of
a feasible quantum memory, i.e., being low dimensional as well
as translationally invariant [43].

We supply clear-cut evidences that random configurations
of anyons in HES of KL prompts a self-generated disorder
purely due to the mutual braiding statistics. Performing a
dual mapping suggests that nonzero density of the magnetic
charges, as barriers, poses a kinetic constraint on dynamics of
the electric ones and hinders the propagation of the confined
charges on nontrivial class of loops around the cylindrical
surface of KL. Subsequently, it is more favorable for the initial
information to be encoded in subspaces with a higher density
of anyons. Finally, we provide numerical evidences that the
effective disorder leads to the existence of an exponentially
diverging time scale for dynamical persistence of the initial
inhomogeneity, along with an intermediate slow growth of the
entanglement entropy, all of which are essential qualities of
quasi MBL.

The paper is organized as follows. In Sec. II, we in-
troduce the KL Hamiltonian as the simplest stabilizer code
with anyonic excitations. Then, we investigate—how due to
mutual exotic statistics—the presence of one kind of anyonic
quasiparticles leads to an emergent kinetic constraint which
suppresses the dynamics of the other kind. In Sec. III, we
uncover anyonic self-localization as a dynamical property
of Abelian anyons and classify the observed glassiness as
the quasi MBL mechanism. The effect of such dynamical
glassiness on the robustness of initial topologically encoded
information is presented in Sec. IV. Finally, we summarize our
work with discussions in Sec. V and generalize the concept of
anyonic self-induced disorder to 2D quantum double models.

II. KITAEV LADDER HAMILTONIAN

KL is composed of L unit cells, each with three sites, that
we will refer to as red, green, and blue sites [see Fig. 1(a)],
and spin-1/2 particles are placed on the N = 3L nodes of the
lattice. The unperturbed Hamiltonian is defined by L plaquette
stabilizer, Bp, and 2L vertex stabilizer terms on the triangles

of the ladder, A
r/b
s , as follows:

H KL
0 = −jm

∑
i

Bp(i) − je

∑
i

(
Ar

s (i) + Ab
s (i)

)
,

Bp(i) = Zg,iZr,iZb,iZg,i+1,

Ar/b
s (i) = Xr/b,i−1Xg,iXb/r,i , (1)

where Xi and Zi are the x and z component of Pauli operators,
respectively. We set je, jm > 0 and choose an overall energy
scale by setting je = 1. KL can be viewed as the Kitaev toric
code with surface termination along the rungs direction (a.k.a.
surface code [37]) whose width is one. This model represents
Z2 × Z2 symmetry-protected topological (SPT) order [40]
associated to anyonic parities,

Pm =
L∏

i=1

Bp(i), Pe =
∏

s∈r/b

Ar/b
s (i), (2)

where Pm and Pe are magnetic and charge parity operators in
the red or blue vertices, respectively (see Appendix. A).

Now we would like to perturb the KL Hamiltonian such
that e (charge) and m (flux), corresponding to As = −1 and
Bp = −1, respectively, hop across the ladder and gain kinetic
energy. To this end we consider the perturbed KL with the
generic Ising terms:

H KL = H KL
0 − te

∑
〈i,j〉∈∂p

ZiZj − tm
∑
i∈legs

XiXi+1, (3)

where te (tm) is the hopping strength of e (m). Via applying
Zg,iZr,i , which commutes with every plaquette and star op-
erator except Ar

s (i) and Ar
s (i + 1), an e charge on site (r,i)

transfers to (r,i + 1). We could also use Zb,iZg,i+1 to carry
out the same task. However, Zb,iZg,i+1 = Bp(i)Zg,iZr,i , and
therefore the total contribution to the Hamiltonian is (1 +
Bp(i))Zg,iZr,i . That being so, the Ising interactions are coupled
to the dynamical Z2 gauge field and the hopping of an e charge
from (r,i) to (r,i + 1) depends on the value of Bp(i) = (−1)n

m
i ,

which takes into account the parity of m anyon on site (g,i), or
equivalently, the mutual braiding statistics of e and m. Hence,
the hopping of e is blocked if there is a flux on its way. Likewise,
Xr,iXb,i+1 transports one unit of m charge from plaquette
(g,i) to (g,i + 1) and vice versa. We could also consider
Xb,iXr,i+1 to reach the same goal. However, Xb,iXr,i+1 =
Ar

s (i + 1)Ab
s (i + 1)Xr,iXb,i+1, and again the movement of m

is intertwined with the density of e’s along its way.
According to the single particle simulations of disordered

stabilizer codes [57,58], the motion of anyons is not dramat-
ically affected by exotic braiding phases between anyons of
opposite types. On the contrary, in the many-body picture,
the transport properties of Abelian anyons might strongly be
affected by their exotic statistics, so that e and m as two
distinct quasiparticles are able to mutually suppress their own
dynamics, even in a clean system. The latter property is the
characteristic feature of Falicov-Kimball-like Hamiltonians
[59], i.e., an admixture of spins and/or fermions, whose noner-
godic dynamics has been recently investigated as a candidate
for disorder-free localization [27–32].
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To directly reveal this hidden structure, we introduce a
nonlocal dual transformation, which maps Eq. (3) to three
coupled transverse field Ising (TFI) chains [see Fig. 1(b) and
Appendix B],

