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Buildup of Fano resonances in the time domain in a double quantum
dot Aharonov-Bohm interferometer
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In this paper, we investigate the transient quantum transport in a nanoscale Aharonov-Bohm interferometer
consisting of laterally coupled double quantum dots (DQDs) coupled to the source and drain electrodes. The tran-
sient linear conductance is derived at arbitrary temperature of the leads. The resulting transient conductance can
be divided into three terms contributed from different transport channels. From the transient linear conductance
and the reduced density matrix elements of the DQD system, we show the buildup of Fano resonances in the time
domain.
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I. INTRODUCTION

Fano resonance [1] is a universal phenomenon throughout
nuclear, atomic, molecular, and optical physics, as well as
in various condensed matter systems [2]. It is induced by
interference of transport in alternative paths when a discrete
state interacts with a continuum sharing the same energy. As
distinct from Breit-Wigner resonance [3], which arises due
to countertransport in the same quantum path and displays
a Lorentz line shape, Fano resonance shows an asymmetric
line profile that has both constructive and destructive inter-
ference around the resonance energy. A decade ago, with the
advent of femtosecond laser, the time-dependent formation
of asymmetric Fano line shapes in absorption spectra for
a photonionization process was proposed for pump-probe
experiments [4]. Until very recently, such a proposal has been
verified experimentally in the prototype system of helium [5].

On the other hand, recent experimental developments allow
one to measure transient quantum transport in different nano
and quantum devices [6–9], thus the buildup of Fano resonance
resolved in time in solid-state electronic systems is also of
great interest. In fact, Fano effects have been observed in
many novel solid state systems, such as open quantum dots
[10–13], Aharonov-Bohm (AB) interferometers [14–16], two-
dimensional (2D) electronic waveguides and nanotubes [17],
where alternative electronic paths can be achieved. Among
which, the first tunable Fano resonance is observed in an AB
interferometer containing a quantum dot in one of the two arms
[15,16], with the benefit that the width (�) and Fano factor (q)
of Fano resonance are controllable by the AB phase.

Inspired by the experimental realization of the double
quantum dots (DQDs) embedded into opposite arms of an
AB interferometer [18–20], several works have predicted Fano
resonance in this system without [21–26] and with [27–29]
Coulomb interactions. In particular, Kang and Cho [23]
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revealed analytically that in the double quantum dot AB
interferometer, there are two resonances in the steady-state
electron conductance at zero temperature near the bonding
and antibonding states, which are composed of a Breit-Wigner
resonance and a Fano resonance. Furthermore, Kubo et al. [26]
studied the associated resonances with varying the indirect
coupling between double dots through the leads, and they
found that Fano resonance can be suppressed as the indirect
coupling strength decreases, which remains two Breit-Winger
peaks in the steady-state conductance. In this paper, we
investigate the transient quantum transport though a double
quantum dot AB interferometer to explore how Fano resonance
is built up in the time domain in electronic systems.

Using the quantum transport theory based on the master
equation approach [30–32], we are able to investigate the
transient quantum transport in these novel solid-state systems
and also to explore the buildup of Fano resonance in the time
domain. We derive the transient linear conductance and the
reduced density matrix elements not only at zero temperature
but also at finite temperatures. In the situation of a symmetric
setup of the double quantum dot AB interferometer, the
conductance can be divided into three terms which correspond,
respectively, to electrons transport through the bonding and
the antibonding channels and the interference between these
two channels. By observing the time evolution of each term
contributing to the linear conductance, we obtain the different
time scales for the formation of Fano resonance and Breit-
Wigner resonance. Moreover, we investigate the influence of
thermal effects on the time scales to the formation of the
resonances and on the resonance profiles. We also compute
the time evolution of the reduced density matrix elements of
the DQD system. The results help us to understand the nature
of the formation of different resonances through the transient
quantum transport processes. Also, our results reproduce the
steady-state outcomes that have been obtained at zero tem-
perature in the previous works [21–26]. We expect that these
transient quantum transport properties on the buildup of Fano
resonance in the time domain can be practically observed in
experiments.
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The rest of the paper is organized as follows. The setup of
the system and the transient linear conductance in the system
of a double quantum dot AB interferometer are presented
in Sec. II. The transient dynamics of the linear conductance
and the corresponding reduced density matrix of the DQD
system in the molecular basis are investigated in Sec. III. The
time scale of the formation of Fano resonance is obtained.
Also, the relation between the resonances and the reduced
density matrix is explored. Finally, a summary is presented
in Sec. IV. The transient transport theory based on the master
equation approach that is used in this work is summarized in
the Appendix.

