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Elastic, mechanical, and thermodynamic properties of Bi-Sb binaries: Effect of spin-orbit coupling
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Using first-principles calculations, we systematically study the elastic stiffness constants, mechanical
properties, elastic wave velocities, Debye temperature, melting temperature, and specific heat of several
thermodynamically stable crystal structures of BixSb1−x (0 < x < 1) binaries, which are of great interest due
to their numerous inherent rich properties, such as thermoelectricity, thermomagnetic cooling, strong spin-orbit
coupling (SOC) effects, and topological features in the electronic band structure. We analyze the bulk modulus (B),
Young’s modulus (E), shear modulus (G), B/G ratio, and Poisson’s ratio (ν) as a function of the Bi concentration
in BixSb1−x . The effect of SOC on the above-mentioned properties is further investigated. In general, we observe
that the SOC effects cause elastic softening in most of the studied structures. Three monoclinic structures of
Bi-Sb binaries are found to exhibit significantly large auxetic behavior due to the hingelike geometric structure
of bonds. The Debye temperature and the magnitude of the elastic wave velocities monotonically increase with
increasing Sb concentration. However, anomalies were observed at very low Sb concentration. We also discuss
the specific-heat capacity versus temperature data for all studied binaries. Our theoretical results are in excellent
agreement with the existing experimental and theoretical data. The comprehensive understanding of the material
properties such as hardness, mechanical strength, melting temperature, propagation of the elastic waves, auxeticity,
and heat capacity is vital for practical applications of the studied binaries.
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I. INTRODUCTION

A thorough understanding of the mechanical response
of any given material is essential before the technological
applications of that particular material can be realized. A good
place to start is investigating the elasticity, a fundamental
property of a crystal which governs the macroscopic response
of the crystal under external forces. The hardness, mechanical
strength, and the propagation of the sound and elastic waves
in a given material can be determined by knowledge of the
elastic constants of that particular material. Among many
known binary compounds and alloys, Bi-Sb-based binaries
have retained a peculiar place due to their applications in
the low-temperature thermoelectric industry and refrigeration
[1–5]. Moreover, Bi-Sb binaries are the first predicted three-
dimensional topological insulator (often referred as the first-
generation topological insulator) that hosts robust conducting
surface states [6–10]. Soon after the theoretical prediction,
Hseih et al. [7] reported the experimental detection of novel
gapless conducting surface states in this binary system. Re-
cently, we found that the lowest-energy structure of BiSb
composition (in R3m space group) exhibits large ferroelectric
behavior along with a giant tunable Rashba-Dresselhaus effect,
which is the result of the broken inversion symmetry and the
large spin-orbit coupling (SOC) of the constituent Bi and Sb
elements [11,12]. Furthermore, we demonstrated that one can
realize a Weyl semimetallic phase under external stress of
4–6 GPa [11]. Interestingly, by exploiting an interlink between
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the large SOC of the constituent atoms and the ferroelectric
polarization, one can tune the dynamics of Weyl fermions in
the momentum space of BiSb. This particular property is of
notable interest for applications of Weyl semimetals in the
forthcoming Weyltronic technology.

BiSb is not only interesting in its bulk phase, but it also
shows unique electronic properties in two dimensions [13–16].
In particular, a giant tunable Rashba effect along with a large
direct band gap (∼1.6 eV) have been reported for this system
[16]. The existence of the large tunable Rashba effect together
with a direct band gap in the visible region makes this material
of particular interest for its applications in the optoelectronics
and spintronics industry. Recently, Yu et al. [14] investigated
the topological properties of monolayer BiSb and observed the
emergence of a robust novel quantum spin Hall (QSH) effect
under biaxial tensile strain. This finding was further confirmed
by the calculation of the Z2 topological invariant and the
nontrivial topological edge states. These features make BiSb
an attractive candidate for applications in spintronic devices.

