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Investigation of the spin-lattice coupling in Mn3Ga1−xSnxN antiperovskites
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The magnetovolume effects (MVEs) of Mn3Ga1−xSnxN antiperovskite compounds have been investigated by
means of neutron powder diffraction. Increasing the Sn-doping content at the Ga site leads to the broadening of
the magnetic phase transition temperature range and the thermal expansion behavior changes from negative to
positive. We establish the relationship between the square of the ordered magnetic moment m2 and the volume
variation �ωm for the antiferromagnetic phase (�5g magnetic structure with rhombohedral symmetry R3̄m). The
temperature variations of �ωm(T ), m2(T ) and the magnetoelastic coupling constant C(T ) are also quantitatively
analyzed according to the itinerant-electron theory. Moreover, the increase of the phonon contribution to the
thermal expansion induced by Sn doping and the corresponding decrease of dm/dT are revealed to be the key
parameters for tuning the MVEs. Our results allow elucidating and quantifying the mechanism of the spin-lattice
coupling and can be used to design magnetic functional materials with controlled thermal expansion behaviors
for specific applications.
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I. INTRODUCTION

Normally, solid materials expand on heating and contract
on cooling. That is to say, the coefficient of thermal expansion
(CTE), β = 1

V0
( ∂V

∂T
)p, should be positive. However, some solid

materials display anomalous thermal expansion [1,2], i.e.,
negative thermal expansion (NTE) or zero thermal expansion
(ZTE), in which cases the CTE is negative or near zero,
respectively. So far, four different mechanisms have been
identified to explain these phenomena, depending on the type
of material, including the (1) special phonon vibration model
in ZrW2O8 [2] and ScF3 [3]; (2) magnetovolume effect (MVE)
in MnCo1−xGex [4], Fe-Ni Invar alloys [5,6], and R2Fe17

(R is rare earth) [7,8]; (3) electron transfer in LaCu3Fe4O12

[9], BiNiO3 [10], and the MgB2 superconductor [11]; (4)
ferroelectric effect in PbTiO3-based ferroelectrics [12–14]
and Sn2P2S6 [15]. MVE was shown to be responsible for
negative/zero thermal expansion behaviors in antiperovskite
compounds Mn3MX (M = Ga, Zn, Cu, Sn; X = C, N)
[16–19], in relation to their strong “spin-lattice” coupling.
As a consequence of this strong spin-lattice coupling,
antiperovskite materials display many interesting physical
properties, such as the barocaloric effect [20], baromagnetic
effect [21], piezomagnetic effect [22], magnetocaloric effect
[23], magnetoresistance [24], and the near-zero temperature
coefficient of resistivity [25], and are therefore becoming im-
portant candidates for designing smart materials and functional
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devices/sensors [26]. Unfortunately, a quantitative relationship
between lattice variation and spin ordering is still lacking.
In this work, we will investigate this coupling and present a
detailed quantitative description of the temperature variation
of the magnetovolume effect in Mn3Ga1−xSnxN compounds
using neutron powder diffraction (NPD).

II. EXPERIMENT

Polycrystalline samples Mn3Ga1−xSnxN were prepared by
a solid-state reaction using fine Mn2N powders, Ga (4N) pel-
lets, and Sn (4N) powders as starting materials. Mn2N powder
was synthesized by sintering Mn powder (4N) in nitrogen gas
flow at 800 °C for several days [27]. Stoichiometric amounts
of Mn2N powder and Ga pellets were first sintered for 2 h, as
previously reported [21]. Then, after thoroughly mixing with
Sn powders by mechanical grinding, the samples were pressed
into pellets, sealed under vacuum (10−5 Pa) in a quartz tube,
and sintered at 800 °C for several days.