H KL
dual = −

∑
i

(
jmμz

g,i + tmμx
g,iμ

x
g,i+1

(
1 + μz

r,i+1μ
z
b,i+1

))

−
∑

i

(
jeμ

z
b,i + teμ

x
b,iμ

x
b,i+1

(
1 + μz

g,i

))

−
∑

i

(
jeμ

z
r,i + teμ

x
r,iμ

x
r,i+1

(
1 + μz

g,i

))
, (4)

where

μx
g,i =

∏
j�i

Xr,jXb,j+1, μx
r/b,i =

∏
j�i

Zg,jZr/b,j ,

and μz
g,i = Bp(i), μz

r/b,i = A
r/b
s (i). This model features glassy

dynamics for the μg,r/b degrees of freedom, associated to the
anyonic excitations of the KL. For example, in the noninter-
acting limit tm = 0 an effective description of H KL

dual reduces
to two TFI chains coupled to the static Z2 gauge field, μz

g .
These gauge degrees of freedom form a set of L constants
of motion with trivial dynamics. Hence, an arbitrary initial
nonzero density of fluxes ρmenergetically suppresses charges’
kinetic interactions [see Fig. 1(c)]. Indeed, a typical initial
inhomogeneity of {μg} = ±1 is dynamically manifested in a
self-generated disorder potential,

t ′e(i) = te(1 + μg,i), (5)

with the dilution distribution,

P(t ′e) = (1 − ρm)δ(t ′e − 2te) + ρmδ(t ′e), (6)

where for a fixed value of ρm, different configurations of
fluxes correspond to different realizations of disorder. In such
a situation, dynamics of the whole system will be identical
to that of two decoupled, disordered TFI chains in terms of
μ̂r/b, which are Anderson localized for any value of ρm > 0
[60]. An intriguing and simple picture of the topological
aspect of such glassiness is that, during the propagation of
e anyons across the system, they braid around the randomly
filled plaquettes—characterized by the probability ρm—with a
static Z2 gauge field μg . Thus, while passing each plaquette,

e anyons experience a random phase dictated by semionic
exchange angle, which leads to anyonic self-localization. This
procedure is comparable with that presented in Ref. [32], in the
sense that a nonergodic dynamics can be induced just through
the presence of static gauge degrees of freedom.

III. ANYONIC SELF-LOCALIZATION AND
QUASI MBL REGIME

The outlined glassy blueprint is inspiring to look for the
counterpart of quasi MBL [30] in an Abelian many-body
system. In analogy to the observed quasi MBL in a trivial
admixture of heavy and light particles [27–31], one needs to
choose the mass ratio of the quasiparticles to be large enough,
as long as the “isolated bands” [29] due to finite-size effects
is not manifested. In the KL, te (tm) controls the strength of
the effective disorder (interaction) as well as the effective
mass of e (m) anyons [61]. Thus, we consider the limit 0 <

tm � te, where m’s have a large but finite effective mass. Now
we initialize the whole system in a typical inhomogeneous
configuration |ψNm

〉 of

Nm = ρmL

fluxes, which are selected near the middle of the spectrum of
H KL. Then, we compute the evolution of the flux inhomogene-
ity density under H KL,

�ρ2
m(t) ≡ 1

L

L∑
p=1

∣∣〈ψNm
|(nm

p+1(t) − nm
p (t))|ψNm

〉∣∣2
, (7)

which vanishes for any perfect delocalized state. As illustrated
in Figs. 2(a) and 2(b), for tm � 0.01 fast relaxation of the initial
inhomogeneity due to resonance admixtures [27,28] takes
place within the time scale τint ∼ t−1

m , while in the opposite
limit, i.e., small tm, the initial inhomogeneity plateau persists
until τint. Moreover, the residual inhomogeneity remains even
at later times τeff ∼ te/t2

m. Subsequent to this time, the collec-
tive slow dynamics eventually gives way to complete relaxation
at τR . As discussed in Ref. [29], to ensure the robustness of the
numerical results against finite-size effects, the density of states
(DOS) must not display any isolated classical bands, which can
be clearly seen in the insets of Fig. 2.
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FIG. 2. Relaxation of the flux inhomogeneity density for N = 15 (spins) with fixed te = 1 and varying tm, averaged over 150 random initial
states |ψNm