Other than the BiSb composition, several other stable
compositions of the Bi-Sb binaries have been reported in
the literature in both theoretical and experimental studies
[1–3,5,12,17–20]. The formation mechanism and the chemical
synthesis procedure of BixSb1−x nanocrystals are given in
Refs. [21–23]. A detailed structural, electronic, vibrational,
and thermoelectric investigation of the Bi-Sb binaries can be
found in our recent work [12]. In Ref. [12], we explored the
potential-energy surface of Bi-Sb binaries using the minima
hopping method [24,25] and calculated the theoretical convex
hull of Bi-Sb. We not only discovered several energetically and
thermodynamically stable crystal structures of Bi-Sb binaries
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that are located on the convex hull, but we also recovered the
known structures of Bi-Sb binaries in our structural search
calculations. In the present work, we investigate the elastic
and thermodynamic response of the stable Bi-Sb binaries. All
the studied structures could be synthesized in laboratory under
suitable ambient conditions [5,12,21–23].

Changes in the mechanical properties of BixSb1−x single
crystals as a function of Sb concentration have been studied by
ultrasonic wave velocity measurements at room temperature
as well as at low temperatures [26–31]. In general, the elastic
properties, i.e., bulk modulus, Young’s modulus, and shear
modulus, increase with increasing Sb concentration in Bi-Sb
binaries [26]. Also, the average speed of sound increases
with increasing Sb concentration; however, it decreases with
increasing temperature [31]. Although most of the experiments
report monotonous increase in the elastic moduli with increas-
ing Sb concentration for larger atomic % of Sb, there exist
some anomalies in the variation of the mechanical properties at
low Sb concentration, which is consistent with our theoretical
findings [26]. Although the specific heat of pristine Bi [32–35]
and pristine Sb [36,37] has been studied in detail [35,37], little
attention has been paid to the thermodynamic properties of
Bi-Sb binaries [17,27,38]. Lichnowski and Saunders reported
an increase in Debye temperature with increasing Sb concen-
tration [27]. The effect of SOC on the elastic and mechanical
properties of Bi-Sb binaries has not yet been reported in the
literature, even though SOC is known to significantly change
the electronic, vibrational, and thermodynamic properties of
Bi- and Sb-based compounds [35,37,39].

In the present work, we report a systematic investigation of
the elastic and thermodynamic properties of the Bi-Sb binaries
calculated using first principles. We study the properties of the
following Bi-Sb binary compositions (crystal structures are
shown in Fig. 1): Bi1Sb7, Bi1Sb1, Bi3Sb1, Bi7Sb1, and Bi9Sb1,
which lie on the convex hull of the Bi-Sb binary phase diagram
(the only exception is the Bi3Sb1 composition which lies above,
yet very close to, the convex hull) [12]. Our results indicate
that the ductility of the structures increases with increasing Bi
concentration, whereas, in general, the elastic moduli decrease
with increasing Bi concentration. The bulk modulus (B),
shear modulus (G), Young’s modulus (E), Poisson’s ratio
(ν), and the elastic stiffness coefficients (Cij ) of the studied
systems are reported below. We notice that Bi1Sb7, Bi7Sb1, and
Bi9Sb1 monoclinic structures exhibit negative Poisson’s ratio
along different spatial directions. The Debye temperature and
maximum heat capacity are found to increase with decreasing
Bi concentration. Comparison of our theoretical findings with
the available experimental data shows excellent agreement
between theory and experiments.