X-ray diffraction (XRD) patterns at room temperature were
obtained with an X’Pert PRO powder diffractometer using
Cu Kα radiation. The linear thermal expansion behaviors of the
samples were measured with a heating rate of 5 K/min from
123 to 470 K (from 123 to 600 K for Mn3Ga0.1Sn0.9N), using
a Netzsch DIL 402C apparatus. The temperature dependence
of magnetization was measured between 5 and 800 K under a
magnetic field of 100 Oe and 10 kOe using a Quantum Design
Magnetic Property Measurement System (MPMS). The mea-
surements were carried out under field-cooling conditions for
cooling (FCC) and warming (FCW). Isothermal magnetization
curves were recorded between −70 and 70 kOe using the
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same MPMS, while the isothermal magnetization curve for
Mn3Ga0.5Sn0.5N between −50 and 50 kOe was obtained by
using Quantum Design superconducting quantum interference
device (5T-SQUID).

Neutron powder diffraction (NPD) data were collected
using the two-axis diffractometer D1B at the Institut Laue-
Langevin (ILL) with a neutron wavelength 1.2892 Å in the tem-
perature range 10–550 K. The crystal and magnetic structures
were refined with the Rietveld method using the FULLPROF
suite programs [28] The neutron scattering lengths used were
−0.3730, 0.7288, 0.6225, and 0.9360 (×10−12 cm) for Mn,
Ga, Sn, and N, respectively.

III. RESULTS AND DISCUSSION

We first report the analysis of the crystal and magnetic
structures of Mn3Ga1−xSnxN (x = 0.1, 0.3, 0.5, 0.7, or 0.9)
compounds. Inspection of the room-temperature XRD pat-
terns (shown in the Supplemental Material [29]) indicates
that the main phase of all synthesized samples adopts the
cubic perovskite structure with space group Pm3̄m. As the
Sn-doping content (x) increases, the lattice constants and
unit-cell volumes increase linearly, in agreement with the
Vegard’s law [30], indicating that Sn has been successfully
substituted to Ga in our samples. To determine the magnetic
structures, the NPD patterns at 10 K of the Mn3Ga1−xSnxN
(x = 0.1, 0.7, 0.9) compounds were analyzed. Figures 1(a)–
1(c) show the corresponding Rietveld plots for the refined
crystal and magnetic structures. In order to highlight the
magnetic contribution at 10 K, Fig. 1(d) shows the difference
patterns (Iobs–Ical) obtained by fitting the Mn3Ga0.9Sn0.1N
NPD data including either only nuclear scattering or both
nuclear and magnetic scattering. The cubic perovskite structure
with space group Pm3̄m was found to describe well the crystal
structure, while all the magnetic reflections could be indexed
with the magnetic propagation vector k = (0, 0, 0). Magnetic
symmetry analysis was carried out using the program K-
SUBGROUPSMAG from the Bilbao Crystallographic Server
[31]. Rietveld refinements indicated that the best magnetic
model is the maximum magnetic rhombohedral subgroup
R3̄m within the irreducible magnetic representation �5g . The
corresponding �5g magnetic structure [32] is shown in the
inset of Fig. 1(a). The orientation of the Mn spins forming
a triangle within the (111) planes rotate by 120°, leading to
a zero magnetic moment for each plane. In adjacent planes,
the spins rotate in opposite directions. The refined magnetic
moments for Mn are 2.31(2), 2.41(3), and 2.43(3) μB , for
x = 0.1, 0.7, and 0.9, respectively. The refined compositions
of the x = 0.7 and x = 0.9 compounds were determined to be
Mn3Ga0.33(5)Sn0.67(5)N0.93(2) and Mn3Ga0.14(9)Sn0.86(9)N0.89(3)

by fixing the Mn content at 3 in the refinements of the NPD
patterns at 550 K. The composition of the x = 0.1 compound
was found to be Mn3Ga0.90(2)Sn0.10(2)N by Rietveld refinement
of the XRD pattern at room temperature, as shown in the
Supplemental Material [29]. Here the Mn and N contents
were fixed at 3 and 1, respectively. The refined stoichiometries
of the three samples are thus quite close to the nominal
compositions. Additional refined structural parameters for
the NPD refinements are shown in Table I. Several peaks