〉, with Nm = 3 in the (a) fast and (b) slow dynamics regime. Vertical dashed lines represent time at τeff . (insets) DOS for the cases
with largest and smallest mass ratio tm/te.
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FIG. 3. (a) Upper panel: Relaxation of the time averaged inho-
mogeneity of fluxes for N = 15 and te = 10, in the quasi MBL
regime at tm = 10−3, averaged over 150 initial states with Nm = 3.
Lower panel: entanglement dynamics for a subsystem of size NA = 8,
averaged over 250 random product states. (b) The scaling behavior
of τR versus tm at fixed te = 1, for N = 12,15,18 with the initial
total number of fluxes, Nm = 2,3,4, respectively. The dot-dashed
lines denote the analytical estimation τRtm ∝ (te/tm)Nm−1. (Inset) The
expected exponentially diverging behavior of τR with system sizes at
tm = 0.006 in the quasi MBL regime.

To gain further insights on the nature of the three distinct
time scales, τint < τeff � τR , that characterize the relaxation
dynamics of anyons, we have also looked at the growth of
entanglement entropy Sent = −ρA ln ρA for half system A at
strong disorder te = 10 [see Fig. 3(a)]. Prior to τint , charges
perceive the fluxes as if they are immobile barriers. Hence, after
an initial growth, Sent saturates to the first plateau, conveying
the single particle localization length of charges. Subsequent
to τint hybridization of fluxes arrives, which in turn intertwines
with the charge dynamics. Thus, the entropy shows logarithmic
growth until the finite-size dephasing of charges wins at the
second plateau. At τeff , the dephasing of the fluxes sets in
and the entanglement grows even more slowly to saturate
eventually at τR . It is worth mentioning that the same time
scales also determine the evolution of the quantity

I(τ )= �ρ2
m(τ ) − �ρ2

m(∞)

�ρ2
m(0) − �ρ2

m(∞)
, (8)

where

�ρ2
m(τ ) ≡ 1

τ

∫ τ

0
dt�ρ2

m(t), (9)

[see Fig. 3(a)]. Moreover, the behavior of I(τ ) signifies that
the full relaxation eventually occurs but at very late times.
This anyonic slow dynamics is in contrast to true MBL
in which an initial inhomogeneity never completely decays
and resembles those characteristic behaviors observed in the
previous proposal of quasi MBL [30].

Following the perturbative argument presented in
Refs. [27,28], the finial decay time of the initial inhomogeneity
in KL—due to collective off-resonance motion of Nm

fluxes—should take place at time proportional to t−1
CM , where

tCM is the effective hopping of the center of mass:

τR ∝ t−1
CM ∝ tNm−1

e

t
Nm
m

, (10)

which for a typical nonzero density of magnetic charges (ρm �=
0) and in the thermodynamics limit scales exponentially with
system size, i.e.,

τRtm ∝ (te/tm)ρmL, (11)

provided that the criteria for quasi MBL holds (te 
 tm). To
confirm this parametric dependence, in Fig. 2(b), we have
plotted τR versus tm at the fixed value of te = 1 for N = 12,15,
and 18, which agrees with Eq. (10) very well.

For N = 12,15, we performed extensive exact diagonal-
ization and averaged over 150 random initial configurations of
magnetic charges with fixed total number of fluxes Nm. For
N = 18, due to lack of special symmetries, e.g., U (1), that can
significantly decrease the effective Hilbert space dimension,
we implemented another advanced method in order to reach
system sizes far beyond exact diagonalization studies: (i) In
the fast relaxation regime, i.e., tm ∼ te, we use a massively
parallel time integration method [62–64] based on Chebyshev
expansion that is suitable for simulating the dynamics up to the
moderate times that are much larger than the typical value of τR

in this regime. (ii) In order to compute τR for slow relaxation
regime we simulate relaxation time trace via shift-and-invert
Lanczos method [65]. To find a large portion of spectrum, we
use the implementation of PETSc [62,63] and SLEPc [64]
rely on MUMPS [66] to perform parallel sparse Cholesky
factorization as a direct solver.

These numerical results illustrate a very good agreement
with the rough estimation presented above in each set of data
and imply the exponential dependence of τR on the system size
with a growing number of fluxes in the quasi MBL regime [see
inset of Fig. 2(b)]. This exponentially anyonic slow dynamics is
comparable to the one which occurs in the presence of external
disorder [57,58], but in contrast, here we deal with an arbitrary
nonzero density of fluxes as well as generic perturbations in a
translationally invariant system.