II. TRANSIENT LINEAR CONDUCTANCE AND REDUCED
DENSITY MATRIX OF THE DOUBLE QUANTUM DOTS

A. Double quantum dot AB interferometer

The Hamiltonian of a nanoscale AB interferometer consist-
ing of two coupled single-level QDs coupled to two leads is
given by

H = HDQD + HE + HT

=
2∑

i=1

εij d
†
i dj +

∑
α=L,R

∑
k

εαkc
†
αkcαk

+
∑

α=L,R

2∑
i=1

∑
k

(Viαkd
†
i cαk + H.c.), (1)

where HDQD and HE are, respectively, the Hamiltonian of the
DQDs and the two leads, and di (d†

i ) and cαk (c†αk) are corre-
spondingly the annihilation (creation) operators of electrons in
the ith dot and the kth level in lead α, with εij and εαk being
the corresponding energy. The Hamiltonian HT describes the
tunnelings between the dots and the leads, in which Viαk =
V̄iαke

iφiα with the phase coming from the magnetic flux �

threading into the AB ring. It gives φ1L − φ1R + φ2R − φ2L =
2π�/�0 = ϕ, where �0 is the flux quanta. Here, we focus
on the single-particle interference properties and disregard
Coulomb interactions, which can be done by controlling the
energy scale of the nanodevice to let the interdot Coulomb
correlations become negligible and to set up the DQDs in the
Coulomb blockage regime for practical applications.

In order to study the resonance dynamics in the double-dot
AB interferometer, we may express the DQDs in the molecular
basis by diagonalizing HDQD. Denoting the bonding state and
the antibonding state of the DQD molecule with the signs −
and +, respectively, the Hamiltonian of the DQDs becomes

HDQD =
∑
ν=±

ενd
†
νdν. (2)

Without loss of generality, we can let the energy of each dot
ε11 = ε22 = ε0, and the tunneling matrix between the two dots
ε12 = ε21 = −tc. Then, ε± = ε0 ± tc are the corresponding

energy levels of the molecular states, and d± (d†
±) are the

associated annihilation (creation) operators, which are given
by: (

d+
d−

)
= 1√

2

(
1 −1
1 1

)(
d1

d2

)
. (3)

The tunneling Hamiltonian between the molecular states and
the leads is transformed accordingly,

HT =
∑

α=L,R

∑
ν=±

∑
k

(Vναkd
†
νcαk + H.c.), (4)

with the tunneling matrix elements,(
V+αk

V−αk

)
= 1√

2

(
1 −1
1 1

)(
V1αk

V2αk

)
. (5)

Meanwhile, in order to observe a distinct feature of Fano
resonance, one needs to prepare a constant background coupled
to a discrete level. Therefore, we take the spectral density of
lead α in Eq. (A5) to be energy independent, �α(ω) = �α

(corresponding to the wide band limit) with the asymmetric
level widths of the left lead �L11 = �L22 = �L and the right
lead �R11 = �R22 = �R . Also the indirect interdot couplings
through the left lead �L12 = �Lei

ϕ

2 and the right lead �R12 =
�Re−i

ϕ

2 . As a result, the level-width matrix �α in the molecular
basis is given by(

�++ �+−
�−+ �−−

)
L,R

= �L,R(1 − �αL,R · �σ ), (6)

where �αL,R = (αx
L,R,α

y

L,R,αz
L,R)= (0, ± sin ϕ

2 , cos ϕ

2 ) and �σ are
the Pauli matrices. It shows that the level width in the molecular
basis is effectively controlled by the AB phase ϕ, which is an
equivalent realization of asymmetric couplings between the
double dots and the two leads.

B. Transient linear conductance and reduced density
matrix in the molecular basis of the DQDs

The buildup of Fano resonance in the time domain is
manifested in the transient linear conductance. The transient
linear conductance is defined as

G(t) = ∂

∂V
I (t)|V =0, (7)

where I (t) = 1/2[IL(t) − IR(t)] is the transient net transport
current and μL,R = EF ± eV/2, in which EF denotes the
Fermi level of the leads and V is the bias applied to the two
leads. We use the quantum transport theory based on the master
equation approach [30–32] to explore the transient features
of the linear conductance. The explicit form of the exact
master equation for the given total Hamiltonian (1) and the
corresponding transient current derived from the master equa-
tion are summarized in the Appendix, see Eqs. (A1), (A10),
and (A11). From Eq. (A11), one can find explicitly the transient
linear conductance in the wide band limit,

G(t) = −e2

h
ReTr

{
1

4
(�L − �R)

∫ t

t0

dτ1

∫ t

t0

dτ2u(t,τ1)(�L − �R)
∫

dω
β/2

1 + cosh[β(ω − EF )]
e−iω(τ1−τ2)u†(t,τ2)

− 1

2
(�L + �R)

∫ t

t0

dτ

∫
dω

β/2

1 + cosh[β(ω − EF )]
e−iω(t−τ )u†(t,τ )

}
, (8)
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where the retarded Green function u(t,τ ) has the following
solution,

u(t,τ ) = exp
[−(

iε + 1
2�

)
(t − τ )

]
, (9)

and ε = (ε+ 0
0 ε−) and � = �L + �R . Note that the transient

liner conductance is independent of the initial state of the
DQDs. This is because the DQD initial-state dependence in the
transient net current, the first term in Eq. (A11) is independent
of the bias voltage. Therefore, according to the definition of
the transient linear conductance Eq. (7), the derivative to the
bias voltage makes this initial-state dependence vanish in G(t).