FIG. 1. (a)–(c) NPD refinement plots for the Mn3Ga1−xSnxN
(x = 0.1, 0.7, 0.9) compounds at 10 K. The crosses show the ex-
perimental intensities (Iobs), the upper solid line shows the calculated
intensities (Icalc), and the lower solid line is the difference between
the observed and calculated intensities (Iobs − Icalc). The vertical bars
mark the angular positions of the nuclear (the first and third rows) and
magnetic (the second and fourth rows) Bragg reflections. (The first
and second rows are for Mn3Ga1−xSnxN; the third and fourth rows are
for MnO.) The inset gives the magnetic structure of Mn3Ga1−xSnxN,
corresponding to rhombohedral (R3̄m) magnetic symmetry. (d) The
solid lines show the differences (Iobs–Ical) generated by fitting the
data with only nuclear (top) or with nuclear and magnetic (bottom)
for Mn3Ga0.9Sn0.1N at 10 K, respectively. The magnetic contribution
of the �5g structure to the patterns is clearly visible.

corresponding to the crystal and magnetic structures of an MnO
impurity phase can be observed in the NPD as well as XPD
patterns (Fig. 1). The presence of this minor phase (with a Neel
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TABLE I. Agreement factors and refined structural parameters for Mn3Ga1−xSnxN compounds from Rietveld refinement of NPD data in
the paramagnetic phases.

Sample Formula Mn3Ga0.9Sn0.1N Mn3Ga0.33(5)Sn0.67(5)N0.93(2) Mn3Ga0.14(9)Sn0.86(9)N0.89(3)

Temperature 500 K 550 K 550 K
a (Å) 3.91731(6) 4.02097(6) 4.05930(9)

V (Å
3
) 60.112(2) 65.012(2) 66.889(3)

Mn (3c) 0.54(6) 0.77(9) 0.9(2)

B (Å
2
) Ga/Sn (1a) 0.51(5) 0.57(7) 0.7(1)

N (1b) 0.16(5) 0.27(7) 0.4(1)
Rwp (%) 6.59 3.85 8.33
RBragg (%) 4.01 2.85 5.07
χ 2 14.1 7.98 11.5
MnO phase fraction (wt %) 4.1(2) 5.1(2) 11.7(7)

temperature of about 110 K) does not noticeably influence our
results or the discussion presented below on the properties in
these antiperovskite compounds.

Since the anomalous thermal expansion behaviors in an-
tiperovskite compounds are always correlated with a magnetic
transition, we first present a detailed analysis of the magnetic
properties. As shown in Figs. 2(a)–2(c), an antiferromagnetic
(AFM) transition is observed at TN = 320 K (FCC at 100 Oe)
for Mn3Ga0.9Sn0.1N, which is higher than the Néel temperature

of 298 K in the Mn3GaN host material [16,33]. For x = 0.3,
the corresponding Néel temperature appears at 392 K in the
FCW curve at 100 Oe and 390 K in the FCC curve at 10 kOe.
With increasing Sn content x, the AFM transition temperature
increases further, to 480 K for x = 0.5, 499 K for x = 0.7, and
529 K for x = 0.9 (FCW at 100 Oe), respectively. For x = 0.7
and 0.9, a new magnetic transition from the AFM phase to a
weak ferromagnetic phase appears at 39 and 48 K on cooling,
respectively. This is confirmed in the isothermal magnetization

FIG. 2. (a) Temperature dependence of magnetization (FCC) of (a) Mn3Ga0.7Sn0.3N and Mn3Ga0.5Sn0.5N, (b) Mn3Ga0.3Sn0.7N and
Mn3Ga0.2Sn0.9N compounds from 5 to 350 K under 100 Oe and 10 kOe applied magnetic field. The inset of the graph (a) shows the magnetization
curve of Mn3Ga0.9Sn0.1N at 100 Oe. (c) Temperature dependence of magnetization (FCW at 100 Oe) of Mn3Ga1−xSnxN compounds from 300 to
800 K. The inset shows the enlarged magnetization curve of x = 0.3 and 0.5 at 100 Oe. (d) The isothermal magnetization of the Mn3Ga1−xSnxN
compounds.
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FIG. 3. Linear thermal expansion [dL/L0 (123 K); dL = L–L0