II. COMPUTATIONAL DETAILS

Density functional theory (DFT)-based first-principles cal-
culations were carried out using the projector augmented-wave
(PAW) method as implemented in the VASP code [40,41]. We
used the PBE exchange-correlation functional as parametrized
by Perdew, Burke, and Ernzerhof [42]. We considered 15
valence electrons of Bi (5d106s26p3) and five valence electrons
of Sb (5s25p3) in the PAW pseudopotential. The lattice pa-
rameters of each structure were optimized until the Hellmann-

Bi1Sb7
(x = 0.125)

(a)

Bi1Sb1
(x = 0.5)

(b)

Bi3Sb1
(x = 0.75)

(c)

Bi7Sb1
(x = 0.875)

(d)

Bi9Sb1
(x = 0.9)

(e)

FIG. 1. The crystal structure of Bi-Sb binaries located on the
Bi-Sb phase diagram [12]. Bi atoms are shown in purple, while
Sb atoms are shown in green. Each crystal structure is shown from
two different lattice orientations. The cutoff length for bonds was
defined as 3.10 Å in Sb-rich compositions and 3.20 Å in Bi-rich
compositions.

Feynman residual forces were less than 10−4 eV/Å per atom.
For convergence of the electronic self-consistent calculations,
a total-energy difference criterion was defined as 10−8 eV. We
used 650 eV as the kinetic-energy cutoff of the plane-wave
basis set. We employed a �-type k mesh for hexagonal and
trigonal structures, while a Monkhorst-pack-type k mesh was
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TABLE I. List of elastic constants (Cij ) calculated with SOC (PBE+SOC) and without SOC (PBE). Cij values (in GPa units) calculated
with PBE+SOC are given in parentheses. x represents the concentration of Bi in BixSb1−x . The space group of each composition is given in
the square brackets.

Composition x C11 C22 C33 C44 C55 C66 C12 C13 C23 C15 C25 C35 C46

Sb [166] 0.0 92.2 35.8 29.8 21.8 20.3
(89.3) (38.9) (28.3) (22.5) (20.4)

Theory a 91 38 27 24 21
Bi1Sb7 [06] 0.125 98.5 83.1 36.2 36.8 13.0 16.2 6.4 12.7 32.0 15.1 6.4 1.9 6.8

(95.1) (81.5) (37.4) (34.0) (13.7) (15.2) (7.2) (13.0) (30.9) (13.2) (5.4) (2.3) (6.5)
Bi1Sb1 [160] 0.5 75.5 29.1 13.4 21.8 18.0

(68.7) (31.2) (12.4) (22.6) (19.6)
Bi3Sb1 [160] 0.75 67.3 31.0 7.8 27.0 20.7

(58.0) (34.0) (8.3) (25.4) (21.8)
Bi7Sb1 [08] 0.875 61.6 63.4 26.3 4.2 5.8 20.7 23.1 16.9 17.8 1.6 −4.1 −0.6 −4.3

(54.6) (58.1) (29.5) (3.9) (4.5) (18.3) (23.2) (18.7) (18.6) (0.63) (−3.3) (0.6) (−4.2)
Bi9Sb1 [08] 0.9 25.7 64.5 62.4 20.5 8.1 6.6 16.5 16.8 20.9 −0.5 −5.5 5.7 −4.5

(30.0) (66.3) (55.2) (15.8) (10.7) (0.5) (16.7) (15.4) (18.8) (−4.4) (−5.6) (2.9) (−0.9)
Bi [166] 1.0 68.6 31.7 6.0 27.8 21.3

(62.6) (36.1) (8.8) (25.6) (23.3)
Theorya 68 30 10 24 19
Theoryb 67.7 40.6 8.7 25.0 24.3
Expt.c 69.3 40.4 13.5 24.5 25.4
Expt.d 68.7 40.6 12.9 23.7

aReference [50] data from materials project database.
bReference [51] data from LDA+SOC calculations.
cReference [27] experiment was performed at 4.2 K. For high-temperature Cij values for Bi, see Ref. [27] and references therein.
dReference [52] experiment was performed at 4.2 K.

used to sample the irreducible Brillouin zone of all other
crystal phases. The size of the k mesh was large enough to
ensure the numerical convergence of total energy to less than
1 meV/atom.

