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Observation of large multiple scattering effects in ultrafast electron diffraction
on monocrystalline silicon
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We report on ultrafast electron diffraction on high quality single crystal silicon. The ultrafast dynamics of the
Bragg peaks exhibits a giant photoinduced response which can only be explained in the framework of dynamical
diffraction theory, taking into account multiple scattering of the probing electrons in the sample. In particular,
we show that lattice heating following photoexcitation can cause an unexpected increase of the Bragg peak
intensities, in contradiction with the well-known Debye-Waller effect. We anticipate that multiple scattering
should be systematically considered in ultrafast electron diffraction on high quality crystals as it dominates the
Bragg peak dynamics. In addition, taking into account multiple scattering effects opens the way to quantitative
studies of nonequilibrium dynamics of defects in quasiperfect crystals.
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I. INTRODUCTION

The field of ultrafast dynamics in condensed matter has
been very active in the past decades. Its main motivation
is to gain new insight on the complex interplay between
the various degrees of freedom in materials (charge, lattice,
spins) directly in the time domain. In particular, ultrafast x-ray
diffraction [1,2] and ultrafast electron diffraction (UED) [3–5]
are ideal techniques for obtaining valuable information on
structural dynamics at the atomic scale. The use of ultrafast
electron diffraction in pump-probe experiments has proven to
be very efficient for studying the dynamics of photoinduced
phase transitions by measuring the relative changes of the
diffraction pattern following photoexcitation [6–10]. Indeed,
in the case of a structural phase transition, interpreting the
dynamics of the diffraction pattern is relatively straightfor-
ward: the change in the crystal symmetry can be monitored
through the appearance/disappearance of Bragg peaks [7,10].
However, a wealth of additional information is contained in
the diffraction pattern, e.g., lattice heating can be estimated
through the change of the Bragg peak intensity due to the
Debye-Waller effect. Quantitative analysis mostly relies on the
use of kinematical diffraction theory, which assumes that the
scattering potential of the crystal lattice is a small perturbation,
so that the probing electrons undergo a single elastic scattering
event, leading to a weak diffracted intensity compared to the
incident electron beam. This theory gives satisfactory results
when applied to the case of polycrystalline samples where the
grain size is only a few nanometers [10,11]. It led to quasidirect
measurements of the lattice temperature with subpicosecond
resolution in several materials [5,11]. However, as high quality
single crystal samples adapted to UED experiments are becom-

ing available, kinematical theory does not appear sufficient
to explain all experimental results. Several UED studies on
high quality crystals, such as silicon [12] and graphite [13],
have reported large photoinduced changes of the Bragg peak
intensity that cannot be explained by kinematical theory. The
authors proposed that multiple scattering of the electrons must
be at play but no quantitative analysis was performed to fully
confirm this hypothesis.

In electron microscopy, multiple scattering is taken into
account in the framework of dynamical diffraction theory
[14,15]. In high quality crystals, multiple scattering needs to be
considered due to the very high elastic scattering cross section
of electrons. Despite this, little attention has been given to these
effects in time-resolved electron diffraction experiments. To
our knowledge, multiple scattering was considered in detailed
only in [16] in a UED experiment in reflexion geometry
designed to study surface dynamics. In this paper we show
that multiple scattering completely dominates the dynamics
of the diffraction pattern in the commonly used transmission
geometry. The experiment is performed on nanomembranes
of monocrystalline silicon which is the archetypal example
of the perfect single crystal. In addition, the availability of
the silicon scattering potential enables a thorough and quan-
titative comparison between experiment and theory, leading
to the unambiguous conclusion that the observed dynamics is
dominated by the photoinduced changes of multiple scattering
physics.