Lastly, we would like to address whether the fast relaxation
in such anyonic liquids is followed by the viability of ETH in
HES. In this respect, we discard the pair creation/annihilation
of fluxes, which might happen as a result of Xr,iXb,i+1 terms
in Eq. (3). Typically, these recombination processes are less
likely for the heavy particles in comparison with the light ones.
Therefore, it is a reasonable assumption to consider,

H̃KL = P̂Nm
H KLP̂Nm

, (12)

where P̂Nm
is the projection operator into the subspace with

fixed Nm (see Appendix C). We evaluate G ≡ 〈nm
p nm

p+1〉 as
an ETH indicator in the simultaneous eigenstates of H̃KL and
momentum (hence we only consider G for p = 1) and collect
the results from all momenta. Figure 4(a) quantifies G in
different energy densities for (te,tm) = (1,0.001). In the whole
energy intervals, the value of G is spread considerably in a
wide range. On top of that, the distribution function P(G) near
the middle of the band has a very broad half-width and peaks
at different values as the system size is increased [right panel
in Fig. 4(a)] indicating a strong nonergodic behavior. For the
fast dynamics, e.g., (te,tm) = (1,0.5), the system rather obeys
ETH prediction: DOS becomes continuous, P(G) sharply
picked around its mean value and the width of the distribution
decreases by increasing the system size, as illustrated in
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FIG. 4. (a) Failing of ETH for the case (te,tm) = (1,0.001). Left
panel: The exception value of G in momentum eigenstates versus
energy density. Inset displays DOS for H̃KL. Right panel: P(G) for
all eigenstates in the energy window ε ∈ [−0.09,0.09] in the middle
of the energy band for different system sizes. The average value
is removed from the distribution for visibility. (b) Manifestation of
ETH for (te,tm) = (1,0.5).P(G) is plotted in the interval ε ∈ (0,0.15].
Results are reported for (N,Nm) = (12,2), (15,3), and (18,3).

Fig. 4(b). Hence, whenever te and tm are in the same order
of magnitude, the fast relaxation occurs along with the validity
of ETH in HES.

IV. RESILIENCE OF THE TOPOLOGICAL ORDER
FOLLOWING A QUENCH

To further inspect the fingerprints of the emergent kinetic
constraint in Eq. (4) on nonequilibrium anyonic dynamics, we
proceed with the scenario of the quantum quench. We initially
prepare the system in

|φ0〉 = (1/2)(1 + Ŵx)
∣∣{nm

p

}
,
{
ne

s

}〉
, (13)

where Ŵx is one of the two logical operators that encode the
topological qubit, and |{nm

p },{ne
s}〉 is an exact eigenvector of

H KL
0 [Eq. (1)] including a specific pattern of e’s and m’s.

According to the SPT nature of H KL
0 (see Appendix. D), the

corresponding eigenstates are short-range entangled and thus
cold state. We are specially interested in those transitionally
invariant pre-quench states with ρm = 1 and ρe = 0, wherein
initial information is encoded in the subspace with maximum
number of m anyons. By performing time integration based on
Chebyshev expansion to evolve system under H KL, Eq. (3),
we measure the spreading of the stored initial information as
well as the nonequilibrium heating procedure over the course
of time,

	S = Sent(t) − S0

Spage − S0
, (14)

where Sent(t), S0, and Spage are bipartite entanglement entropies
associated with |φ(t)〉, |φ0〉, and an infinite temperature state
[67], respectively. While for such a clean stabilizer code a
fast thermalization is expected after the unitary time evolution
from ground state [46], we show that away from this subspace
thermalization is repressed for a finite range of parameters,
even though the pre-quench state possesses a regular pattern
of m and e anyons.

For the noninteracting limit tm = 0, it follows from Eq. (5)
that the dynamic of charges would be completely suppressed
due to the presence of static fluxes in each plaquette. Indeed,
turning on finite te within the full-flux sector could not modify
eigenvalues and the corresponding eigenvectors relative to
those in the pure KL. So, eigenstates within this sector do not
mix with each other under the influence of Ising perturbations.
Hence, regardless of the magnitude of jm and te, the spreading
of information is strictly impeded even in the absence of any
explicit form of disorder in either the Hamiltonian or the initial
state.

