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Dislocation dynamics and crystal plasticity in the phase-field crystal model
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A phase-field model of a crystalline material is introduced to develop the necessary theoretical framework to
study plastic flow due to dislocation motion. We first obtain the elastic stress from the phase-field crystal free
energy under weak distortion and show that it obeys the stress-strain relation of linear elasticity. We focus next
on dislocations in a two-dimensional hexagonal lattice. They are composite topological defects in the weakly
nonlinear amplitude equation expansion of the phase field, with topological charges given by the standard Burgers
vector. This allows us to introduce a formal relation between the dislocation velocity and the evolution of the
slowly varying amplitudes of the phase field. Standard dissipative dynamics of the phase-field crystal model is
shown to determine the velocity of the dislocations. When the amplitude expansion is valid and under additional
simplifications, we find that the dislocation velocity is determined by the Peach-Koehler force. As an application,
we compute the defect velocity for a dislocation dipole in two setups, pure glide and pure climb, and compare it
with the analytical predictions.
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I. INTRODUCTION

The description of plastic response in crystals at a mesoscale
level poses fundamental challenges because of collective
effects in dislocation dynamics that give rise to multiple-scale
phenomena, such as spatiotemporal dislocation patterning
[1,2] and intermittent deformations [3]. Different multiscale
models, including discrete dislocation models, stochastic mod-
els, and cellular automata, have been proposed and used to
explore various aspects of collective dislocation dynamics
[4–6]. We focus here on a phase-field description of a crys-
talline solid, the so-called phase-field crystal, first introduced
by Grant and collaborators [7–9]. This model has allowed
the study of defect configurations and their kinetics that
are difficult to address with either microscopic or atomistic
simulation techniques or with classical continuum mechanics.
Examples include large strain formulations of dislocation
motion [10], creep motion mediated by diffusion [11], and
defect core transformations that are seen to be key to the motion
of grain boundaries [12].

A mesoscale theory is also timely given that defect imaging
techniques are beginning to reveal strain and rotation fields
created by one or a small number of defects in atomic
detail. High-energy diffraction microscopy and Bragg coherent
diffractive imaging represent the state of the art in imaging
at advanced synchrotron facilities [13,14]. The former can
provide three-dimensional maps of grain orientations with
micron resolution, whereas the latter can determine atomic-
scale displacements with�30 nm resolution. Advanced image-
processing methods allow the determination of the strain-field
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phase around a single defect, clearly evidencing its multivalued
nature. Indeed, single dislocations have been successfully
imaged, and their motion has been tracked quantitatively just
recently [13]. Experiments also go beyond the determination
of strain fields and determine other quantities sensitive to the
topology of the defects. For example, lattice rotation has been
imaged and analyzed in nanoindentation experiments [15] and
in two-dimensional graphene sheets [16].

Mesoscale models aim at bridging fully atomistic descrip-
tions and macroscopic theory based on continuum mechanics.
Along these lines, we mention the so-called generalized discli-
nation theory [17,18]. This theory is a fully resolved nanoscale
yet continuum dynamical description of dislocations that
preserves all topological constraints necessary in the kinematic
evolution of the singular fields. Singularities are replaced by
topologically equivalent but smooth local fields that allow a
full derivation of the governing dynamical equations following
the principles of irreversible thermodynamics. The newly
introduced fields are similar to a phase-field model, except that
they are constructed to satisfy all conservation laws, including
those of topological origin. On the other hand, the dynamical
part of the theory requires constitutive input for both the free
energy at the mesoscale functional of the smooth fields and
mobility relations for their motion.

Conventional phase-field models have also become one
of the tools of choice in the study of dislocation and grain
boundary motion in a wide variety of circumstances. Contrary
to kinematic models, a phenomenological set of dynamical
laws for the phase field are introduced, with topological
invariants appearing as derived quantities. There are two dif-
ferent classes of phase-field models in the plasticity literature.
In one approach, the elementary dislocation is described as
an eigenstrain, which is then mapped onto a set of phase
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fields [19–21]. If b is the Burgers vector of the dislocation and
n is the normal to the dislocation line, then the corresponding
eigenstrain is defined as

u∗
ij = binj + bjni

2a
, (1)

where a is the crystal lattice spacing. The connection to the
phase fields φα(x), where α label all the slip systems of a
particular lattice, is made through the decomposition

u∗
ij =

∑
α

ε∗α
ij φα(r). (2)

The phase fields are assumed to relax according to purely
dissipative dynamics driven by minimization of a phenomeno-
logical free energy. This free energy includes a nonconvex
Ginzburg-Landau-type contribution that has the same func-
tional form as in related studies in fluids [22]. This contri-
bution is supplemented by an elastic interaction energy that
depends only on the incompatibility fields associated with the
eigenstrains [23–25] and hence, ultimately, on the phase fields
themselves [19–21].