The elastic constants Cij were calculated using the stress-
strain relationship as implemented in the VASP code. Elastic
constants were converged better than 1 GPa by increasing
the k-mesh size. The bulk modulus (B), shear modulus (G),
Young’s modulus (E), and Poisson’s ratio (ν) quantities were
first determined using the Voigt bound [43] and Reuss bound
[44] schemes, and then an arithmetic average was computed
following the Voigt-Reuss-Hill averaging scheme [45]. This
way of evaluating elastic moduli is important since the Voigt
and Reuss bounds give an upper and lower estimate of the
actual elastic moduli of polycrystalline crystals, respectively.
The Voigt bound scheme [43] relies on the assumption of
uniform strain throughout the crystal, whereas the Reuss
bound scheme [44] relies on the assumption of uniform stress
throughout the crystal. Since SOC plays an important role in
describing the electronic and vibrational properties of Bi and
Sb atoms [35,37,39], we decide to investigate the effect of SOC
on the elastic and mechanical properties of Bi-Sb binaries.
Therefore, we have calculated elastic constants and elastic
moduli for each studied structure twice: once with SOC and
once without SOC. The PHONOPY code [46,47] was used to
calculate the heat capacity of the crystal lattice.

In order to facilitate the analysis of elastic and mechanical
properties, we have developed an open-source PYTHON code
named MECHELASTIC [48], which can be used to evaluate many
important physical quantities such as elastic moduli, elastic
wave velocities, Debye temperature, melting temperature, and

anisotropy factors, and perform the mechanical stability test
for any crystalline bulk material. In the future, this code will
be generalized for 3D as well as 2D systems.

III. RESULTS AND DISCUSSIONS

A. Elastic constants

The crystal structures of all the binary compounds under
investigation are shown in Fig. 1. It is important to first discuss
the elastic stiffness constants and define their relationship
with the macroscopically measurable quantities that give us
information about the elastic and mechanical properties of
the system. The bulk modulus (B), Young’s modulus (E),
shear modulus (G), and Poisson’s ratio (ν) are known as the
elastic moduli and are macroscopically measurable quantities
that give a measure of the elasticity of the material. These
quantities can be determined from the elastic constants, Cijkl .
These constants are obtained through the use of the generalized
stress-strain Hooke’s law [49],

σij = Cijklεkl, (1)

where σij and εkl are the tensile stress and longitudinal strain,
respectively. Utilizing the crystal symmetry operations, the
total number of constants can be reduced from 81 to 3, 5,
6, and 13 for cubic, hexagonal, tetragonal, and monoclinic
structures, respectively [49]. Table I lists the values of the
relevant elastic constants calculated with and without inclusion
of SOC. Although few nondiagonal elements of the Cij matrix
contain negative values for Bi7Sb1 and Bi9Sb1 binaries, all
six eigenvalues of the Cij matrix are positive, suggesting the
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elastic stability of these binaries. In fact, all the eigenvalues of
the Cij matrix are positive for each studied Bi-Sb binary.

We notice a small yet significant change in the Cij values
due to the SOC effects. Notably, SOC is known to considerably
change the electronic and vibrational spectra of Bi- and
Sb-based compounds. Ramifications of SOC on the electronic
band structure chiefly depend upon the crystal symmetry and,
therefore, SOC could have different implications on the same
composition but with different crystal symmetry [12,39].
Moreover, Díaz-Sánchez et al. [39] have reported that the
dynamical properties and the interatomic force constants of
Bi are very sensitive to the strength of the SOC. They reveal
that SOC softens the phonon modes in Bi by about 10% and
yields remarkable agreement when compared to that of the
experimental values. However, SOC has much smaller effects
on the lattice parameters [39]. In a similar work, Serrano et al.
[37] have studied the effects of SOC on the specific heat,
the lattice parameter, and the cohesive energy of Sb. Their
calculations reveal that all these quantities depend almost
quadratically on the SOC strength. [37] The small change in the
Cij values due to SOC can be attributed to the above-mentioned
reasons. The calculated elastic constant values are consistent
with an experimental work reported by Lichnowski et al. [27],
where they investigated the elastic properties of Bi1−xSbx