For tm �= 0, the flux occupation numbers are no longer
constants of motion. Hence, to build up the tendency toward the
survival of preparatory fluxes over the course of time, one needs
to increase the value of flux mass gap, jm [see Figs. 5(a) and
5(c)]. Consequently, the thermalization process slows down at
a continually growing rate [see Figs. 5(b) and 5(c)]. Hence,
scaling of the late time saturation value of Sent with different
subsystem sizes NA reforms from volume law to area law, as
depicted in Fig. 5(d). An approximate area law is observed
for jm � 4, while for jm = 1, 2 the scaling obeys volume law
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FIG. 5. (a) Evolution of the expectation value of n̂m
p by varying the flux mass gap jm, for N = 21, te = 10, tm = 0.6 and the pre-quench

state initialized in ρm = 1 and ρe = 0. Since both the Hamiltonian and initial state are translationally invariant, the results for all plaquettes are
the same. (b) The information spreading, (c) late time saturation values, and (d) scaling of Sent with different subsystem sizes NA, at jet = 103,
where 〈nm

p 〉 saturates to its long-time value. (Inset) The heating procedure in the ergodic phase, in which systems with sizes N = 18 and 21
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[68]. Notably, in the thermal regime, the system with sizes
considered here [up to the Hilbert space dimension D ∝ 106]
can reach its infinite temperature state [see inset of Fig. 5(b)],
the behavior that is never observed in the systems suffering
from finite-size effects.

V. DISCUSSIONS

We identified the anyonic self-localization as an emergent
property purely rooted in the intrinsic statistics of the Abelian
anyons and extended the so-called quasi MBL picture to
self-correcting quantum codes. This provides a mechanism
distinct by nature from the recent proposals on disorder-free
localization [27,28,30,32,69]. Our results on anyonic self-
induced disorder indicate that an exponentially glassy dynam-
ics could be induced even (i) in low-dimensional, clean, and
simple-structure models, and remarkably (ii) this glassiness
is enhanced by increasing either the density of errors and/or
environmental perturbations [28] (see also Appendix E). As
already mentioned, this nonergodic dynamics could have a
crucial consequence for the stability of topological quantum
memories.

The scenario discussed in this paper could be generalized
to 2D quantum double models such as the Levin-Wen model
[70] or Kitaev’s toric code. In these models, an anyon of
type a can be transported from site i to site j along the
directed path γ connecting the two sites through applying
open string operators (Wilson line operators) of type a, Wa

γ .
In order to mobilize anyons in the system and let them acquire
kinetic energy, we can add

∑
a

∑
γ ga

γ Wa
γ to the ideal (exactly

solvable) Hamiltonian, where ga
γ is the amplitude of path γ .

Now, imagine two distinct paths γ1 and γ2. The product of the
two open string operators along γ1 and γ2 (γ2 with opposite
direction), i.e., Wc ≡ Wa

γ1
Wa

γ2
= Wa

γ1
(Wa

γ2
)−1, forms a closed

string (Wilson loop operator). The resulting loop can take
various quantized values depending on the total anyon charge
inside path γ3 ≡ γ1γ2. Now suppose the resulting path, i.e., γ3,
encloses total anyon charge equal to b. The Wilson operator
Wc measures the braid statistics between anyons a and b and is
independent of path γ3 (as far as it encompasses the anyon
charge b). Therefore, Wa

γ2
= WcW

a
γ1

. As a result, the total
contribution of the two paths γ1 and γ2 is (ga

γ1
+ ga

γ2
Wc)Wa

γ1
.

Now, let us assume the two paths γ1 and γ2 are related via some
symmetry operations, for instance the mirror symmetry with
respect to the x axis. In that case, we must choose |ga

γ1
| = |ga

γ2
|

if we want to preserve that symmetry. Since Wc depends on
the total anyon charge trapped inside loop γ3 and it may take
a different value upon the translation of γ3, the perturbations
can be viewed as disordered anyon hopping terms where the
disorder is due to the nontrivial anyonic braiding statistics
as discussed previously. Besides, as little progress has been
made toward investigation of MBL in topologically ordered
2D systems, our study breaks ground for future research.

A closely related concept to quasi MBL in multicomponent
systems is quantum disentangled liquid [69,71,72], wherein
“post-measurement” of the anyon configuration is identical to
the error syndrome; that is, the first step in the error-correcting
protocol. It is tempting to see whether such a measurement
procedure on a topological state supports this claim. Intuitively,
could a quantum disentangled spin liquid be found there?
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APPENDIX A: KITAEV LADDER

We first briefly discuss the main properties of the KL
Hamiltonian, H KL

0 , in (highly) excited states to give an insight
on its nature as an anyonic liquid. In KL periodic-boundary
condition in the leg direction leads to the global constraint∏

i A
r/b
s (i) = 1, which ensures that (i) any energy level in

the whole spectrum will have at least twofold degeneracy
and (ii) 2L − 1 independent charge degrees of freedom are
created/annihilated in pairs. However, fluxes can be cre-
ated/annihilated singly in contrast to the 2D toric code on
torus. One can also define the occupation operators of charges
and fluxes as n̂e

i = (1 − A
r/b
s (i))/2 and n̂m

i = (1 − Bp(i))/2,
respectively. In terms of occupation operators, H KL

0 simply
counts the total number of e and m anyons in the system. The
basis which diagonalizes H KL