The second approach, which we adopt here, is based on
a physical interpretation of the phase field as a temporally
coarse grained representation of the molecular density in the
crystalline phase. Such as model is also known as the phase-
field crystal (PFC) model [8,9]. The evolution of the phase
field is diffusive and governed by a Swift-Hohenberg-like free-
energy functional, which is minimized by a spatially modulated
equilibrium phase with the periodicity of the crystal lattice. The
chosen free energy determines not only the crystal symmetry of
the equilibrium phase but all other thermodynamics quantities
and response functions such as its elastic constants [8]. As is
generally the case with phenomenological free energies, it is
only a function of a few free parameters, and hence, the range
of physical properties that can be attributed to the resulting
macroscopic phase is somewhat limited. Nevertheless, the PFC
model has been used in numerous numerical studies, including
crystal growth, grain boundaries and polycrystalline coarse-
graining phenomena [12,26–29], strained epitaxial films [30],
fracture propagation [8], plasticity avalanches from disloca-
tion dynamics [31,32], and edge dislocation dynamics [9]. It
appears to us that this second approach is more natural from
a physical point of view in that once the mesoscopic order
parameter and the corresponding free energy are introduced,
defect variables such as the Burgers vector and slip systems
emerge as derived quantities. This seems preferable to intro-
ducing Ginzburg-Landau dynamics for slip-system amplitudes
defined a priori. Also, this second approach can nominally
describe highly defected configurations in which a slip system,
even in a coarse-grained sense, can be difficult to define.

In this paper, we address the important theoretical question
of to what extent the PFC model is actually capable of cap-
turing mesoscopic plasticity mediated by dislocation dynam-
ics. Although previous numerical simulations of dislocation
dynamics [9,32] suggest that dislocation motion is controlled
by local stress, a theoretical derivation from the PFC model
is still lacking. To address this question, we consider the PFC
model and its amplitude expansion formulation, where we can
show that the complex amplitudes are order parameters that
support topological defects corresponding to dislocations in

the crystal ordered phase. This allows us to accurately define a
Burgers vector density field from the topological charges and
predict the dislocation velocity directly from the dissipative
relaxation of the amplitudes. We show that elastic stresses
can be obtained from the PFC free-energy functional through
standard variational means and recover known expressions for
the linear elastic constants of the medium. Furthermore, we
show that the dislocation velocity, near the bifurcation from
the disordered state, follows Peach-Koehler’s force and is given
by the product of the Burgers vector and the elastic stress. Our
theoretical predictions are consistent with previous numerical
PFC studies of dislocation dynamics [9,33].

The rest of the paper is organized as follows: In Sec. II,
the phase-field crystal model and its elastic equilibrium prop-
erties are discussed for the two-dimensional case. Here, we
also derive the elastic stress by variation of the free-energy
functional and express it in terms of the crystal density field.
Plastic motion mediated by dislocation dynamics is treated
in Sec. III, where we use the amplitude expansion and the
connection to an order parameter that supports topological
defects. In Sec. IV, we verify the theoretical results by direct
numerical simulations of the PFC model for a hexagonal lattice
with a dislocation dipole. A summary and concluding remarks
are presented in Sec. V.

II. LINEAR ELASTICITY IN THE PHASE-FIELD
CRYSTAL MODEL

The phase-field crystal model that we employ involves
a single scalar field ψ(r,t), a function of space r in two
dimensions (2D) and time t , and a phenomenological free
energy given by [9]

F[ψ] =
∫

d2r f (ψ,∇2ψ)

=
∫

d2r
{

1

2
[(∇2 + 1)ψ]2 + r

2
ψ2 + 1

4
ψ4

}
, (3)

where r is a dimensionless parameter. In equilibrium, the
free-energy functional (3) is minimized with respect to ψ

while keeping the average density constantly equal to ψ0, so
that ( δF

δψ
)
0

= μ0, where μ0 is a constant Lagrange multiplier.
When r > 0, ψ = ψ0 is the only stable solution, whereas for
r < 0, equilibrium periodic solutions of unit wave number
are possible for stripes and hexagonal patterns in 2D [8].
The crystalline phase with density distribution n(r) is related
to the phase-field crystal through ψ(r,t) = n(r,t)/n0 − 1,
where n(r,t) = ∑

i〈δ(r − ri)〉 is the statistical average number
density of the equivalent crystal and n0 is its spatially averaged
density.

We focus below on the range of parameters for which a 2D
hexagonal lattice is the equilibrium solution [8],

ψ = ψ0 +
∑

g

A(0)
g eig·r, (4)

where the sum extends over all reciprocal lattice vectors g of a
hexagonal lattice. We distinguish below three reciprocal lattice
wave vectors qn, of unit length in the dimensionless units of
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Eq. (3), which are given in Cartesian coordinates by

q1 = j, q2 =
√

3

2
i − 1

2
j, q3 = −

√
3

2
i − 1

2
j, (5)

which fixes the lattice constanta = 4π√
3
. These three vectors sat-

isfy the resonance condition
∑3

n=1 qn = 0. The corresponding
amplitudes A(0)

n are all constant and equal.
We first examine the change in free energy �F =

F[ψ(r′)] − F[ψ(r)] due to a small affine distortion r′ =
r + u(r). The free-energy change �F[ψ,u] associated with
such a distortion is given, after a transformation of variables
from r′ to r, by

�F =
∫

d2r{(1 + ∇ · u)f [ψ(r′),∇′2ψ(r′)] − f (ψ,∇2ψ)},
(6)

where the transformed derivatives are given by

∂ ′
i = ∂i − (∂iuj )∂j + O(|∇u|2),

∂ ′
ijψ = ∂ijψ − ∂i[(∂juk)∂kψ] − (∂iuk)∂kjψ + O(|∇u|2).