When the leads are initially at zero temperature (β → ∞),
the frequency dependent term in Eq. (8) is reduced to a delta
function: β/2

1+cosh[β(ω−EF )] → δ(ω − EF ). In the steady-state
limit (t → ∞), one can then reproduce the linear conductance
obtained previously in Refs. [21–26],

G = e2

h
Tr[�LGR(EF )�R GA(EF )], (10)

where the retarded Green function in energy domain,

GR(EF ) = −i lim
t→∞ lim

t0→−∞

∫ t

t0

eiEF (t−τ )u(t,τ )dτ,

=
(

EF I − ε + i

2
�

)−1

, (11)

and the advanced Green function GA(EF ) = [GR(EF )]†.
Also, we have used the relation GR(EF ) − GA(EF ) =
−iGR(EF )�GA(EF ) [33–35] in obtaining Eq. (10).

On the other hand, in the molecular basis, the quantum
states of the DQD system, described by the reduced density
matrix elements ρνν ′ (t) that obey the master equation (A1) for
an arbitrary initial DQD state, can be expressed as [36] (also
see Appendix)

ρ00(t) = A(t)

{
ρ00(t0) + ρdd (t0)det[ J3(t)]

−
∑

ν,ν ′=±
ρνν ′ (t0) J3ν ′ν(t)

}
, (12a)

ρ++(t) = 1 − ρ00(t) − ρ
(1)
−−(t),ρ+−(t) = ρ

(1)
+−(t), (12b)

ρ−−(t) = 1 − ρ00(t) − ρ
(1)
++(t),ρ−+(t) = ρ∗

+−(t), (12c)

ρdd (t) = 1 − ρ00(t) − ρ++(t) − ρ−−(t), (12d)

where A(t),J3(t) are given explicitly after Eq. (A7) in the
Appendix. ρ

(1)
νν ′ (t) = ρ

(1)
νν ′ (t,t) = 〈a†

ν ′ (t)aν(t)〉 is the single par-
ticle density matrix, which is the single particle correlation
function at the same time (τ = t) given explicitly by Eq. (A8).
It is shown that all these quantities are fully determined by the
retarded Green function u(t,τ ) [see Eq. (9)] through the corre-
lation Green function of Eq. (A6) in the nonequilibrium Green
function technique. If the dots are initially in an empty state,
the elements of the reduced density matrix are simplified to

ρ00(t) = det[1 − v(t,t)], (13a)

ρ++(t) = 1 − ρ00(t) − v−−(t,t), ρ+− = v+−(t,t), (13b)

ρ−−(t) = 1−ρ00(t) − v++(t,t), ρ−+ = v∗
+−(t,t), (13c)

ρdd = det[v(t,t)]. (13d)

Thus, the reduced density matrix elements of the DQDs are
simply determined by the correlation Green function v(t,t) [the
solution is given by Eq. (A6) in the Appendix] which can be
easily derived from Eq. (9). In other words, both the transient
linear conductance in this double-dot AB interferometer and
the time evolution of the reduced density matrix of the DQDs
are fully determined by the retarded Green function u(t,τ ) of
Eq. (9) with the level width �L,R of Eq. (6) and therefore can
be manipulated by varying the AB phase ϕ, as we will show
in the next sections.

III. BUILDUP OF FANO RESONANCE
IN THE TIME DOMAIN

A. Steady-state Fano resonance

To get an instructive physical picture, we shall present first
the steady-state results of Fano resonance in this double-dot
AB interferometer. We focus on the case of a symmetric
geometry �L = �R = �/2, without loss of generality. This
is because the resonances can be manipulated by the AB
phase ϕ through the applied magnetic flux, which equivalently
generates various asymmetric geometries of the DQDs with
respect to the molecular basis, see Eq. (6) and the results given
below. Then, according to Eq. (10), the steady-state linear
conductance at zero temperature is explicitly given by

G = e2

h

(e+ − e−)2

(e2+ + 1)(e2− + 1)
. (14)

The dimensionless energies e+,− ≡ (EF − ε+,−)/(�+,−/2),
with �+ = �L++ + �R++ = 2� sin2(ϕ/4) and �− = �L−− +
�R−− = 2� cos2(ϕ/4) which depend explicitly and sensitively
on the AB phase ϕ. Equation (14) reproduces the results
in Ref. [23] and reveals two resonances, a Breit-Wigner
resonance and a Fano resonance, when the bandwidth of
the two molecular states �+ � �− or �− � �+. Explicitly,
when �+ � �−, in the energy scale near the antibonding state
energy (|e−| � 1), the conductance of Eq. (14) follows the
Breit-Wigner form of its width �+/2 [23]:

G � e2

h

1

e2+ + 1
. (15)

While in the energy scale near the bonding state energy
(|e−| � 1), one can find that the conductance shows Fano
resonance profile:

G � e2

h

1

q2 + 1

(e− + q)2

e2− + 1
, (16)

where the Fano factor q = 4tc/�+ which is the ratio of the
interdot coupling and the level broadening of the antibonding
state. Hence, the conductance is composed of a Breit-Wigner
resonance at the antibonding state energy and a Fano resonance
near the bonding state energy. If one takes �− � �+, the
same analysis is applied with the role of the bonding and
antibonding states interchanged with the Fano factor given by
q = −4tc/�−.