(0.03 < x < 0.1) single crystals for small Sb concentration.
Notably, the strength of SOC in Sb is much smaller

compared to that in Bi; consequently, changes in the Cij values
for Sb-rich compositions are relatively less (slightly over our
convergence criteria of 1.0 GPa) compared to that in the Bi-
rich compositions. However, we do notice considerable SOC-
induced changes in the Cij values for Bi-rich compositions.
The influence of SOC on the Cij (to increase or decrease
the Cij and therefore the stiffness) is fairly uniform across
all compositions. Even pure Sb and Bi follow the same trends,
with the exception of C12. These trends indicate that in general,
due to the SOC effects, BixSb1−x becomes less stiff along the x

and y major axes for deformations along the x and y directions,
more stiff along the z major axis for deformation along the z

direction, and differ for the transverse forces and responses in
the x-y plane. In general, SOC effects cause elastic softening in
all directions perpendicular to the z axis. The observed elastic
softening could be associated to the SOC-induced softening
of phonon modes [39]. In a previous work, Arnaud et al.
[51] investigated the effect of SOC on the elastic properties
of Bi and observed a similar SOC-induced elastic softening.
Their reported values are in good agreement with our data
presented in Table I. Here, we would like to note the peculiar
effect of SOC on the Bi-rich compound, Bi9Sb1. In Bi9Sb1,
we see that the aforementioned trends are reversed for most
of the Cij values. Also, anomalous changes in the elastic
stiffness constants can be observed for Bi9Sb1, which will
be discussed in more detail later. These changes support the
before-mentioned complex relationship between the SOC and
the electronic and phonon band structure, leading to directional
changes in the bonding within the material.

Our calculations indicate that SOC causes small changes
(overall less than 1.0 %) in the Bi-Sb, Bi-Bi, and Sb-Sb bond
lengths, which when combined with the phonon softening
could be held accountable for the observed SOC-induced
changes in the Cij values. The maximum variation in the bond

length due to SOC is within the range of ±0.03 Å. Further
details of the bond lengths, lattice parameters, electronic band
structure, and phonon band structure of all studied structures
can be found in Ref. [12]. Since elastic constants are defined
in terms of free energy with respect to strain, the following
conclusion can be made here: in the presence of SOC, electrons
in material are redistributed to minimize the total free energy,
thereby recovering some of the strain energy and reducing the
effective elastic stiffness.

B. Mechanical properties

We further test the mechanical stability of all the studied
structures. A material can be considered mechanically stable if
it passes the Born-Huang mechanical stability criteria [49,53].
This criteria states that in order to be mechanically stable,
the Gibbs free energy of any relaxed crystal, i.e., in the
absence of any external load, must be minimum compared
to any other state reached by means of an infinitesimal strain.
This requires that the elastic stiffness matrix Cij is positive
definite, i.e., all the eigenvalues of Cij are positive and the
matrix is symmetric. Additionally, all the leading principle
minors and any arbitrary set of minors (trailing minors) of
Cij must be positive. If a crystal, regardless of its symmetry,
satisfies the aforementioned conditions, it can be considered
mechanically stable. The mathematical expressions for these
conditions have been reported for different crystal classes by
various research groups [54–57]. It is important to mention here
that in some of the published papers [54–56], these conditions
are incorrectly generalized from the cubic criteria (especially
for the lower-symmetry structures), which could lead to a
wrong quantitative analysis. However, it could not change
the qualitative picture of mechanical stability of a crystal.
Mouhat and Coudert correctly generalized the Born-Huang
mechanical stability conditions for all crystal classes [57].
Therefore, we refer the reader to the seminal paper of Mouhat
and Coudert for further details regarding the necessary and
sufficient conditions for the mechanical stability conditions
[57]. In our case, we find that all the studied Bi-Sb binary
structures pass the Born-Huang mechanical stability test and
hence can be considered mechanically stable.