0 has the following closed form
in the occupation number representation:∣∣{nm

i

}
,{ri}

〉 = P̂{nm
i }ĝ{ri }|x+〉⊗N, (A1)

where

P̂{nm
i } =

∏
i

(
1 + (−1)n

m
i Bp(i)

)/
2,

ĝ{ri } =
∏
i ∈ D

Z
ri

i , (A2)

and |x+〉 is the eigenstate of X, i.e., X|x+〉 = |x+〉. ĝ{ri } is a
member of the Abelian group G (consisting of 22L different
set of configurations, ri = {0,1}), which performs all spin-flip
operations for 2L spins placed on the global path D (see Fig. 6).
By the action of G on the charge vacuum state, one can generate
all 22L−1 different independent charge configurations. P̂{nm

i } is
the projection operator to the subspace with flux configuration,
{nm

i }, where a 2L different set of nm
i = {0,1} can generate

corresponding flux degrees of freedom. However, {ri = 1; ∀i}
is a special case for which Wz ≡ ĝ{ri=1} goes over the whole
system on a homologically nontrivial path D. Accordingly, for
any state |{nm

i },{ri}〉, there is a degenerate state,∣∣{nm
i

}
,{ri}

〉 = Ŵz

∣∣{nm
i

}
,{ri}

〉
, Ŵz =

∏
i ∈ D

Zi, (A3)

p
s

s

Ŵx

Ŵz

FIG. 6. KL as a surface code terminated in one direction. Dashed
lines indicate topologically nontrivial path D and D′.
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where Ŵz plays the role of Wilson loop, which creates a pair of
charges on a vertex, rounds them across the system, and then
annihilates them. This process is accompanied by changing
topological sector of states (associated to different eigenstates
of logical operator Ŵx = ∏

i ∈ D′ Xi) and can be interpreted
as diffusion of unchecked errors across the ladder after a time
proportional to the system size, a.k.a. logical error. Hence,
generating glassy dynamics in highly-excited states (HES)
of such disorder-free stabilizer codes impedes the mentioned
procedure and puts forward a paradigm for realizing more
stable quantum memories at finite temperature, the task which
is assigned to the quasi many-body localization (quasi MBL)
mechanism through this work.

As mentioned in the main text, the ground state of the KL
model (with twofold degeneracy in the free charge and flux
sectors {nm

i = 0,ri = 0; ∀i}) cannot be smoothly connected
to a short range entangled state without breaking the Ising
symmetries Pm and Pe, defined in Eq. (2), explicitly or
spontaneously. The action of these symmetries on occupation
number basis Eq. (A1) can be interpreted as anyonic parity,
such thatPm shows the flux parity andPe represents the charge
parity in the red or blue vertices.

APPENDIX B: BOUNDARY CONDITION FOR
THE DUAL PSEUDOSPINS

In this section, we study the effect of the flux parity,
defined in Eq. (2), on determining the boundary condition
(BC) for pseudospins μr/b. Because of the global constraint∏

i μ
z
r,iμ

z
b,i = 1, μr/b’s describe only 2L − 1 independent de-

grees of freedom. That being so, applying dual transformation
on the original spins of the KL with periodic-BC results in
a 1-to-2 mapping between μr/b’s and original spins. One
can consider two additional independent ancillary degrees
of freedom, in the virtual (L + 1)th unit cell of the ladder
(see Fig. 6). According to our definition for blue and red
pseudospins, μx

r/b,i = ∏
j�i Zg,jZr/b,j , the x component of

ancillary pseudospins are product over an empty set, hence
μx

r,L+1 = μx
b,L+1 = 1. On the other hand, the string operators

μx
r,1 and μx

b,1 are two special cases that commute with H KL

and in terms of the original spins take the form μx
r,1 = Wz,

μx
b,1 = PmWz. Combination of these properties gives:

1 = μx
r,L+1 =

{
μx

r,1 if Wz = +1

−μx
r,1 if Wz = −1.

(B1)

In fact, μx
r,1 and μx

b,1 are dynamical variables that are not
independent from each other and determine the BCs on the
μ’s. So, according to Eq. (B1), the flux parity

Pm = μx
r,1μ

x
b,1 ≡ (−1)Nm =

{+1

−1
(B2)

determines the BC of the red and blue TFI chains in H KL
dual and

relates them to each other in such a way that for the even parity
two chains simultaneously have periodic BC or antiperiodic
BC, but for the odd parity one chain has periodic BC while
another must have antiperiodic BC and vice versa. In fact,
the mentioned BCs, by doubling the size of the Hilbert space,
establish a one-to-one mapping between all energy levels of
H KL

dual and the perturbed KL Hamiltonian.