(7)

After a Taylor expansion of Eq. (6) for small deformation
gradients ∂iuj , we obtain

�F =
∫

d2r
[
− ∂f

∂(∂iψ)
(∂iuj )∂jψ − ∂f

∂(∂ijψ)
{∂i[(∂juk)∂kψ]

+ (∂iuk)∂kjψ} + (∇ · u)f

]
+ O(|∇u|2). (8)

Because of the translational invariance of F , the change �F
does not depend on the distortion but depends only on its spatial
gradients. Furthermore, the first term on the right-hand side
vanishes since f does not depend on the gradient of ψ . The
second term on the right-hand side can be transformed to a
total divergence term and one proportional to the deformation
gradient. Changing summation indices in order to factor the
deformation gradient out and using Stokes’ theorem on the
divergence term, we obtain

�F =
∫

d2r E +
∫

dSi

∂f

∂(∂ijψ)
(∂juk)∂kψ, (9)

where dS is the surface-element vector on the boundary of the
integration domain and

E =
[
− ∂f

∂(∂ikψ)
∂jkψ +

(
∂k

∂f

∂(∂ikψ)

)
∂jψ + δijf

]
∂iuj .

(10)

Equation (9) yields the elastic stress defined as the conjugate
to the displacement gradient,

σij = ∂E
∂(∂iuj )

= − ∂f

∂(∂ikψ)
∂jkψ +

(
∂k

∂f

∂(∂ikψ)

)
∂jψ + f δij . (11)

Substituting Eq. (3), the corresponding stress is in our case

σij = [∂iLψ]∂jψ − [Lψ]∂ijψ + f δij , (12)

with L = 1 + ∇2. Hence, the elastic stress can be straightfor-
wardly evaluated from the phase field ψ . Below we will show
that this stress gives rise to the expected stress-strain relation
in the linear elasticity regime, in agreement with earlier results
for modulated phases [34,35].

The stress gives rise to a body-force density Fj = ∂iσij

given by

Fj = L2ψ∂jψ − LψL(∂jψ) + ∂if. (13)

For an incompressible deformation, the Jacobi determinant is
unity; the second term is the gradient of − 1

2 (Lψ)2 and can be
included in a pressure term ∂jp as a gradient force. Thus, we
can write the body force up to its gradient force contributions
as

Fj = μ∂jψ, (14)

as the additional terms in the chemical potential μ = δF
δψ

=
L2ψ + rψ + ψ3 also lead to gradient terms.

More generally, the additional contribution of a compress-
ible deformation to the body force is

∂i(δijf ) = ∂jf = LψL(∂jψ) + rψ∂jψ + ψ3∂jψ. (15)

Hence, the body-force density induced by a deformation is the
same in both the compressible and incompressible cases (up
to a gradient force in the incompressible case) and is given as

Fj = ∂iσij = (L2ψ + rψ + ψ3)∂jψ = μ∂jψ. (16)

Thus, the body force associated with a small distortion in the
phase-field crystal density is expressed, in general, as μ∇ψ .
Analogous results have been derived by using microforce bal-
ances in the context of continuum mechanics [22] or invoking
thermodynamic relations arising from broken symmetries [36].

In the weakly nonlinear region of |r| � 1, the order
parameter ψ can be expanded in terms of the slowly varying
amplitudes An of the resonant modes qn of Eq. (5). A weakly
distorted configuration relative to the reference hexagonal
configuration can then be written in this expansion as [33,37]

ψ = ψ0 +
∑

n

Ane
iqn·(r−u) + c.c., (17)

where both the mean density ψ0 and the amplitudes An are
slowly varying on length scales much larger than the lattice
spacing. After straightforward differentiation of ψ in Eq. (17),
we obtain

∂i(Lψ) = 2iA0∂luk

∑
q

qlqkqi exp[iq · (r − u)],

[∂i(Lψ)]∂jψ = −2A2
0∂luk

∑
q,q′

qlqkqiq
′
j

× exp[i(q + q′) · (r − u)], (18)

where the sums involve the components of the vectors ±qn,
with the negative vectors included for the complex conjugate
(we have dropped the subindex n for ease of notation).
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Similarly, we find

[Lψ]∂ijψ = −ψ0A0

∑
q

(qiqj − qiqk∂juk − qjqk∂iuk)

× exp[iq · (r − u)] − 2A2
0∂luk

∑
q,q′

qlqkq
′
iq

′
j

× exp[i(q + q′) · (r − u)]. (19)