Once the Cijkl constants are calculated, the four moduli
(B,G,E, and ν) can be obtained by using relations between
the constants [58]. Details of these relations for different
crystal systems, and for Voigt and Reuss bound schemes,
are summarized in Ref. [56]. The bulk modulus represents
the volume compressibility of the material and is given by
B = E/3(1 − 2ν) [49]. Young’s modulus gives a measure
of the stiffness of the system. It is simply the ratio of the
stress along an axis to strain along that axis. A material
is very stiff if it has large E. Poisson’s ratio is used as a
measure of plasticity as it measures the expansion of material
in the transverse direction to the direction of compression.
It is calculated using ν = (3B − 2G)/2(3B + G). The shear
modulus, or the modulus of rigidity, describes the deformation
of the system under transverse internal forces. It is related to
Young’s modulus and the Poisson ratio by G = E/2(1 + ν). A
way to measure the brittleness or ductility of a material comes
from the ratio of the bulk modulus to the shear modulus, B/G

ratio, with values above 1.7 giving ductile behavior [58,59].
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Expt.
Expt. Expt.

Expt. Expt.

FIG. 2. Mechanical properties of Bi-Sb binaries calculated with and without inclusion of SOC: (a) bulk modulus B (in GPa), (b) shear
modulus G (in GPA), (c) Young’s modulus E (in GPA), (d) Poisson’s ratio ν, and (e) B/G ratio. The green dotted line in (e) shows the boundary
(B/G = 1.7) below (above) which the material behaves as brittle (ductile). Experimental data at room temperature (black triangles) is from
Ref. [26], theoretical data (green diamonds) is from Ref. [50], and experimental data at 4.2 K (purple circles) is from Ref. [27].

Figures 2(a)–2(c) show the observed variation in the B,G,

and E values as a function of Bi concentration in BixSb1−x .
Red (blue) represents the data points calculated with (with-
out) inclusion of SOC. We notice that B,G, and E values
systematically decrease with increasing Bi concentration, but
the change in B is relatively less compared to that for G and E.
As expected, the effects of SOC are more dominant towards the
Bi-rich side than that towards the Sb-rich side. We notice that in
all moduli except B, these effects on the Bi-rich compositions
are present, and the same reversal in trends mentioned in the
previous section can be seen in Bi9Sb1.

The available experimental and theoretical data (given
in Fig. 2) are in excellent agreement with our theoretical
calculations [26,27,50]. Here, it important to mention that all
the theoretical values are lower than that of the experimental
observations. This is due to the fact that we used the generalized
gradient approximation (GGA) in all of our calculations, and
GGA is well known to underestimate the elastic constant values
[56]. We also notice that the Poisson’s ratio (ν) and B/G

ratio increase with increasing Bi concentration, indicating
an increase in the ductile behavior of Bi-rich compositions.
This could be associated to a decrease in the strength of the
covalent bonds in Bi-rich compositions. The Bi-Bi bond length
in pristine Bi (3.10 Å) is considerably larger compared to the
Sb-Sb bond length in pristine Sb (2.96 Å), thus suggesting
stronger covalent bonding in Sb. The average bond length
increases with increase in the Bi concentration. The bond
lengths are as follows: in pristine Sb, the Sb-Sb bond = 2.96 Å;
in Bi1Sb7, the Sb-Sb bond = 2.98 Å; in Bi1Sb1, the Bi-Sb
bond = 3.04 Å; in Bi3Sb1, the Bi-Sb bond = 3.03 Å and the