(123 K)] of Mn3Ga1−xSnxN compounds. L0 (123 K) represents the
length at 123 K for these samples.

curves of Fig. 2(d). For both compounds, the M-H curve at 5 K
exhibits a hysteretic loop characteristic of a ferromagnetic con-
tribution. However, the highest spontaneous magnetization is
about 0.08 μB/f.u., i.e., ∼0.027 μB/Mn atom for x = 0.9 and
such a weak FM component can hardly be detected by NPD.
As shown by the difference plots of the NPD patterns at 10 K
(15 K) and 300 K for Mn3Ga0.3Sn0.7N and Mn3Ga0.1Sn0.9N in
the Supplemental Material [29], only the effects of the lattice
constant evolution and saturation of the ordered magnetic
moment can be observed, which indicates that the �5g AFM
magnetic structure is preserved in the whole temperature range
of magnetic order. The calculation of the piezomagnetic effect
in Mn3GaN [22] indicated that the strain forces may be respon-
sible for the rotation of the Mn spins out of the (111) plane,
leading to a net ferromagnetic component at low temperature.
This effect could be at the origin of the weak ferromagnetic
moment obtained by the magnetization measurements.

The thermal expansion dL/L0 (123 K) of the
Mn3Ga1−xSnxN compounds is shown in Fig. 3. Previous work
[16,33] reported that pure Mn3GaN undergoes a magnetic
phase transition from the �5g AFM phase to the paramagnetic
(PM) phase accompanied by a sharp volume contraction
of ∼1% at 298 K. The results shown in Fig. 3 indicate
that Sn doping from x = 0.1 to 0.9 efficiently increases the
responding temperature of the magnetovolume anomaly from
324 to 484 K, while decreasing the magnitude of the volume
contraction from ∼3.5% to nearly 0. For the Mn3Ga0.1Sn0.9N
compound, at the transition temperature of 484 K, we can
only observe a change of linear thermal expansion coefficient
α without a detectable NTE effect. It is also worth noting that
below TN , the value of α increases with increasing Sn content.
This indicates that the magnetovolume effect can be effectively
tuned by Sn doping in Mn3Ga1−xSnxN compounds.

In order to clarify the spin-lattice coupling and the thermal
expansion mechanism in Mn3Ga1−xSnxN compounds, NPD
patterns were collected at variable temperature and analyzed by
Rietveld refinement. The temperature dependence of the lattice
constants a and magnetic moments m of Mn3Ga1−xSnxN

FIG. 4. (a)–(c) Temperature variations of the lattice con-
stants a and magnetic moments m of Mn3Ga1−xSnxN (x = 0.1,
0.7, 0.9) compounds. The red solid lines represent the fits of
the magnetic moment dependences using the formula m2(T ) =
m2(0)[1 − α( T

TN
)
2 + ξ ( T

TN
)
4
]. The blue lines are a(T) fits used to

determine the reported transition temperatures.

(x = 0.1, 0.7, 0.9) compounds are shown in Figs. 4(a)–4(c).
It is clear that only a single magnetic phase transition from
AFM to PM can be detected over the whole temperature range.
This transition is accompanied by a strong magnetovolume
effect as seen from the unit-cell parameter variation, but the
antiperovskite structural arrangement remains unchanged. As
shown by the solid lines in Fig. 4, the temperature depen-
dence of the magnetic moment could be well fitted by the
formula m2(T ) = m2(0)[1 − α( T

TN
)
2 + ξ ( T

TN
)
4
], which will be

discussed further in the following. On heating, the phase tran-
sitions are accopanied by a lattice contraction (NTE behavior)
for x = 0.1, 0.7 and a steplike lattice variation (PTE behavior)
for x = 0.9 at the Néel temperature. For x = 0.1, the behavior
is typical of a first-order phase transition, with an abrupt drop
of lattice constant and magnetic moment. As seen in Fig. 4(a),
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TABLE II. Thermal expansion parameters at the transition temperature and parameters obtained by fitting the V(T) curves with the Debye
model for Mn3Ga1−xSnxN (x = 0.1, 0.7, and 0.9).