Finally, by averaging this result over a unit cell of the lattice
and given that the slowly varying deformation gradients are
constant over a lattice spacing, all single q terms vanish,
whereas exp[i(q + q′) · (x − u)] factors integrate to δq,−q′ .
Therefore, the averaged stress field from Eq. (12) becomes

〈σij 〉 = 4A2
0∂luk

∑
q

qlqkqiqj . (20)

Since the coefficients multiplying ∂luk are symmetric under
the interchange l ↔ k, we can also write the relation in terms
of the symmetrized strain ulk = 1

2 (∂luk + ∂kul). Reintroducing
the vectors qn and their negatives −qn explicitly, we find

〈σij 〉 = 8A2
0ulk

3∑
n=1

qn
i qn

j qn
k qn

l . (21)

Equation (21) is a linear stress-strain relationship which
depends only on three crystal reciprocal lattice vectors and
the slowly varying amplitudes. For a hexagonal lattice, in-
serting the reciprocal lattice vectors given in Eq. (5) yields
C11 = C22 = 9A2

0, C12 = 3A2
0, and C44 = 3A2

0 (cf., e.g.,
Ref. [9]). This result can also be written in terms of Lamé
coefficients as 〈σij 〉 = λδijukk + 2μuij , with λ = μ = 3A2

0,
giving a Poisson’s ratio of ν = λ

2(λ+μ) = 1
4 . This is different

from the Poisson’s ratio of 1
3 obtained in Ref. [27], as they use

the plane-stress condition, while we are assuming plane strain
without loss of generality.

III. PLASTIC FLOW AND DISLOCATION DYNAMICS

At the mesoscale level, the evolution of the phase field is
driven by local relaxation of the free-energy functional,

∂ψ

∂t
= ∇2 δF

δψ
, (22)

where we have assumed a constant mobility coefficient (equal
to unity in rescaled units). Equation (22) governs both conser-
vation of mass and the evolution of crystal deformations. We
will focus here on 2D systems, although a similar development
can be applied in three dimensions.

There are no topological singularities in the phase field
ψ(r,t). However, under conditions in which the amplitude
expansion of Eq. (4) is valid (mean density ψ0 and amplitudes
An that vary on length scales much larger than the wavelength
of the reference pattern), topological defects can be identified
from the location of the zeros of the complex amplitudes
[38,39]. Evolution equations for ψ0 and An have been derived
by several techniques, such as renormalization-group methods
[40] and multiple-scale analysis [41]. In the lowest derivative
approximation that preserves the rotational invariance of the
phase-field model [42], the resulting equations are given

as [41]

∂ψ0

∂t
= ∇2

[
(1 + ∇2)2ψ0 + ψ3

0 + 6ψ0

∑
n

|An|2

+ 6

(∏
n

An + c.c.

)]
,

∂An

∂t
= −L2

nAn − (3ψ2
0 + r)An − 6ψ0

∏
m
=n

A∗
m

− 3An

(
2

∑
m

|Am|2 − |An|2
)

, (23)

where n = 1,2,3, Ln = ∇2 + 2iqn · ∇, and qn are the three
reciprocal vectors of Eq. (5). Variation of ψ0 at constant An

needs to be interpreted as vacancy diffusion. These amplitude
equations are themselves variational and can be written as [41]

∂ψ0

∂t
= ∇2 δFCG

δψ0
,

∂An

∂t
= −δFCG

δA∗
n

, (24)

where FCG{ψ0,An} is the free-energy function of the
amplitudes alone. Recall that all of these equations ignore
higher Fourier components |q| > 1, so they are only valid
close to the bifurcation point, |r| � 1.

A. Transformation of field singularities
to dislocation coordinates

In order to make contact with the classical macroscopic
description of plastic motion in terms of the velocity of a
dislocation element under an imposed stress, we describe
the transformation of variables that is required to relate the
evolution of the phase field to the motion of the singularities
associated with the amplitudes. Assume a spatial distribution
of point dislocations, and define a Burgers vector density
as B(r) = ∑

α bαδ(r − rα), where rα is the location of the
dislocation with Burgers vector bα in some element of volume.
For each Burgers vector bα we define the three integers
sα
n = 1

2π
(qn · bα), which satisfy the relation

∑3
n=1 sα

n = 1
2π

bα ·∑3
n=1 qn = 0.
A dislocation at rα corresponds to a discontinuous defor-

mation field u(r) with
∮

du = bα around a contour containing
only rα . This deformation field is associated with a phase factor
in the complex amplitudes, given by An(r) = |An|e−iqn·u+iφ ,
with φ(r) smooth inside the contour. The phase circula-
tion of the amplitude around the same contour can then be
found as∮

d(arg An) = −qn
j

∮
∂kujdrk +

∮
∂kφdrk

= −qn
j bα

j = −2πsα
n , (25)

using the fact that φ has no circulation, being smooth in-
side the contour. Thus, the amplitude An has a vortex with
winding number −sα

n at r = rα . This induces the following
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transformation of δ functions [43–46]:

Dnδ(An) = −
∑

α

sα
n δ(r − rα)

= − 1

2π

∑
α

(qn · bα)δ(r − rα) (26)

for a given amplitude An, where

Dn = Im(∂xA
∗
n∂yAn) = 1

2i
εij ∂iA

∗
n∂jAn (27)

is the Jacobian of the transformation from complex amplitudes
An to vortex coordinates rα and εij is the antisymmetric tensor.
Multiplying the above expression with a reciprocal vector qn

and summing over n, we find the dislocation density is

B(r) = −4π

3

3∑
n=1

qnDnδ(An) (28)

by making use of the fact that
∑3

n=1 qn
i qn

j = 3
2δij (see the

Appendix for why we use reciprocal lattice vectors in this
expansion rather than real-space lattice vectors).