II. EXPERIMENTAL METHOD

The electron bunches are first generated by back-
illuminating a gold photocathode with a λ = 266 nm ultrashort
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FIG. 1. Scheme of the experimental setup. The electron beam is
generated on the photocathode by the third harmonic of the laser and
accelerated in the dc gun followed by a solenoid. After a certain time
delay the pump arrives on the other side of the sample. The resulting
diffraction pattern is detected with an MCP and imaged onto a CCD
camera.

laser pulse of <60 fs duration. Electrons are then accelerated
in a dc gun, delivering accelerating voltages up to 100 keV,
and then focused by a solenoid to a spot size of 150 μm
full width half maximum (FWHM) at the sample position.
The charge of the electron bunch beam is <1 fC resulting in
space charge dominated bunches with a transverse coherence
length of ∼4 nm and <300 fs duration, as estimated using
the GPT code [17]. An scheme of the experimental setup is
shown in Fig. 1. Unless stated otherwise, the electron energy
is 45 keV. The silicon sample is pumped with a 35 fs pump
laser pulse, with λ = 400 nm photons. The incident fluence
is 12 ± 1 mJ/cm2, over a 500 μm FWHM laser spot. The
diffracted peaks are detected with a MCP detector imaged
onto a CCD camera. The experiment is performed at 1 kHz
repetition rate and each diffraction image is obtained by accu-
mulating over 5000 pulses. The silicon samples were thinned
out from a silicon on insulator wafer [18], resulting in a grid
of 350 × 350 μm free standing nanomembranes with [001]
orientation. The membrane thickness was measured using
convergent beam electron diffraction [19] and estimated to be
70 ± 2 nm.

III. RESULTS

We start by reviewing some properties of silicon and its
expected dynamical response following photoexcitation. We
measured the pump pulse absorption in the sample to be
55 ± 5%. Thus, starting from an incident fluence of Finc =
12 mJ/cm2, the absorbed fluence is estimated at Fabs =
6.5 mJ/cm2. The pump laser pulse causes the excitation of
electron-hole pairs and the density of excited electrons in the
conduction band is given by nexc = Fabs/Lh̄ω, i.e., nexc =
1.8 × 1021 cm−3 for our experimental parameters. Excited
carriers thermalize via electron-electron scattering on the
100 fs time scale [20] and form two subsystems comprising hot
electrons and holes. The electrons (holes) subsequently relax
to the bottom of the conduction band (top of the valence band)
through electron-phonon coupling on a picosecond time scale,

causing lattice heating [11,21]. Using ab initio calculations
[22] for determining the quasiparticle density of states of the
valence and conduction bands [23], as well as the specific
heat Cp(T ) of silicon, we were able to determine the lattice
temperature after electron relaxation assuming that the number
of electron-hole pairs stays constant during this part of the
dynamics. This gives a lattice temperature increase of �T =
240 K. Additional delayed heating occurs via electron-hole
pair recombination across the gap. At this excitation level
it is well known that the dominant mechanism is Auger
recombination [24]. The dynamics of the excited carrier is gov-
erned by the following equation: dnexc/dt = −(Ce + Ch)n3

exc,
where Ce and Ch are the Auger coefficients for electron and
holes, respectively. Following Dziewior and Schmid [25],
we used Ce + Ch = 3.8 × 10−31 cm6 s−1, and we find that
90% of the Auger recombination has occurred after 40 ps
and 94% after 100 ps. Therefore, after 100 ps, we estimate
a temperature increase of �T = 460 K. At this point, the
system reaches a metastable state as heat diffusion occurs
on the microsecond time scale for our sample geometry. In
kinematical diffraction, lattice heating manifests itself by the
decrease of the Bragg peak intensities according to the Debye-
Waller factor Ihkl(T ) = Ihkl(0)e−2M , with 2M = 〈u2〉�k2

hkl .
Here 〈u2〉 represents the rms displacement of atoms around
their equilibrium position and �khkl = 4π sin θhkl/λ, where
λ is the electron de Broglie wavelength. Using ab initio
calculations [22,23,26] for estimating the values of 〈u2〉, we
find that the (220) peaks should all decrease by 10% after lattice
heating is completed: I220(800 K)/I220(300 K) − 1 = 0.9. This
scenario and the use of kinematical theory to interpret the
decrease of the Bragg peak intensities was validated in a UED
experiment on polycrystalline silicon [11].