To get a better understanding of the electron transport
behavior through different paths, we can divide the linear
conductance Eq. (10) into components flowing through the
bonding and antibonding state channels, plus the interference
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+

−

lead
(Source)

lead
(Drain)

Γ ++ Γ ++

Γ −− Γ −−

Γ +− Γ −+

(a) (b)

FIG. 1. Different paths for electron transport between the source
and drain through the molecular states. (a) Electrons countertransport
through bonding and antibonding channels, respectively. (b) Electrons
transport through both bonding and antibonding channels.

of electron transport through different paths in the AB ring
geometry,

G = G+ + G− + G+−. (17)

Each component is given explicitly by

G± = e2

h
�L±±�R±±|GR

±±(EF )|2 = e2

h

1

e2± + 1
, (18a)

G+− = 2
e2

h
Re{�L+−GR

−−�R−+GA
++}

= −e2

h

2(e+e− + 1)

(e2+ + 1)(e2− + 1)
, (18b)

where G± are, respectively, conductances of electrons counter-
flowing through the bonding and antibonding state channels,
as shown in Fig. 1(a), which give two Breit-Wigner resonances
in the electron conductance. On the other hand, because there
is no direct coupling between the bonding and antibonding
states [Green function u(t,t0) is diagonal], G+− describes
the interference between electron transport through bonding
and antibonding channels, induced by the indirect interdot
coupling through the two leads as shown in Fig. 1(b). This
interference leads to Fano resonance. Thus, it is obvious that
when there is no indirect interdot coupling, Fano resonance
will be suppressed, which results in two Breit-Winger peaks
in the steady-state conductance as shown in Ref. [26].

Figure 2 shows the conductances as a function of Fermi
energy of the leads for different values of the AB phase ϕ.
Here the AB phase solely determines the bandwidth �± and
the Fano factor q when one fixes the interdot coupling tc.
One can see that conductance terms G+ and G− contribute two
Breit-Winger peaks at the antibonding and bonding energies
ε±, as discussed above. Meanwhile, the interference term G+−
is very sensitive to the AB phase ϕ. For ϕ = 0.3π for an
example, �− > � � �+. Correspondingly, the interference
term makes, respectively, a constructive and a destructive
contribution to the resonance transport when the Fermi energy
EF approaches the antibonding state energy ε+ = � (here we
take ε0 = 0) from the left and the right sides, see the first plot
in Fig. 2. This interference induces a Fano resonance at the
antibonding state energy in the total conductance. As a result,
the total conductance of the system shows a Breit-Wigner
resonance at the bonding state energy and a Fano resonance at
the antibonding state energy, as shown in Fig. 2(a). When the
AB phase ϕ changes, for example, ϕ = 0.7π , the interference
term G+− still leads to Fano resonance at the antibonding

FIG. 2. Components of steady linear conductance at zero tem-
perature as a function of Fermi energy for different values of the AB
phase ϕ, where ε0 = 0, tc = �.

state except that Fano factor q gets larger because of the
smaller �−. In the meantime, the Breit-Wigner resonance at
the bonding state energy gradually grows into a Fano-like res-
onance (asymmetric resonance), see Fig. 2(b). When ϕ = π,

�− = �+ = �, the interference term G+− is symmetric with
the Fermi energy EF . Correspondingly, both resonances
around the bonding and antibonding state energies become
Fano resonances with Fano factor q � −4 and q � 4 in the
total conductance, respectively. For the other case of the AB
phase ϕ = 1.7π , we have �+ > � � �−. Then the role of
the bonding and antibonding states interchanges. As a result,
the conductance consists of a Breit-Wigner resonance at the
antibonding state energy and a Fano resonance at the bonding
state energy.

As one can see, the results in Fig. 2 indicate that the
AB phase ϕ plays an effective role to equivalently generate
various asymmetric geometries of the DQDs in the molecular
basis and also effectively covers the exchange symmetry of
molecular states. In fact, the results of Fig. 2 also manifest the
phase rigidity of the steady-state transport conductance in the
quantum dot AB interferometer, as one expected [37–40].