In order to obtain the equation governing the motion of the
Burgers vector density, we use that the determinant fields Dn

have conserved currents given by [46]

J
(n)
k = 1

2i
εkl

(
∂An

∂t
∂lA

∗
n − ∂A∗

n

∂t
∂lAn

)
=εkl Im

(
∂An

∂t
∂lA

∗
n

)
,

(29)

so that ∂Dn

∂t
= −∂kJ

(n)
k , as can be verified by substitution. The

amplitude evolution at the vortex location ∂An

∂t
can be found

from an amplitude expansion of ∂ψ

∂t
, such as Eq. (23).

We also have a similar continuity equation for the delta
functions,

Dn

∂

∂t
δ(An) = −J

(n)
i ∂iδ(An), (30)

which can be proved by differentiating through the delta
functions and inserting for Dn and J

(n)
i . Hence, differentiating

the dislocation density with time, we find the Burgers vector
current

∂Bi

∂t
= −4π

3

3∑
n=1

qn
i

[
∂Dn

∂t
δ(An) + Dn

∂

∂t
δ(An)

]

= 4π

3

3∑
n=1

qn
i

[
∂jJ

(n)
j δ(An) + J

(n)
j ∂j δ(An)

]

= ∂j

[
4π

3

3∑
n=1

qn
i J

(n)
j δ(An)

]
= −∂jJij . (31)

Whenever Dn = 0, we have δ(An) = 0; otherwise, we can
transform back to physical coordinates using Eq. (26),

Jij = −4π

3

3∑
n=1

qn
i J

(n)
j δ(An)

= 2

3

3∑
n=1

qn
i J

(n)
j

∑
α

qn · bα

Dn

δ(r − rα). (32)

On the other hand, if the dislocations are moving with velocity
vα , we have

Jij =
∑

α

bα
i vα

j δ(r − rα). (33)

Hence, equating the two expressions for Jij at r = rα and
contracting with the Burgers vector bα , we find

vα
j = 2

3

3∑
n=1

(qn · bα)2

|bα|2
J

(n)
j

Dn

= 1

S2
α

3∑
n=1

(
sα
n

)2 J
(n)
j

Dn

, (34)

where we set S2
α = ∑3

n=1(sα
n )2 and used that |bα|2 = 8

3π2S2
α .

This is a general result and the central relation between the
velocity of a point singularity and the equation governing
the evolution of the phase-field amplitudes. We apply this
expression below to obtain an estimate of the velocity response
of a single point dislocation under an applied strain.

B. Dislocation motion

At a dislocation core, assumed at r = 0, the amplitude An

will vanish as long as 2πsn = qn · b 
= 0. Since s1 + s2 + s3 = 0,
any dislocation must give rise to vortices in at least two of
the three amplitudes, so these two amplitudes vanish. This
means that the amplitude evolution equation (23) for vanishing
amplitudes at the dislocation position reduces to

∂An(r = 0)

∂t
≈ −L2

nAn

∣∣∣
r=0

(35)

whenever sn 
= 0. The equations governing the defect ampli-
tudes entering Eq. (34) decouple, and hence, we can study the
motion of each amplitude independently.

We now consider a dislocation which would be stationary in
the absence of any externally imposed stress,L2

nAn|r=0
= 0. If

a smooth deformation ũ is imposed in addition to the singular
deformation field associated with the stationary dislocation,
the total displacement field can be written as u = using + ũ.
This displacement includes the singular deformation using for
the stationary dislocation described by the amplitudes An

and a smooth “phonon” part (e.g., as described in Eq. (2.8a)
of Ref. [24]). The defect amplitude under this distortion is
Ãn = Ane

−iqn·ũ+hn(r), where the unknown function hn models
how the defect core responds to the deformation [45]. We
assume that these core perturbations are small compared to the
driving force due to the deformation gradient, |∇hn| � |∇ũ|
and neglect them. The applied smooth deformation will cause
the dislocation to move,

∂t Ãn = −L2
nÃn 
= 0, (36)

and our aim is to compute how the resulting dislocation motion
depends on the imposed deformation.