We now demonstrate that this interpretation does not hold
in the case of high quality single crystals. Typical diffraction
patterns from the silicon nanomembranes are shown in Fig. 2.
In Fig. 2(a), the electron beam is oriented so that it is parallel to
the [001] direction: the diffraction pattern is symmetric and the
various (220) peaks have similar intensity. The diffracted beam
intensities is about one order of magnitude lower compared
to the intensity of the transmitted electron beam (referred
to as the 0-order beam in the following). In contrast, in
Fig. 2(b) the sample was tilted along the horizontal axis
(represented by the dashed black line) so that the (2 − 20)
peak satisfies the Bragg condition. The diffraction pattern is
quite asymmetric and remarkably, the 0-order and the (2 − 20)
peak have similar intensities. This fact clearly contradicts
the basic hypothesis of kinematical diffraction theory which
states that the diffracted intensity is much lower than the
transmitted beam intensity. Figure 2(c) shows the dynamics of
various Bragg peaks following photoexcitation at an incident
fluence of 12 mJ/cm2. In this case, the sample was oriented so
that the (2 − 20) peak is slightly off Bragg. All Bragg peaks
exhibit similar dynamics: the relative intensity �I/I starts
with a sharp decrease on the picosecond time scale. This is
followed by a slower roll-off and further decrease on the 10
ps time scale. According to the above-mentioned scenario,
the fast picosecond time scale can be attributed to electron
relaxation and lattice heating via electron phonon coupling
while the slower time scale can be attributed to delayed heating
due to Auger recombination. After tens of picoseconds, the
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FIG. 2. (a) and (b) Diffraction images from a [001] oriented
silicon nanomembrane. (a) The crystal is oriented such that the
electron beam is parallel to the [001] axis. (b) The crystal is tilted by
the Bragg angle θ220 = 0.84◦ such that the Bragg condition is satisfied
for the (2 − 20) peak. (c) Result of a pump-probe scan showing the
relative intensity changes of various Bragg peaks �I/I . The incident
fluence is 12 mJ/cm2.

Bragg peak intensity is relatively flat and a quasisteady state
is established that lasts hundreds of picoseconds.

These different time scales are consistent with previous
results [12], but a truly intriguing feature is the magnitude
of the measured signal: the (2 − 20) peak decreases by 40%
while the 0-order peak increases by nearly 30%. Even more
surprisingly, we observed that the dynamics of the Bragg peak
is extremely sensitive to sample orientation. In Fig. 3 we show
the dynamics �I/I (t) for the transmitted beam (a) and for the
(2 − 20) peak (b) for five different sample orientations. The
results are striking as a 1◦ tilt can turn the intensity change of
the (2 − 20) peak from −40% to almost 60%. Therefore, we
not only observe a giant photoinduced response in the Bragg
peak intensity but the sign of the response �I/I is determined
by sample orientation. It is also interesting to note that the 0
order and the (2 − 20) peak have a complementary behavior,
indicating a possible coupling.

These observations are in complete contradiction with the
predictions of kinematical theory. In kinematical theory, the
0 order should remain unchanged while the all (220) peaks
should decrease by less than 10%. Finally, the magnitude of
the intensity changes �I/I should be independent on sample
orientation.