B. Buildup of Fano resonance in the time domain

After examining the above general steady-state resonant
behaviors, we now explore the real-time dynamics of the
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FIG. 3. Time evolution of the components of linear conductance
as a function of Fermi energy at zero temperature for (I) ϕ = 1.7π and
(II) ϕ = π and (III) at initial temperature of the leads kBT = 0.1�

for ϕ = 1.7π , where ε0 = 0, tc = �.

buildup of Fano resonance. We set t0 = 0 hereafter. The
time evolution of the transient linear conductance at zero
temperature with the AB phase ϕ = 1.7π (�+ > � � �−) is
displayed in Fig. 3(I). At the beginning (t = 1/�), because the
coupling of the antibonding state to the two leads is much larger
than that of the bonding state, electrons mainly transport to the
antibonding state, although its energy is higher than that of the
bonding state. As one can see from Fig. 3(I), when t = 1/�,
the component G+ grows fast and forms a resonance at the
antibonding state energy, while G− and G+− are almost zero.

As time increases, G+ rapidly steadies to a Breit-Winger
resonance with full transmission at the antibonding state energy
with t < 5/�, see Fig. 3(I)(a). The time scale to reach the
steady state for the Breit-Wigner resonance can be found from
the Green function component u++(t,t0). It is proportional to
the inverse of the decay rate �+/2 in u++(t,t0) [see Eq. (9)].
On the other hand, the steady state of G− and G+− is reached in
the scale of the inverse of the decay rate �−/2. The formation
of Fano resonance at the bonding state energy comes from the
combination of these two terms in this case. Therefore, the time
scale for the formation of the Fano resonance is determined by
the effective coupling �− between the bonding state and the
two leads, which is much longer than the time scale for the
formation of the Breit-Wigner resonance at the antibonding
state energy. In Figs. 3(I)(b)–(d), the time evolution ofG−,G+−
and the total conductance G is presented, and as one can see the
Fano resonance is fully built up around t � 80/�, where the
interference pattern combines both the full constructive and
destructive interferences.

Concerning the possible effects on Fano resonance from
various symmetries in the flux dependence discussed in the
beginning of this section, we take the most symmetric case with
AB phase ϕ = π as an example. In this case, �+ = �− = �,
the time evolution of the transient linear conductance at zero
temperature is displayed in Fig. 3(II). Because the couplings
of the left and the right leads to the molecular states of
the DQDs are symmetric, conductances through the bonding
and antibonding channels have the same behavior around the
resonant energies ε− and ε+. As one can see from Fig. 3(II)(a)
and Fig. 3(II)(b), G+(t) and G−(t) are symmetric built up with
each other both in the transient and in the steady state regimes.
The interference between the two channels and the resulting
total conductance are also symmetric with Fermi energy EF .
The time for reaching the steady state is t � 10� in this case,
see Figs. 3(II)(c)–(d). The result shows that symmetries have
not much help in enhancing Fano resonance.

Considering the thermal effect, the transient dynamics of
the linear conductance for ϕ = 1.7π at initial temperature of
the leads kBT = 0.1� is shown in Fig. 3(III), in comparison
with the zero-temperature case of Fig. 3(I). For the conductance
through the antibonding channel [Fig. 3(III)(a)], the result is al-
most the same as that in the zero temperature case [Fig. 3(I)(a)],
except that the transmission at the antibonding energy is
slightly decreased due to the thermal effect. In this case,
the level width of the antibonding state �+/2 � 0.95� (for
ϕ = 1.7π ) still dominates the damping, while the temperature-
induced level broadening is proportional to kBT = 0.1�.
Hence, the resonant transport through the antibonding channel,
i.e. the Breit-Wigner resonance, is less affected by thermal
broadening effect. For the conductance of electrons passing
the bonding channel and the electron interference between
the bonding and antibonding channels, see Fig. 3(III)(b) and
3(III)(c), the resonant behavior depends mainly on level width
�−/2 � 0.05� (for ϕ = 1.7π ) which is less than the thermal
broadening effect (kBT = 0.1�). Therefore, the amplitudes
of the resonance peak of G− and the conductance G+− are
significantly suppressed by the thermal effect. Moreover, the
time to the steady state values of conductance G− and G+− is
also largely reduced due to the thermal fluctuations: t � 20�,
in comparison with t � 80� in the zero temperature case. As
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FIG. 4. Time evolution of the reduced density matrix elements of the DQDs at zero temperature for (I) ϕ = 1.7π and (III) ϕ = π .
(II) Steady state results of the reduced density matrix elements of the DQDs at the initial temperature of leads kBT = 0.1�. The system
is initially in an empty state, and ε0 = 0, tc = �.

a result, the Fano resonance is strongly suppressed as one can
see from the total linear conductance G in Fig. 3(III)(d), where
the full constructive and destructive interferences in the Fano
resonance are significantly reduced.