Mn3Ga1−xSnxN Temperature range for phase transition (K) CTE (×10−6 /K) V0 (Å
3
) 9γNkB/B (Å

3
/K) �D (K)

x = 0.1 312 ∼ 324 (�T = 12) −139.3 58.92(2) 0.0158(6) 893(33)
x = 0.7 418 ∼ 454 (�T = 36) −8.1 63.10(5) 0.0197(9) 788(53)
x = 0.9 387 ∼ 483 (�T = 96) 11.2 64.60(7) 0.0202(9) 583(61)

the NTE temperature range is quite narrow, from 312 to 324 K
(the phase transition temperatures were determined by the
crossing of the fitting lines of a-T curves shown in Fig. 4). With
increasing Sn content to x = 0.7, the temperature range where
NTE takes place has broadened to 36 K (from 418 to 454 K),
and the decrease of the ordered magnetic moment in the �5g

AFM phase also becomes smoother. With further increase of
the Sn content to x = 0.9, only a change of slope in the lattice
constant is observed without sizeable NTE behavior, although
the �5g phase still exists. At the same time, the phase transition
temperature range is broadened to 96 K (from 387 to 483 K).
These results, summarized in Table II, indicate that Sn doping
increases the Néel temperature, broadens the NTE temperature
range, decreases the value of dm/dT close to the transition
points, and tunes the thermal expansion from negative (−139.3
and −8.1 ppm/K for x = 0.1, 0.7, respectively) to positive
(11.2 ppm/K for x = 0.9).

The anomalous thermal expansion behaviors in antiper-
ovskites are considered to originate from strong magnetic
correlations and lattice vibrations. Generally, the (normally
positive) thermal expansion behavior due to the phonon contri-
butions is theoretically estimated by using the Debye equation
[34,35]:

Vp
∼= V0 + 9γNkB

B
T

(
T

�D

)3 ∫ �D/T

0

x3

ex − 1
dx, (1)

where V0, γ , B, and �D represent the volume at 0 K (con-
sidering phonon contribution only), the Grüneisen parameter,
the bulk modulus, and the Debye temperature, respectively. As

is well known, the Debye model is a rather good and simple
quasiharmonic approximation for describing the contribution
of the lattice vibrations to the thermal expansion of solid crys-
tals, although the anharmonic terms are neglected [36]. This
model is suitable for many simple compounds and elements
not only in cubic systems but also for some lower symmetries
[37]. Although the accurate details of anharmonic phonons are
missed, this approximation is also widely used to describe the
thermal expansion behavior in various classes of materials,
such as in Na2Ca3Al2F14 (often used as the calibration of
XRD and NPD) [38], perovskites compounds [34,39,40], Invar
alloys [41], and garnets [42]. Therefore, we have applied the
Debye model to carry out with Eq. (1) a least-squares fit of the
V(T) curves in the paramagnetic domain for the x = 0.1, 0.7,
and 0.9 samples. The best fits are represented by dotted lines
in Fig. 5(a), expressing the contribution of the phonons to the
thermal expansion, while neglecting the magnetic excitations
or spin fluctuations effects [40,43]. The V0, 9γNkB/B, and
�D refined parameters are shown in Table II.

Furthermore, by subtracting to the experimental V (T )
curve this modeled phonon contribution extrapolated to the
magnetic ordered phase domain, an extra contribution is
obtained, which can be of magnetic or electronic origin
where the magnetophonon or the electron-phonon interactions
cannot be taken into consideration by doing this separation
in phenomenology. Here, the magnetic contributions to the
volumes in Mn3Ga1−xSnxN can be safely considered as the
key factor for the thermal expansion anomaly. Thus, it can be
obtained by the difference between the measured volume V and

FIG. 5. (a) Temperature dependence of the unit-cell volume of the Mn3Ga1−xSnxN (x = 0.1, 0.7, 0.9) compounds. The dotted lines represent
the contribution of the phonon fitted by the Debye function. (b) Temperature dependence of the isotropic volume expansion β = V − V(15K)