Let us focus on one particular n and write Ã = Ae−iq·ũ,
with its associated wave vector q. Then,

∂iÃ = (∂iA − iAqk∂i ũk)e−iq·ũ,

∂ij Ã = (∂ijA − i∂iAqk∂j ũk − i∂jAqk∂i ũk)e−iq·ũ. (37)

Continuing in this manner and using the fact that A is the
stationary vortex solution (L2A = 0), we then have that

∂t Ã = −L2Ã = 4iqj [(∂i + iqi)LA]∂i ũj e
−iq·ũ. (38)
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If s = ±1, one solution of L2A = 0 is the isotropic vortex
solution A ∝ x − isy. We will assume the vortex takes this
form, although other solutions are possible. For this solution,
we have LA = 2iqk∂kA and ∂iLA = 0. Hence, ∂t Ã simplifies
to

∂t Ã = −8iqiqj qk∂kA∂iũj e
−iq·ũ. (39)

Inserting this into the defect current in Eq. (29), we find

Ji = −8εij qkqlqm∂kũl Im(i∂mA∂jA
∗). (40)

Since the defect density is unchanged under the smooth
deformation, the Jacobi determinant at the dislocation position
is unchanged,

D = 1

2i
εij ∂iÃ

∗∂j Ã = 1

2i
εij ∂iA

∗∂jA. (41)

The isotropic vortex A ∝ x − isy satisfies

i∂iA = −1

s
εij ∂jA, (42)

so that

Ji = 8

s
εij εmoqkqlqm∂kũl Im(∂oA∂jA

∗). (43)

We can show that Im(∂oA∂jA
∗) = εjoD, which means that

Ji = 8

s
εij qjqkql∂kũlD. (44)

Thus, for a simple dislocation with all |sn| � 1, we find that
the vortex velocity from Eq. (34) is

vi = 8εij

S2

3∑
n=1

snq
n
j qn

k qn
l ∂kũl

= 4bm

πS2
εij

3∑
n=1

qn
mqn

j qn
k qn

l ∂kũl

= 1

4πA2
0

εij 〈σ̃jk〉bk, (45)

where we used the stress-strain relation from Eq. (21) to relate
the gradient of the smooth deformation ũ to its associated stress
σ̃ij .

Thus, we obtain an expression for the dislocation veloc-
ity which agrees with the Peach-Koehler force of classical
dislocation theory [4] and gives an explicit form of the
dislocation mobility. The derivation has excluded the singular
deformation using associated with the dislocation, as well as
any defect core variations in the amplitudes which would be
contained in the functions hn(r). Within our approximations,
the mobility coefficient is isotropic. This probably follows
from our assumption that the vortex solution of L2

nAn = 0 is
isotropic.

In what follows, we calculate numerically the dislocation
velocity by tracking the position of the dislocation and compare
it with the velocity determined by Eq. (34) from the topological
defect currents. We also discuss the numerical challenge to
verify overdamped motion with isotropic mobility, the Peach-
Kohler force Eq. (45), as well as the extent to which we expect
our analysis to be valid.

IV. NUMERICAL RESULTS

We test our predictions by directly simulating a perfect
hexagonal crystal containing a dislocation dipole in two scenar-
ios of pure glide and pure climb, respectively. The dislocations
move under the mutual interaction force between them until
they annihilate.

We use two parameter sets r = −0.01 and ψ0 = −0.04
(small amplitude near the bifurcation) and r = −0.8 and
ψ0 = −0.43 (finite amplitude). The initial state is prepared by
setting ψ(r) = ψ0 + ∑

n Ane
iqn·r + c.c., where the amplitudes

contain vortices with the appropriate charges for each disloca-
tion An = A0 exp [−∑

α isα
n θ (r − rα)]. We use two different

initial geometries for measuring glide and climb motion. For
the glide case, we put two dislocations with opposite Burgers
vectors pointing along the x direction, i.e., b = (±a,0), and
located in the same glide plane on the x axis with some initial
separation. For climb, we place the same dislocations directly
above each other on the y axis on different glide planes. We
then evolve Eq. (22) using an exponential time differencing
method [47] and track the motion of dislocations as topological
defects.

The amplitudes of the phase field are computed by per-
forming a local amplitude decomposition, which corresponds
to averaging ψe−iq·r over a region roughly corresponding
to a lattice unit cell [48]. For numerical stability we use a
convolution with a Gaussian of width a = 4π/

√
3 instead of

hard limits to the averaging region. This convolution is most
efficiently evaluated in Fourier space, using the expression

An(r) = e−iqn·rF−1{e− 8
3 π2(k−qn)2

F [ψ]}, (46)

where F and F−1 denote the Fourier and inverse Fourier
transforms, respectively. Similarly, the time evolution of the
amplitude can be extracted from the PFC dynamics as

∂An(r)

∂t
= e−iqn·rF−1

{
e− 8

3 π2(k−qn)2
F

[
∂ψ

∂t

]}
. (47)

Figures 1(a) and 1(b) show the magnitude and phase of the
complex amplitude A2 for the initial dislocation dipole after a
short period of relaxation.

From the amplitudes we can calculate a Gaussian approxi-
mation to the δ(An) function as

δ(An) = 1

2πw2
e
− |An |2

2w2 , (48)

where smaller w’s give sharper δ functions. Along with the Dn

fields obtained by numerically differentiating the amplitudes
[Fig. 1(c)], we obtain approximations to the Burgers vector
density from Eq. (28), shown in Fig. 1(d).