C. The electron distributions in the molecular states associated
with Fano resonance in terms of the reduced density matrix

To see how the quantum state of the DQD system redis-
tributes when resonances occur, we turn to explore the time
evolution of the reduced density matrix of the DQDs. Consider
the system initially in an empty state; the elements of the
reduced density matrix are given by Eq. (13), which are fully
determined by Green function v(t,t). Moreover, we let the
leads be unbiased, i.e., μL = μR = EF . In the symmetric setup
of the DQDs (�L = �R = �/2), the off-diagonal terms of the
reduced density matrix in the molecular basis are zero because
the Green function v(t,t) is diagonal. The transient dynamics
of the reduced density matrix at zero temperature with AB
phase ϕ = 1.7π (�+ > � � �−) is shown in Fig. 4(I). In the
beginning (t = 1/�), electron transport is dominated by the
couplings between the DQDs and the leads. As EF varying
from negative to positive energy by gate control of the dot
energy ε0, electrons prefer to occupy the antibonding state
because of its larger couplings to the leads, so that the empty
state probability ρ00 is decreased and the antibonding state
probability ρ++ is increased, while ρ−− and ρdd almost keep
to zero. With time going, electrons transporting from the leads
to the DQDs also begin to be trapped in the bonding state
when EF > ε−, which results in an increase of the probability
of the doubly occupied state as well. As one can see, later
than t = 5/�, ρ−− dramatically increases after EF passing
the bonding state energy ε− and then decreases after reaching a
maximum value. This maximum value gets larger with the time

going as shown by the solid green curve in Figs. 4(I)(b)–(e).
While the probability of the doubly occupied state ρdd (the
dash-dash-dot purple curve) increases when EF > ε− and
keeps climbing with EF in time.

Eventually, when the total system reaches the steady-state
limit (t � 80/�), we can see that in the range EF < ε−, the
state of the DQD system has the most probability in an empty
state (ρ00 � 1), while there is less probability for electrons to
occupy in the antibonding state because of its larger coupling
�+ to the leads. As a result, electrons quickly transport through
the antibonding state. At EF = ε− (ε− = −� in Fig. 4), there
are two strong (rapid) occupation inversions, see Fig. 4(I)(e).
One is the probability inversion between the empty state ρ00

and the bonding state ρ−−; the other one is between the
antibonding state ρ++ and the doubly occupied state ρdd . Both
of the probability inversions indicate that there is a resonant
tunneling from the leads to the bonding state. In the range
EF > ε−, the probabilities ρ00 and ρ++ rapidly reduce to zero.
As mentioned, the probability ρ−− reaches a maximum value
and then decreases in larger EF , while ρdd keeps climbing with
EF , which leads to a probability inversion between the bonding
state and doubly occupied state at EF = ε+ (ε+ = � in Fig. 4).

Compared with the transient conductance in Fig. 3(I), we
find that resonances occur when the occupation probabilities
show an inversion between the states differing with one
electron, e.g., |0〉 ↔ |±〉 or |±〉 ↔ |d〉. Also, it indicates that
the Breit-Wigner resonance involves one transition channel,
however the Fano resonance involves two channels. In par-
ticular, the steady state (t � 80/�) in Fig. 4(I)(e) shows
that the Breit-Wigner resonance at antibonding state energy
ε+ presents a probability inversion from ρ−− to ρdd . Fano
resonance at bonding state energy ε− exhibits two probability
inversions both from ρ00 to ρ−− and from ρ++ to ρdd . Moreover
the probability inversion rate is determined by the bandwidths.

054301-6



BUILDUP OF FANO RESONANCES IN THE TIME DOMAIN … PHYSICAL REVIEW B 97, 054301 (2018)

In this case (ϕ = 1.7π ), the probability inversion with gentle
slope (weak) leads to a Breit-Wigner resonance because of
its larger bandwidth, whereas the strong probability inversion
leads to a Fano resonance corresponding to a much smaller
bandwidth. However, when the thermal effect is considered,
we find that the strong probability inversion at the bonding
state energy is apparently eased off. The steady state results of
the reduced density matrix elements at the initial temperature
of the leads kBT = 0.1� is presented in Fig. 4(II). It shows that
the thermal broadening effects smear significantly the Fano
resonance, as one expected.

Figure 4(III) shows the transient dynamics of the reduced
density matrix at zero temperature under the symmetric cou-
pling to the molecular states, i.e., ϕ = π (�+ = �− = �).
Unlike the linear transient conductance shown in Fig. 3(II)
which shows a symmetric behavior both in the transient and
the steady state regimes, the elements of the reduced density
matrix represent asymmetric profiles in the transient regime
because of the initial state dependence. With time increasing,
the probabilities ρ00 and ρdd become more and more symmetric
with each other, and ρ−− and ρ++ also grow into symmetric
profiles in the Fermi energy EF . In the steady-state limit (t �
10/�), there are two sets of probability inversions between
the elements of the reduced density matrix which indicate
two Fano resonances; each shows two transition channels with
the same bandwidth at the resonant energies ε− and ε+. By
comparing Figs. 4(I) and 4(III), we also find that the strong
and weak probability inversions correspond to the strong and
weak asymmetric Fano resonances with smaller and larger
Fano factors, respectively. This is indeed the explicit evidence
of Fano resonance manifested in the reduced density matrix
elements. It is worth mentioning that, when interdot coulomb
interaction is included, the probability of the doubly occupied
state will be reduced accordingly, which results in the increase
of the probability of the single-electron states [41] and certainly
will change the occupation inversion.