(solid lines), phonon contribution βp = Vp − V0 (dotted lines), and magnetic contribution βm = �Vm − �Vm(15K) (solid lines with symbols)
for Mn3Ga1−xSnxN compounds (blue: x = 0.1; red: x = 0.7; black: x = 0.9).
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FIG. 6. (a) Volume strain �ωm induced by the magnetovolume effect as a function of magnetic moment m for Mn3Ga1−xSnxN (x = 0.1,
0.7, 0.9) compounds. The solid lines correspond to linear fittings above the phase transition temperature. (b) Temperature dependence of �Vm

(left), magnetic moment m (right), and the square of the magnetic moment m2 (right) for Mn3Ga0.3Sn0.7N. (c) Volume strain �ωm as a function
of the square of the magnetic moment m2 for Mn3Ga1−xSnxN (x = 0.1, 0.7, 0.9) compounds. The dash-dotted lines correspond to linear fittings.
(d) Temperature dependence of volume strain �ωm for Mn3Ga1−xSnxN (x = 0.1, 0.7, 0.9) compounds with the fitted solid lines by the equation
�ωm(T )/�ωm(0) = 1 − A1(T/TN )2 + A2(T/TN )4.

the calculated phonon contribution Vp, i.e., �Vm = V − Vp.
Therefore, we can discuss the separated phonon and magnetic
contributions to the whole volume expansions. In Fig. 5(b),
the isotropic volume expansion β = V − V(15K), the phonon
contribution βp = Vp − V0, and the magnetic contribution
βm = �Vm − �Vm(15K) below 300 K are represented for the
Mn3Ga1−xSnxN compounds (x = 0.1, 0.7, 0.9). Clearly, Sn
doping strongly increases the phonon contribution and also the
expansion coefficient below the phase transition. Comparing
the results for x = 0.1 and x = 0.7, although the magnetic
contributionsβm are very close, the isotropic volume expansion
β for x = 0.7 is still larger than that for x = 0.1 due to the
increase of the phonon contribution. When the temperature is
below 225 K, the magnetic contribution βm for x = 0.9 is quite
larger than that for x = 0.7, while β for x = 0.9 is still slightly
larger than that for x = 0.7. Below the transition temperature,
the value of the volume expansion β exhibits the same tendency
as the phonon contribution βp, which means that the phonon
contribution is the key factor which controls the CTE of the
thermal expansion behavior. Besides the effect of phonons, the
magnetic contribution, especially the rate of the temperature
dependence of magnetic moment, also plays an important role
in the change of sign of the thermal expansion anomaly from
negative to positive and also in the broadening of the phase
transition.

On the other hand, �Vm as well as the ordered magnetic
moment decrease slightly with increasing temperature, which
indicates a significant coupling between the magnetic moments
and the lattice. As already reported in Ref. [44], investi-

gations based on NPD data revealed that the ratio r(T ) =
�am(T )/mNTE(T ) for the �5g phase below the magnetic
transition temperature is approximately independent of T,
which leads to a linear relationship between �am(T ) and
the ordered moment mNTE(T ). However, when the magnetic
phase transition gradually transforms from first order to sec-
ond order, i.e., the anomalous (negative) thermal expansion
behavior near the transition has become broader, this quan-
titative relationship between the volume strain �ωm and
the magnetic moment m is no longer suitable and needs to
be further developed for the whole temperature domain of
the �5g AFM phase, as the �ωm = �Vm

Vp
vs m plots shown

in Fig. 6(a). Indeed, we could obtain a satisfactory agree-
ment by considering the variation of volume strain �ωm vs
m2(= the square of the orderedmagnetic moment). The tem-
perature dependence of �Vm, m, and m2 for Mn3Ga0.3Sn0.7N
are plotted together in Fig. 6(b). The variations of these three
sets of values are approximately similar at low temperature.
However, at higher temperature in the transition domain, the
agreement is much better as a function of m2 than of m. Thus,
we will consider the former to establish a new quantitative
relationship for spin-lattice coupling. As shown in Fig. 6(c), we
obtain a satisfactory linear fit of �ωm as a function of the square
of the ordered magnetic moment m2, i.e., �ωm ∝ m2, where
the slope of the fitting curves is obtained to be 0.00375(3),
0.00278(3), and 0.00275(3) μB

−2 for x = 0.1, 0.7 and 0.9,
respectively, as shown in Table III.