The total displacement field away from defect cores can be
obtained by writing An = |An|e−iqn·u, so that

Im
∂jAn

An

= −qn
k ∂juk. (49)

This relation can be inverted to find

∂juk = −2

3

∑
n

qn
k Im

∂jAn

An

, (50)

thus giving numerical values for the total strain. Figure 2
summarizes our results. We show the distortion ∂yux given
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FIG. 1. (a) Magnitude and (b) phase of the A2 amplitude, showing
the initial vortices corresponding to the initial dislocations. (c) The
D2 field showing the sign of the vortex charge. (d) The resulting Bx

dislocation density in the x direction, with w = A0/5. Here x and y

are given in units of the lattice constant a = 4π√
3q0

.

by Eq. (50) along with the corresponding stress field evaluated
from Eq. (12) with a Gaussian average. Of course, this stress-
strain relation is not expected to hold near the defect cores
where the distortion is large. However, we also plot the shear
stress as a function of y along the line shown in Fig. 2 and
show that the linear stress-strain relation, Eq. (21), does hold
away from the cores.

Properties of a given dislocation can be computed by taking
averages weighted by the Burgers vector density B(r) inside
a thresholded region. Thus, we compute the location of each

FIG. 2. (a) Map of the stress field 〈σxy〉, as computed directly from
the formula in Eq. (12), with a Gaussian average. (b) Map of the strain
field ∂yux , computed from the amplitudes by Eq. (50). Note that the
color scale is saturated, and the measured strain field diverges at the
dislocation. (c) Comparison of the stress computed along the indicated
horizontal line in two different ways: Using the direct expression for
the stress in Eq. (12) (solid line) and using the stress-strain relation
from Eq. (21) (dashed line). Both expressions agree in the crystal bulk
but break down close to the dislocation.
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FIG. 3. The dislocation velocity as a function of time until the
annihilation time for (a) and (b) low quenches versus (c) deep
quenches, given in the dimensionless units of Eq. (22). In (c), vertical
lines indicate points in time when the dislocation has traveled a
distance a from its initial point.

dislocation by taking centers of mass of the Burgers vector
density and dislocation speeds by averaging the topological
defect currents of Eq. (34). In Fig. 3, we compare glide and
climb velocities predicted from Eq. (34) and a direct numerical
determination of the velocities by performing a finite-time dif-
ference between successive dislocation positions. In Figs. 3(a)
and 3(b), the glide and climb velocities are presented for small
|r|, showing excellent agreement. The glide velocity for finite
r is presented in Fig. 3(c) and shows a stick-and-slip-like
behavior with periodicity related to the lattice constant a,
consistent with previous numerical simulations from Ref. [9].
These are lattice effects affecting the motion of the amplitudes
when r is not small due to nonlinear couplings, the phase-field
analog of Peierls pinning stresses [49]. Note that we observe
no climb motion at the deep quench parameter r = −0.8.

The velocity computations shown are robust with respect to
the δ function width parameter w from Eq. (48). However, the
dislocation center-of-mass location used in the tracked velocity
shows artificial fluctuations for width parameters larger than
≈ A0/20.

Directly verifying Eq. (45) is more difficult due to the
required separation of stress fields into a singular part and
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a phonon part σ̃ij . As an indirect test, one can assume as a
first approximation that the stress field on each dislocation is
due only to the other, and it is approximately given by the
equilibrium shear stress induced by an edge dislocation in an
infinite space,

σxy = b

2π

2μ(λ + μ)

λ + 2μ

cos φ cos 2φ

d
,

σxx = − b

2π

2μ(λ + μ)

λ + 2μ

sin φ(2 + cos 2φ)

d
, (51)

whered andφ are the instantaneous distance and angle between
the dislocations, respectively. Inserting this expression into
Eq. (45) and using appropriate values for the angle φ for the
glide and climb geometries, we find

vglide
x = vclimb

y = ± a2

2π2d
, (52)

with the sign depending on which of the two dislocations we
are considering. This equilibrium velocity is denoted as the
“Peach-Koehler force” in Figs. 3(a) and 3(b). For glide velocity
we find a reasonable agreement with the measured velocity,
but the climb velocity shows a different functional form. The
deviations from the predicted evolution from Eq. (52) are due
to simplifying assumptions used in deriving the Peach-Koehler
force, the most important being the isotropic solution of the
stationary vortex structure. In practice, the profile of the vortex
near the core may be anisotropic and dependent on the driving
force. This means that the core structure would deform in
the presence of external forces, which would be described
by having the hn(r) functions depend on ũ. Note that the
decoupling of the amplitude equations and the assumption of
an isotropic vortex solution were what allowed us to ignore
the effect of vacancies. It is known that vacancy diffusion is
important for climb motion, and therefore, we expect greater
deviations from the theoretical prediction in the case of climb,
as is evidenced in Fig. 3(c).