(a) (b)

FIG. 7. (a) Relaxation of flux inhomogeneity and (b) growth of
entanglement entropy for subsystem cut at eighth spin, corresponding
to strong effective disorder governed by H̃KL for (N,Nm) = (15, 3),
averaged over 200 random product states.

APPENDIX C: PROJECTED HAMILTONIAN

As mentioned in the main text, dynamics of the fluxes in
our model is governed by the two-body ferromagnetic Ising
interaction, XiXj between the nearest neighbor spins, that
sit on the legs of the ladder. Here, we would like to restrict
our study to the effect of flux dynamics on localization or
thermalization of finite energy states, therefore we discard the
creation/annihilation of fluxes which might occur as a result of
XiXj terms. Typically, these recombination processes are less
likely for the heavy particles in comparison with the light ones,
equivalent to the condition jm 
 te > tm. Here, we impose this
restriction by projecting the leg-Ising interaction onto the sub-
space with a fixed total number of flux by P̂Nm

= ∑′
{nm

i } P̂{nm
i },

where P̂{nm
i } is defined in Eq. (A1), and the summation is

restricted to those configurations in which Nm = ∑
i n

m
i is

fixed. In this respect, the projected Hamiltonian is given by
H̃KL defined in Eq. (12). The matrix elements of H̃KL can
only connect different configurations of the flux anyons with
fixed Nm. Since the total number of fluxes, in addition to
the flux parity, will be a constant of motion of H̃KL, using
this projected Hamiltonian is more efficient for computational
purposes. In this situation, the effective mass of heavy particles
living in finite energy levels is inversely controlled by tm in
each fixed flux sector, jm is an irrelevant parameter. To check
the validity of this approach, in Fig. 7 we compute entan-
glement dynamics and relaxation of the initial inhomogeneity
governed by H̃KL, which shows the same qualitative behavior
in comparison to those governed by H KL presented in the main
text.

APPENDIX D: ROBUSTNESS OF SPT PHASE IN FINITE
FLUX DENSITY

To reveal the effect of nonzero flux density on the robustness
of SPT order, we consider H KL

dual with tm = 0. First, in ρm = 0
the dual Hamiltonian reduces to two decoupled clean TFI
chains. Accordingly, the system has a well-known phase
transition at t ce = je/2. The paramagnetic phase for te < je/2
in the μr/b picture is identical to the Z2 × Z2 SPT phase in
the language of the original model [40], while te > je/2 is
smoothly connected to the je = 0 fixed point and represents the
trivial polarized phase. However, for ρm > 0 the TFI chains are
no longer clean and effectively experience a random dilution
disorder. According to the exact solution presented in Ref. [60],
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(a) (b) (c)

FIG. 8. (a) von-Neumann entropy Sent , calculated by an implementation of iTEBD method with χ = 64 for H KL(tm = 0) in the ρm = 0
sector. The upper and bottom insets show magnetization Mz and the gap between two largest Schmidt coefficients |λ1 − λ2|, respectively. All
data shows diverging behavior at t c

e = je/2. (b) von-Neumann entropy computed for H KL(te = 0) in the ρe = 0 sector. The upper and bottom
insets show OZ2×Z2 defined in Eq. (D1) and the gap between two largest Schmidt coefficients, respectively. (c) The three top panels display the
effect of nonzero density of fluxes on the same quantities plotted in (a). The lowest panel specifies the phase factor order parameter, OZ2×Z2 ,
which reveals robustness of the SPT order for ρm �= 0.

for arbitrary (increasing) values of te, even an infinitesimal
ρm spoils any long range magnetic order. For this reason, in
the μr/b-picture system is always in the paramagnetic phase,
and thus the existence of m anyons favors the topological
order.

Numerical approach.—We employed an infinite time-
evolving block decimation (iTEBD) algorithm [73], which
is based on an infinite matrix-product state (iMPS) represen-
tation to numerically check the validity of above analytical
results. In the original model, for the case of ρm = 0, we
compute the half-cut von-Neumann entanglement entropy,
Sent = −tr(ρL/2 ln ρL/2), where ρ is the ground state den-
sity matrix. The main plot of Fig. 8(a) shows a diverging
behavior of Sent at t ce = je/2. Moreover, the magnetization,
Mz = ∑

i Zi/N [presented in the upper inset of Fig. 8(a)],
shows a transition from a nonmagnetic phase for te < je/2 to
a spontaneously symmetry breaking phase for te > je/2. The
lower inset of Fig. 8(a) unveils the difference between the two
largest magnitudes of Schmidt coefficients, |λ1 − λ2|, where
the degeneracy of λ1 and λ2 for te < je/2 is the characteristic
feature of SPT phase [74]. A similar behavior holds in the case
H KL(te = 0) in the ρe = 0 sector, where the phase transition
occurs at t cm = jm/2 [see Fig. 8(b)]. Additionally, we compute
the phase factor order parameter [75]:

OZ2×Z2 =
{

0 if |ηz| < 1 or |ηx | < 1
1
χ
tr(UzUxU

†
z U

†
x ) if |ηz| < 1 = |ηx | = 1,

(D1)

where ηz and ηx are the largest eigenvalues of the generalized
transfer matrix [75] constructed by symmetry operators �IZZ

and �XXX, respectively, and U
†
z and U

†
x are eigenvectors

corresponding to them (here χ is the bond dimension of iMPS).
The symmetry protected nontrivial phase, symmetry-breaking
phase, and symmetry protected trivial phase are characterized
by OZ2×Z2 = {−1,0,1}, respectively. The behavior of the
mentioned quantities implies that for te < je/2 (tm < jm/2)
the perturbed system at zero flux sector (zero charge sector)
belongs to the Z2 × Z2 quantum spin liquid phase.

Now, we consider the parent Hamiltonian H
′KL
0 , which

is different from H KL
0 in that we set jm → j

′
m = −jm. The

ground state of H
′KL
0 is in the full flux sector equivalent to the

highest energy sector of H KL
0 . It can be shown that after adding

the plaquette-Ising interaction (as charge kinetic term) to the
H

′KL
0 , the ground state of perturbed parent Hamiltonian, H

′
KL,

remains in ρm �= 0 sectors, provided that the rough estimate
te � jm/2 holds. It is worth mentioning that iTEBD algorithm
does not guarantee the final wave function of H

′
KL to remain in

a sector with finite flux density for arbitrary enhancing value
of te. Hence, mentioned constraint ensures that the zero-flux
sector is not reachable as te is increased.

The results of our numerical simulation for H
′
KL with

j
′
m = −10je are presented in Fig. 8(c), which shows no

evidence for a quantum phase transition at ρm �= 0. The
von-Neumann entropy is 2 ln 2, where magnetization is zero,
the Schmidt coefficients are degenerate, and OZ2×Z2 = −1.
All these results indicate the robustness of SPT order as a
consequence of self-generated disorder. This effect is also
comparable with Ref. [56], in which the external random field
with dilution distribution stabilizes intrinsic topological order
against arbitrarily strong magnetic fields.

APPENDIX E: THE ROLE OF INTERACTION AND
EFFECTIVE TEMPERATURE

Here, we investigate the dependence of the nonergodic
quench behavior on the interaction and effective temperature.
Apart from the parameters jm and tm, the flux density in the
pre-quench state and te can be seen as additional controlling
parameters for initial energy density [through the relation
ερm

= −jm(1 − ρm) − 2je] and the strength of the effective
disorder, respectively. By reducing the strength of interaction
from te = 10 (see Fig. 5 in the main text) to te = 1, the informa-
tion spreading escalates as shown in Fig. 9(a). Subsequently,
as shown in Fig. 9(b), the scaling of entanglement changes
behavior from area law to volume law, approximately around
jm = 4.5, which become greater than jm ∼ 3 for te = 10.
Moreover, lowering the number of initial fluxes in the pre-
quench state results in an upsurge in the heating process, in
the way that the Ising perturbations adversely redesign the
initial short-range state to a mixed one [see Fig. 9(c)]. As
a result, increasing the effective temperature and strength of
interaction ameliorates the resilience of topological order as
well as robustness of the initial encoded information.
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FIG. 9. (a) Spreading of the information for the pre-quench state initialized in ρm = 1, tm = 0.6, and N = 18. (b) Scaling of Sent with
different subsystem sizes for te = 1, tm = 0.6, and ρm = 1. (c) The effect of initial flux density on spreading of information for te = 10,
tm = 0.3, and jm = 5.

[1] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Phys. Rev. Lett.
95, 206603 (2005).

[2] D. Basko, I. Aleiner, and B. Altshuler, Ann. Phys. 321, 1126
(2006).

[3] V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111 (2007).
[4] A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).
[5] B. Bauer and C. Nayak, J. Stat. Mech.: Theory Exp. (2013)

P09005.
[6] J. Z. Imbrie, J. Stat. Phys. 163, 998 (2016).
[7] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[8] J. A. Kjäll, J. H. Bardarson, and F. Pollmann, Phys. Rev. Lett.

113, 107204 (2014).
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