In order to gain further insight on these large changes of
intensity, we measured the rocking curves of several diffraction
peaks. Figure 4 shows the rocking curve of the (2 − 20)
peak at equilibrium (i.e., at 300 K, blue curves) and in the
photoexcited state (red curves) taken 150 ps after the arrival

FIG. 3. Photoinduced dynamics for various sample orientations.
The blue curve is obtained when the sample is exactly at the Bragg
angle; the other curves are obtained by tilting the sample by δθ =
0.26◦. The incident fluence is 12 mJ/cm2. Top: Dynamics of the
transmitted beam. Bottom: Dynamics of the (2 − 20) peak.

of the pump pulse, i.e., after thermalization of the sample has
occurred. Rocking curves are shown at two different electron
energies. We plot the Bragg peak intensity I (s), where s is
the amplitude of the deviation vector s = �k − g, and g is the

FIG. 4. Top: Experimental rocking curves for the (2 − 20) peak
taken with 45 keV electrons, at equilibrium T = 300 K (blue curve)
and in the photoexcited state (red curve), taken at t = 150 ps delay.
Bottom: Same but using 30 keV electrons as a probe. The rocking
curves were normalized relative to the equilibrium case.
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lattice reciprocal vector corresponding to the (2 − 20) peak.
Figure 4 clearly shows that the shape and magnitude of the
rocking curve changes upon photoexcitation. However, there
is no angular shift of the rocking curve upon photoexcitation,
invalidating previous interpretations based on lattice expansion
[13] or sample distortion [12]. In addition, the results of
Fig. 4 summarize and clarify the surprising features of Fig. 3:
for 45 keV electrons, the intensity change is positive at the
Bragg angle, whereas it is negative for most off-Bragg cases.
For 30 keV electrons, the behavior is quite different: here
the intensity change is always negative after photoexcitation.
The shape of these rocking curves, by departing from the
usual sin2 x/x2 line shape of kinematical theory, indicates
that dynamical effects are dominating the physics of electron
diffraction, even at equilibrium.

IV. DISCUSSION

The fact that the rocking curve changes with temperature
and electron energy can be understood quantitatively using a
simplified version of dynamical diffraction theory: the two-
beam theory where one considers only the transmitted beam
and one diffracted beam with intensity Ig. In two-beam theory,
the diffracted intensity depends on the thickness of the sample
L and reads

Ig(s,L) = 1

V

sin2(seL/2)

(seξg)2
, (1)

where se =
√

s2 + 1/ξ 2
g is the amplitude of the effective de-

viation vector and ξg is the extinction distance. The extinction
distance defines the shape of the rocking curve and changes of
ξg will modify the rocking curve.

At T = 0 K, the extinction distance reads ξg = 1
γ λ

πh̄2

meUg

where me is the electron mass and γ = 1 + E/mec
2 is the

Lorentz factor of an electron with kinetic energy E. The two
beams are coupled through Ug, the Fourier component of the
crystal potential V (r) corresponding to reciprocal lattice vector
g: V (r) = ∑

g Uge
ig·r. Clearly the extinction distance depends

on electron energy via γ λ, explaining why the rocking curve
changes with electron energy. The temperature dependence
can be accounted for by formally replacing Ug by Uge

−M

[27]. Consequently, the extinction distance increases with
temperature [28] like ξg(T ) = ξg(0)eM . Evidently, a rise in
temperature causes an increase of ξg, implying changes of the
shape of the rocking curve.

We found that two-beam theory does not allow us to fit
our experimental rocking curves and that additional Bragg
peaks need to be taken into account. This is also apparent
in the experimental data of Fig. 3: the diffracted intensity
is not conserved if one considers only the 0 order and the
(2 − 20) peak, indicating that more diffracted beams need to
be considered. Therefore, we turned to a N -beam theory and
solved the Howie-Whelan equations [29]

∂φg

∂z
= isgφg +

∑
g′ �=g

i

2ξg−g′
φg′ . (2)