IV. SUMMARY

In summary, using the quantum transport theory based on
the master equation approach [30–32], we obtain the transient
linear conductance and the reduced density matrix elements of
the DQDs not only at zero temperature but also at finite tem-
peratures. The conductance can be divided into components
flowing through the bonding and antibonding state channels,
plus the interference component from the mixed channels
between them. We investigate the transient dynamics in terms
of each component of linear conductance. We find that the
time scale for the formation of Fano resonance is much slower
than the formation of the Breit-Wigner resonance, because of
the large differences of the effective couplings between each
molecular level of DQDs and the leads. Also, Fano resonance
can be smeared by the thermal effect. From the transient
dynamics of the reduced density matrix elements, we find
that resonance occurs when the occupation probabilities invert
between the states differing by one electron, e.g., |0〉 ↔ |±〉
or |±〉 ↔ |d〉. The inversion at the resonant energy with one
probability channel corresponds to Breit-Wigner resonance,
whereas the inversion with two probability channels leads
to Fano resonance, as an interference effect. The real-time

interference dynamics through the electron conductance in
the double-dot AB interferometer helps us to understand how
Fano resonance is built up. We expect such dynamical Fano
resonance to be observed in experiments.
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APPENDIX: EXACT MASTER EQUATION APPROACH
FOR TRANSIENT QUANTUM TRANSPORT

The device described in Hamiltonian (1) can be treated as
an open quantum system. The dynamics of the DQD system
is described by the reduced density matrix ρ(t) = TrE[ρtot(t)],
which is obtained by tracing over all the degrees of freedom of
the leads from the total density matrix ρtot(t) of the DQDs plus
the leads. As usual, the DQDs and the leads are considered to
be initially decoupled, and the leads are initially in equilibrium
states. We have derived the exact master equation which
governs the dynamics of ρ(t) for the DQDs [30–32,36,37]:

dρ(t)

dt
= − i

h̄
[H ′

S(t),ρ(t)] +
∑
i,j

{γij (t)[2djρ(t)d†
i

− d
†
i djρ(t) − ρ(t)d†

i dj ] + γ̃ij (t)[d†
i ρ(t)dj

− djρ(t)d†
i + d

†
i djρ(t) − ρ(t)djd

†
i ]}. (A1)

The first term of Eq. (A1) describes the unitary evolution
of electrons in the device system, where the renormalized
Hamiltonian H ′

S(t) = ∑
i,j ε′

ij (t)d†
i dj with the renormalized

energy matrix ε′
ij (t) of the DQDs includes the energy shift

of each level and the lead-induced couplings between different
levels. The remaining terms give the nonunitary dissipation and
fluctuation processes induced by backactions of the electrons
from the leads and are described by the dissipation and
fluctuation coefficients γ (t) and γ̃ (t), respectively. Explicitly,
all the time-dependent coefficients in Eq. (A1) are found to be

ε′(t) = 1
2 [u̇(t,t0)u−1(t,t0) − H.c.], (A2a)

γ (t) = − 1
2 [u̇(t,t0)u−1(t,t0) + H.c.], (A2b)

γ̃ (t) = v̇(t,t) − [u̇(t,t0)u−1(t,t0)v(t,t) + H.c.], (A2c)

where functions u(τ,t0) and v(τ,t) satisfy the following
integro-differential equations [30–32],

d

dτ
u(τ,t0) + i

h̄
εu(τ,t0) +

∑
α

∫ τ

t0

dτ ′ gα(τ,τ ′)u(τ ′,t0) = 0,

(A3a)
d

dτ
v(τ,t) + i

h̄
εv(τ,t) +

∑
α

∫ τ

t0

dτ ′ gα(τ,τ ′)v(τ ′,t)

=
∑

α

∫ t

t0

dτ ′ g̃α(τ,τ ′)u†(t,τ ′), (A3b)
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subject to the boundary conditions u(t0,t0) = 1 and v(t0,t) =
0. In the above equations, the time nonlocal integral kernels,
gα(τ,τ ′) and g̃α(τ,τ ′) characterizing all the memory effects
between the dots and lead α are defined as

gα(τ,τ ′) =
∫

dω

2π
�α(ω)e−iω(τ−τ ′), (A4a)

g̃α(τ,τ ′) =
∫

dω

2π
�α(ω)fα(ω)e−iω(τ−τ ′), (A4b)

where �α(ω) is the spectral density (level broadening) of lead
α,

�αij (ω) = 2π
∑

k

ViαkV
∗
jαkδ(ω − εαk), (A5)

and fα(ω) = 1/(eβ(ω−μα ) + 1) is the Fermi-Dirac distribution
function of lead α at initial time t0, and β = 1/kBT , the inverse
temperature. Solving the inhomogeneous equation (A3b) with
the initial condition v(t0,t) = 0, one obtains,

v(τ,t) =
∑

α

∫ τ

t0

dτ1

∫ t

t0

dτ2u(τ,τ1)̃gα(τ1,τ2)u†(t,τ2). (A6)

In fact, u(τ,t0) and v(τ,t) are related to the retarded Green
function and the lesser Green function of the device system in
the nonequilibrium Green function techniques [33–35], and
Eq. (A6) gives the generalized nonequilibrium fluctuation-
dissipation theorem in the time domain [42].