Generally, in the framework of the Stoner-Wohlfarth (SW)
theory [45–47] of the itinerant-electron magnetism (not only
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TABLE III. Parameters obtained by fitting Eqs. (2), (6), (7), and (8) to NPD measurement data to clarify the mechanism of the magnetovolume
effect in Mn3Ga1−xSnxN compounds.

Mn3Ga1−xSnxN x = 0.1 x = 0.7 x = 0.9

TN 327 K 453 K 485 K
M(0) 2.28(1) μB 2.37(1) μB 2.42(1) μB

α 0.15(7) 0.12(4) 0.44(5)
ξ −0.35(7) −0.79(4) −0.50(6)
�ωm(0) 0.01888(9) 0.01579(8) 0.0162(1)
A1 0.069(7) 0.202(6) 0.61(1)
A2 = (αA1 + ξ − α2) −0.34 −0.78 −0.43
γ = A1 − α 0.081 0.082 0.17
C(0) = �ωm(0)/M(0)2 0.00363 μB

−2 0.00281 μB
−2 0.00277 μB

−2

C [treated as a constant in Eq. (3)] 0.00375(3) μB
−2 0.00278(3) μB

−2 0.00275(3) μB
−2

ferromagnets [46,47] but also antiferromagnets [48–50]), the
spontaneous volume magnetostriction can be expressed as the
well-known equation

�ωm(T ) = CM2(T ), (2)

where C(=D/B) is the magnetoelastic coupling constant, D
is the magnetovolume coupling constant, and M(T) is the
magnetization. Equation (2) has also been widely used to
uncover the characteristics and the mechanism of the MVEs in
Invar-type alloys, such as Fe-Pt alloys [51,52], Fe-Ni alloys,
and other 3d transition-metal alloys [53]. In 1980, Moriya
and Usami also developed the same approximation as an
ansatz in clarifying the mechanism of the magnetovolume
effect in a magnetic system with spin fluctuations [54]. The
M(T) in Eq. (2) is always the macroscopic magnetization in
the case of ferromagnetic NTE behaviors. Even in antiferro-
magnets, the M(T) is also corresponding to the macroscopic
magnetization obtained by the Curie-Weiss equation [48–50].
In the present case of antiperovskite compounds, due to the
specific noncollinear nature of the magnetic structures, the
macroscopic magnetization is not always corresponding to
the spin magnetic structures and the volume variation [18]
where Eq. (2) could not be used by the macroscopic mag-
netization as well. Furthermore, based on the good linear fit
obtained by using the square of the magnetic moment m2

for Mn3Ga1−xSnxN compounds, as shown in Fig. 6(c) and
the original theory of Eq. (2) [54], the microscopic electronic
spin-ordered moment in the antiferromagnetic phase can be
introduced to develop Eq. (2) as �ωm(T ) = Cm2(T ), which
could broaden its applicability to the typical antiferromagnetic
MVE systems such as antiperovskites by generally assuming
the bulk modulus B to be a constant. This is well justified since
the bulk modulus generally has only a small relative change
with temperature as compared with the magnetic moment [45].

Moreover, the magnetic free energy is given as [45]

�F (T , ω) = φ(ω)f (t(ω)), (3)

with t(ω) = T/T0(ω), where T0(ω) is a critical temperature
parameter and is assumed to be a linear function of ω [55].
φ(ω) is the magnetic free energy in the ground state, which is
sometimes referred to as the magnetic excitation potential and
always depends on ω in the low-temperature region [45,47].
Near the Néel temperature, φ is assumed to be constant.
Therefore, by assuming f (t) = (1 − t2)2 according to the

Grüneisen-Testardi (GT) theory [47,56], one can obtain the
equation [55,57]