Here φg is the amplitude of the diffraction peak g and
two peaks φg and φg′ are coupled through the extinction
distance ξg−g′ ∝ 1/Ug−g′ . Implementing this method requires
the detailed knowledge of the scattering potential. Silicon data
on the various Ug−g′ were taken from the code JEMS [30].
In the experiment we detect 12 diffraction peaks during a
rocking curve scan but we found that the N -beam theory
converges for N > 24 and we present results with N = 26
(more details can be found in the Appendix). Figures 5(a)
and 5(b) shows the results of the calculations for E = 45 keV
electrons and 30 keV electrons without considering absorption.
The experimental trends are well reproduced: the shapes of
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FIG. 5. Results of N -beam dynamical diffraction theory with N = 26 beams: (a) Calculated rocking curves for the (2 − 20) peak in the
case of 45 keV electrons. The blue curve shows the result at T = 300 K and at T = 650 K (red curve). (b) Same calculations but with 30 keV
electrons. In (c) and (d), a Gaussian background that was added to the N -beam calculations in order to better fit the data. The rocking curves
are normalized relative to the equilibrium case.
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the calculated rocking curves are similar to the experimental
ones. In particular, the signs of the relative intensity change is
reproduced: �I (s = 0)/I > 0 at 45 keV and �I (s = 0)/I <

0 at 30 keV. However, the experimental data in Fig. 4 display a
large background and the diffracted intensity I (s) oscillates
but never cancels to zero, in contradiction with dynamical
diffraction calculations. Experimentally, the background can
be due to many factors, such as inelastic scattering (on phonons,
plasmons, defects, etc.), surface contamination, or surface
amorphization. Because of the difficulty of modeling all these
effects, we turn to a phenomenological approach and model
the background using a simple Gaussian distribution. We were
able to obtain a quantitative fit of the experimental data using
the following function:

I (s) = AIdyn + Be−s2/σ 2
,

where Idyn is given by dynamical theory (no free parameters)
and A, B, and σ are free parameters allowing us to fit the
experimental data more accurately. While N -beam theory
reproduces all the trends of the experiment, the data can be even
better fitted by adding this Gaussian background to the results
of the N -beam calculations as shown in Figs. 5(c) and 5(d).
The photoexcited state was best fitted considering a T = 650 K
temperature. Results are represented by the red curves in Fig. 5,
showing excellent agreement with the measurements.

We conclude that the observed dynamics of the Bragg peaks
and in particular the behavior of�I/I can be fully explained by
lattice heating and dynamical diffraction effects. In particular,
we obtained the nonintuitive result that depending on the
electron energy and the sample orientation, lattice heating can
cause an increase of the Bragg peak intensity, contrary to the
well-known Debye-Waller effect.

V. CONCLUSION

While this study was performed on silicon, we anticipate
that such effects should be present in all materials provided
that the crystal quality is high and the thickness comparable
with the extinction distance. Indeed, when L 
 2πξg, multiple
scattering can be neglected and kinematic theory appears to
be a valid approximation. Typical extinction distances are
tens of nanometers (2πξ220 = 56 nm for silicon at 45 keV),
so that multiple scattering and dynamical effects have to be
considered as soon as the sample thickness is larger than
1–10 nm, depending on the material. In conclusion, we have
shown that multiple scattering effects play an important role
when UED experiments are performed on high quality single
crystals, consequently these effects should be always consid-
ered. Nonetheless, the quantitative interpretation of UED ex-
periments might become quite complex as modeling multiple
scattering requires prior knowledge of the crystal scattering
potential. Dynamical effects, in turn, could potentially be used
to obtain new information on the dynamics of the crystal
potential. Finally, dynamical effects are also useful to visualize
crystal defects, such as dislocation or stacking faults [15].
Therefore, they should enable a new type of experiments in
which the dynamics of defects following laser irradiation can
be studied using ultrafast electron imaging.
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APPENDIX: N-BEAM DYNAMICAL
DIFFRACTION THEORY

In dynamical theory, the main electron beam diffracts into
N − 1 diffracted beams because of its interaction with the
crystal scattering potential. The crystal scattering potential is
developed into a Fourier series as

V (r) =
∑

g

Uge
ig·r, (A1)

where g are the lattice reciprocal vectors, and Ug are the
potential Fourier components corresponding to g. The scat-
tered wave function is also written as a Fourier series: |ψ〉 =∑

g φg|k + g〉, where φg are the amplitude of the scattered
wave in a diffraction peak corresponding to vector g. Injecting
these expressions into the Schrödinger equation and solving in
Fourier space, one obtains the Howie-Whelan equations:

∂φg

∂z
= isgφg +

∑
g′ �=g

i

2ξg−g′
φg′ , (A2)

where sg, the deviation error, depends on the crystal orientation,

and ξg−g′ = 1
λ

2h̄2

meUg
is the extinction distance. The extinction

distance is related to Ug−g′ which causes a coupling of the
two diffracted beams φg and φg′ because 〈k + g|V̂ |k + g′〉 =
〈k + g|Ug−g′ei(g−g′)|k + g′〉 �= 0. Note that for a weakly rel-
ativistic electron, the effect of the relativistic mass increase
can be included simply by replacing me by γme where
γ = 1 + E/mec

2 is the electron Lorentz factor. The Howie-
Whelan equations describe the evolution of the scattered wave
intensities during propagation of the electron into the sample.
This system of N coupled differential equations can be written
in matrix form:

d�

dz
= iM�, (A3)

where � is a column vector of length N and M is a N × N

matrix that can be decomposed as

M =

⎛
⎜⎜⎝

0 0 0 . . .

0 sg1 0 · · ·
0 0 sg2 · · ·
...

...
. . .

⎞
⎟⎟⎠

+�

⎛
⎜⎜⎝

0 U−g1 U−g2 U−g3 · · ·
Ug1 0 Ug1−g2 Ug1−g3 · · ·
Ug2 Ug2−g1 0 Ug2−g3 · · ·

...
...

. . .

⎞
⎟⎟⎠,
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with

� = γme

2πh̄2 λ.

The left matrix is diagonal and its elements are the amplitudes
of the deviation vectors for each diffraction peak sg−g′ . The
right matrix is composed of the Fourier amplitudes Ug−g′ .

This is an eigenvalue problem and the solution is found by
diagonalizing matrix M . If D is the diagonal matrix in the
basis of eigenvectors and C is the matrix for changing basis,
we have M = CDC−1 and the solution of the problem is given
by

�(z) = CeiDzC−1�(0).

This general solution allows us to compute the amplitude
of the various diffracted peaks φg(L) at the output of the
crystal z = L. This theory can be used provided that the crystal
potential V (r) is precisely known. In our case, we extracted
the Ug matrix for the silicon potential from the code JEMS.
We modeled the experiment assuming a 70 nm thickness and
considering N = 26 beams, including all (220), (400), (440),
and (620) peaks and a few higher order peaks as well. Such a
high number of beams was necessary to ensure the convergence
in the shape of the (220) rocking curve. Note that there are no
free parameters in this model.

As a complement, we show in Fig. 6 different nonintuitive
behaviors of dynamical diffraction effects. Figure 6(a) shows
the evolution of the (220) peak at the Bragg angle s = 0 as a
function of thickness. The diffracted intensity oscillates along
propagation in the sample which is one of the main features
of dynamical diffraction. Interestingly, the diffracted intensity
in the high temperature case (red curve) shows a different
behavior, indicating that the relative intensity changes are also
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(a) Equilibrium Photoexcited (650K)
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FIG. 6. Results of dynamical diffraction theory including N = 26
beams. (a) Intensity of the (220) peak at the Bragg angle, I220(s =
0) for varying sample thicknesses, assuming 45 keV electrons.
(b) Intensity of the (220) peak at the Bragg angle, I220(s = 0) for
varying electron energy, assuming a 70 nm thickness.

expected to change sign depending on the sample thickness.
Note that for small thicknesses, one recovers kinematical the-
ory and �I/I < 0, i.e., the diffracted intensity is smaller in the
high temperature case. Figure 6(b) shows a similarly complex
behavior when the electron energy is varied. This indicates
that the relative intensity �I/I have varying amplitude and
sign depending on the energy of the probing electrons. We
conclude that the ultrafast response of the Bragg peak intensity
is, in general, greatly dependent on the sample thickness and
the electron energy.
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