V. CONCLUSIONS AND DISCUSSION

We have introduced a phase-field model of a crystalline
phase to describe the topological singularity that corresponds
to isolated dislocations. The phase field itself is regular
(nonsingular) at defect cores. The singularity appears through
consideration of the slowly varying amplitudes or envelopes
of the phase field in a macroscopically defected configuration.
These amplitudes allow the computation of local stresses near
the defect, as well as the velocity of the point defect from
the kinetic equations governing the evolution of the phase
field. The combination of both results allows the derivation
of the classical Peach-Koehler force on the defect as well as
an explicit calculation of the defect mobility, although these
depend sensitively on the dislocation core structure. Our main
results have been verified by direct numerical solution of the
equation governing the evolution of the phase field for the
case of a dislocation dipole in a two-dimensional hexagonal
lattice.

Phase-field crystal models of the type discussed in this paper
lack a dependence on lattice deformation as an independent
variable. However, we have shown explicitly that it is possible
to calculate the elastic stress directly from the phase-field free

energy by considering its variation with respect to a suitably
chosen phase-field distortion. The stress thus derived is consis-
tent with linear elasticity and leads to known expressions for
the elastic constants of the phase-field crystal. Furthermore,
the phase-field description can also describe defected config-
urations. While the phase field remains nonsingular no matter
how large the local distortion of the reference configuration is,
the location of any isolated singularities can be accomplished
through the determination of the zeros of a slowly varying (on
the scale of the periodicity of the field) complex amplitude or
envelope of the phase field. Such a coarse graining is essential
to defining singular fields from the regular phase field. On this
slow scale, we have then derived the Peach-Koehler force on
a topological defect, subject to some simplifying assumptions.
As expected, this force depends only on a slowly varying
stress (distortion) and not on other fast variations of the phase
field near the defect that constitute the singular strain field.
However, more work is needed to fully understand the effect of
the core structure and vacancy diffusion on this Peach-Kohler
force.

Our results also clarify the relationship between dissipative
relaxation of the phase field and plastic motion. Equation
(45) relates the velocity of a dislocation with its Burgers
vector and the slowly varying stress 〈σ̃ij 〉. Such a relation
follows directly from the equation governing the relaxation
of the phase field, Eq. (22), in the range of r � 1, in which
it can be described by an amplitude equation. This equation
also gives an explicit expression for the dislocation mobility
which depends on the specific functional form of the free
energy considered. More generally, the role of the free-energy
functional introduced includes the definition of a Burgers
vector scale and topological charge conservation over large
length scales. Of course, any fast variations of the phase field
near defects are still described and very much included in
Eq. (22). Short-scale effects such as dislocation creation and
annihilation and any nonlinearities of both elastic and plastic
origin evolve according to the dissipative evolution of the phase
field.
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APPENDIX: CALCULATION OF THE
DISLOCATION CURRENT

Equation (28) gives an expression for the dislocation density
in terms of the three reciprocal lattice vectors qn. Since the
Burgers vector is a vector in the real-space lattice, it would
seem more natural to express the dislocation density in terms
of the two real-space lattice vectors an, where qn · am = 2πδmn

(for n,m = 1,2). Indeed, using that
∑2

n=1 an
i qn

j = 2πδij , we
find the alternative expression

B(r) = −
2∑

n=1

anDnδ(An), (A1)
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which, of course, is equal to Eq. (28). Going through the same
derivation as in Sec. III A leads to a Burgers vector current

Jij = −
2∑

n=1

an
i J

(n)
j δ(An). (A2)

However, this current does not agree with the current in
Eq. (32).

The missing point is that the conservation equation for the
field Dnδ(An),

∂t [Dnδ(An)] + ∂i

[
J

(n)
i δ(An)

] = 0, (A3)

determines its current I
(n)
j only up to an unknown divergence-

free vector field K
(n)
j , i.e.,

I
(n)
i = J

(n)
i δ(An) + K

(n)
i , (A4)

where ∂iK
(n)
i = 0. To determine this residual current, we

observe that
3∑

n=1

Dnδ(An) = − 1

2π

∑
α

bα
i δ(r − rα)

3∑
n=1

qn
i = 0 (A5)

due to the resonance condition
∑

n qn = 0. Hence, it is natural
to require that the current of this field vanishes identically,

3∑
n=1

I
(n)
i =

3∑
n=1

J
(n)
i δ(An) +

3∑
n=1

K
(n)
i = 0. (A6)

This condition is fulfilled by setting K
(n)
i =

− 1
3

∑3
m=1 J

(m)
i δ(Am), which has vanishing divergence.

With this choice, the dislocation current in Eq. (32) is modi-
fied to

Jij = −4π

3

3∑
n=1

qn
i J

(n)
j δ(An) + 4π

9

3∑
n=1

qn
i

3∑
m=1

J
(m)
j δ(Am),

(A7)

where the second term vanishes due to resonance. Hence, the
additional fields K

(n)
i give no contribution when we express

B(r) in terms of the three reciprocal lattice vectors. On the
other hand, if we used real lattice vectors an instead, the extra
term would not vanish.
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