�ω(T ) = − 1

B

∂�F

∂ω

= −∅′

B

[
1 +

(
4

∅
∅′

∂lnT0

∂ω
− 2

)(
T

T0

)2

+
(

1 − 4
∅
∅′

∂lnT0

∂ω

)(
T

T0

)4
]

= �ω(0)(1 + a1T
2 + a2T

4), (4)

where the parameters a1 and a2 contain φ, φ′ and ∂lnT0/∂ω.
In order to deduce Eq. (4), the temperature dependence of the
magnetization can be developed as [57,58]

m2(T ) = m2(0)

[
1 + T 2

TN
2 + · · ·

]
. (5)

Since the magnetovolume experimental data point to the
existence of a significant T 4 term, the magnetic moments
obtained by NPD can be well described using the equation

m2(T ) = m2(0)

[
1 − α

(
T

TN

)2

+ ξ

(
T

TN

)4
]
, (6)

shown as the solid lines in Figs. 4(a)–4(c), which finally
yields the required temperature dependence of the �ωm(T ) =
Cm2(T ). Consequently, the volume strain of Eq. (4) can also
be rewritten as

�ωm(T )

�ωm(0)
= 1 − A1

(
T

TN

)2

+ A2

(
T

TN

)4

. (7)

Actually, since the magnetic contributions to the bulk
modulus can be expressed from Eq. (3) as �B(T ) = ∂2�F

∂ω2 ,
the magnetoelastic coupling constant C(=D/B) should also
be temperature dependent. Therefore, according to the equa-
tion �ωm(T ) = C(T )m2(T ), the temperature variation of the
magnetoelastic coupling constant is given as

C(T ) = C(0)

[
1 − γ

(
T

TN

)2
]
, (8)
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which could also have an effect [50,59] on the importance of a
fourth-degree term in �ωm(T ). By using Eqs. (6) and (8), the
magnetovolume reduces to

�ω(T ) = C(0)m2(0)

[
1 − ( α + γ )

(
T

TN

)2

+ (ξ + αγ )

(
T

TN

)4
]
. (9)

Comparing with Eq. (7), there should exist several relation-
ships between the parameters A1 = α + γ and A2 = ξ + αγ ,
which induce a constraint of A2 = αA1 + ξ − α2 when fitting
the experimental data using Eq. (7), shown in Fig. 6(d).
Table III gives all the fitting parameters in Eqs. (6)–(8) for
Mn3Ga1−xSnxN (x = 0.1, 0.7, 0.9) compounds. It can be seen
that the value of the parameter C, treated as a constant in
the equation �ωm(T ) = C(T )m2(T ), is much close to the
parameter C(0) in Eq. (8), and the temperature parameter γ

is also quite small, which is in agreement with the assumption
in the fitting in Fig. 6(c). Therefore, the magnetovolume effect
of Mn3Ga1−xSnxN compounds can be well explained by these
itinerant electron theories discussed above, which are widely
used in antiperovskites.

IV. CONCLUSION

In conclusion, the magnetovolume effects in
Mn3Ga1−xSnxN compounds with �5g magnetic structures
were clarified using a detailed analysis of NPD data. The Sn
element doping can efficiently increase the Néel temperature

from 327 to 485 K, strengthen the phonon contribution
to the thermal expansion, and decrease the dm/dT in the
transition range, which lead to the broadening of the transition
temperature from 12 to 96 K and change the NTE behavior
(−139.3 ppm/K at x = 0.1) into a PTE behavior (11.2 ppm/K
at x = 0.9). Furthermore, in these antiperovskite compounds, a
new quantitative relationship between the square of the ordered
magnetic moment and the volume variation is established to
be �ωm(T ) = Cm2(T ), which remains valid in the whole
temperature domain of the �5g AFM phases. Moreover, the
equations describing the temperature dependences of the
magnetovolume effect �ωm [Eq. (7)], magnetic moment m

[Eq. (6)], and magnetoelastic coupling constant C [Eq. (8)]
are first analyzed in antiperovskites according to the itinerant-
electron theories. The results presented here can be further
employed not only to tune the thermal expansion behavior, but
also to understand the mechanism of the spin-lattice coupling
in antiperovskite materials.
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