Also, one can obtain the reduced density matrix ρ(t).
Denoting the empty state with |0〉, the state that one electron
occupied in dot i with |i〉 (i = 1,2), and the doubly occupied
state by |d〉, the elements of reduced density matrix at the later
time t for an arbitrary initial DQD state that obey the master
equation (A1), can be expressed as follows [36],

ρ00(t) = A(t)

⎧⎨⎩ρ00(t0) + ρdd (t0)det[ J3(t)]

−
∑
i,j

ρij (t0) J3ji(t)

⎫⎬⎭, (A7a)

ρ11(t) = 1 − ρ00(t) − ρ
(1)
22 (t),ρ12(t) = ρ

(1)
12 (t), (A7b)

ρ22(t) = 1 − ρ00(t) − ρ
(1)
11 (t),ρ21(t) = ρ∗

12(t), (A7c)

ρdd (t) = 1 − ρ00(t) − ρ11(t) − ρ22(t), (A7d)

while the other off-diagonal density matrix elements be-
tween the different states are all zero. The coefficients
in Eq. (A7) are A(t) = det[1 − v(t,t)], J3(t) = u†(t,t0)[1 −
v(t,t)]−1u(t,t0) − 1, and ρ(t0) is the initial reduced density
matrix. The single-particle correlation function ρ

(1)
ij (τ,t) =

〈a†
j (t)ai(τ )〉 is solved explicitly in Refs. [30–32],

ρ
(1)
ij (τ,t) = [u(τ,t0)ρ(1)(t0)u†(t,t0) + v(τ,t)]ij , (A8)

where ρ
(1)
ij (t0) = ρ

(1)
ij (t0,t0) is the initial single-particle density

matrix. In fact, it is easy to obtain the solution of the reduced
density matrix Eq. (A7). Specifically, Eq. (A7d) is a direct
consequence of Tr[ρ(t)] = 1. Then, by definition, one has
ρii(t) = ρ

(1)
ii (t) − ρdd (t) for i = 1,2 and ρij (t) = ρ

(1)
ij (t) for

i �= j , combining which with Eq. (A7d) gives directly the
solutions of Eqs. (A7b) and (A7c). The solution of Eq. (A7a)
is a little bit difficult to find; it was calculated from ρ00(t) =
〈0|ρ(t)|0〉 = 〈0|TrE[ρtot(t)]|0〉 by using the path integral ap-
proach Refs. [30,31], but it is easy to check that the solution
of Eq. (A7a) satisfies the master equation Eq. (A1).

On the other hand, the transient transport current of elec-
trons flowing from lead α into the DQDs is defined as

Iα(t) = −e
d

dt
TrS⊗E[ρtot(t)Nα], (A9)

where Nα = ∑
k c

†
αkcαk is the total electron number in lead α.

Using the master equation approach, the transport current can
also be expressed in terms of the same Green functions of the
DQDs, u(τ,t0) and v(τ,t), as follows [30–32]:

Iα(t) = −2e

h̄
Re

∫ t

t0

Tr[gα(t,τ )ρ(1)(τ,t) − g̃α(t,τ )u†(t,τ )].

(A10)

Indeed, the transient transport current (A10) obtained from our
master equation approach has exactly the same form as that in
the time-dependent transport theory developed by Wingreen,
Jauho, and Meir based on the nonequilibrium Green function
technique [33–35]. It is worth noting that in Refs. [33–35] the
initial-state dependence of the DQD system, i.e., the first term
in Eq. (A8), was omitted, because Keldysh’s nonequilibrium
Green function technique usually starts the initial time from
the minus infinity (t0 → −∞) which oversimplifies the initial-
state dependence in the transient quantum transport dynamics.

Furthermore, in the wide band limit considered in this paper,
the transient net current, I (t) = 1/2[IL(t) − IR(t)], is given
explicitly as follows,

I (t) = − e

h̄
ReTr

{
1

2
(�L − �R)

[
u(t,t0)ρ(1)(t0)u†(t,t0) +

∫ t

t0

dτ1

∫ t

t0

dτ2u(t,τ1)
∫

dω

2π
[�LfL(ω) + �RfR(ω)]e−iω(τ1−τ2)u†(t,τ2)

]

−
∫ t

t0

dτ

∫
dω

2π
[�LfL(ω) − �RfR(ω)]u†(t,τ )e−iω(t−τ )

}
. (A11)

Here the first term is the initial-state dependence of the DQD system in the transient transport current [30–32]. However, this
initial-state dependence is independent of the bias voltage V = (μL − μR)/e initially applied to the leads. Therefore, the derivative
of the net current with respect to the bias voltage results in the transient linear conductance being DQD initial-state independent,
as given explicitly by Eq. (8).
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