Bi-Bi bond = 3.09 Å; in Bi7Sb1, the Bi-Sb bond = 3.02 Å
and the Bi-Bi bond = 3.10–3.12 Å; in Bi9Sb1, the Bi-Sb bond
= 3.05 Å and Bi-Bi = 3.12 Å; and in pristine Bi, the Bi-Bi
bond = 3.10 Å. Consequently, the increasing bond length
causes a decrease in the elastic moduli and increase in the
ν and B/G values. The observed variation in the mechanical
properties is consistent with changes in the bond length. Thus,
a monotonic decrease in B,G, and E values with increasing
Bi concentration can be correlated with decreasing valence
electron density [60]. However, the anomalies observed in
the elastic properties of the Bi9Sb1 composition with low Sb
concentration that are consistent with previous experimental
studies [26] warrant a further investigation of this issue. The
first-principles calculations using virtual crystal approximation
(VCA), which are beyond the scope of the present work, can
offer good insights to resolve this issue. The possible reasons
behind the observed anomalies in the properties of Bi9Sb1 are
discussed below.

C. Negative Poisson’s ratio

Materials having negative Poisson’s ratio (ν), known as
auxetic materials, have attracted the special attention of re-
searchers due to their exceptional advantages in sensing tech-
nology [62–68]. As we mentioned earlier, a positive Poisson’s
ratio defines the ratio of the transverse contraction to the
longitudinal extension of a material during the stretching
process. Therefore, materials with negative Poisson’s ratio,
i.e., auxetic materials, are expected to expand in the transverse
direction when stretched in the longitudinal direction. Auxetic
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FIG. 3. Top, middle, and bottom panels represent the calculated Poisson’s ratio of Bi1Sb7, Bi7Sb1, and Bi9Sb1 binaries, respectively. All
plots were generated using the ELATE software [61]. Green (red) corresponds to the positive (negative) values of ν (see text for details).

materials are quite rare in nature as compared to nonauxetic
materials. However, Baughman et al. [64] reported that the
auxetic property is often observed in cubic elemental metals.
Interestingly, auxetic materials with lower symmetry are more
appealing for technological applications because they yield
much larger strain amplification as compared to the highly
symmetric auxetic materials [65]. In order to analyze the
auxeticity of the studied structures, we thoroughly investigate
the elastic tensor of each studied composition calculated with
SOC.

Using the open-source ELATE software tool [61,69], we
have analyzed the spatial variation of Poisson’s ratio for each
studied structure. We observe that three out of seven binary

structures exhibit significantly large negative Poisson’s ratio
along different spatial directions. All these structure belong
to the low-symmetry (monoclinic) space groups; therefore,
these structures are more advantageous for technological
applications. The results are given in Fig. 3. Regarding the
theoretical details of these plots, we refer the reader to the
excellent paper of Gaillac et al. [69]. In spherical coordinates,
the determination of ν requires an extra dimension in addition
to the θ (0,π ) and φ(0,2π ) coordinates, i.e., ν(θ,φ,χ ). The
additional dimension can be characterized by an angle χ (0,2π )
[69,70]. The blue color in Fig. 3 represents the surface obtained
at the maximum of χ , whereas the green (red) lobes correspond
to the positive (negative) values of ν obtained at the minimum
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(a)

(b)

FIG. 4. (a) Distribution of electron localization function
(turquoise) in monoclinic Bi9Sb1 plotted at isosurface value η = 0.25.
Purple: Bi atoms; yellow: Sb atoms. The hinge structure or bowtie
structure of the Bi-Bi bonds can be noticed in the selected region.
(b) Illustration of the negative Poisson’s effect under compression
(left) and expansion (right) on auxetic materials. The dotted square
represents the deformed shape of the original structure (solid lines)
and the arrows represent the direction of strain.

of χ . We find that the Bi9Sb1 monoclinic structure exhibits the
largest negative Poisson’s ratio in the y-z plane. The minimum
value of ν is ∼−0.6, which is comparable with the value
νmin = −0.8 reported for polymer foam structures by Lakes
et al. [63]. The other two monoclinic structures, Bi1Sb7 and
Bi7Sb1, inherit relatively smaller negative Poisson’s ratio.

In order to understand the microscopic origin of negative
Poisson’s ratio, we analyze the geometry of the bonds and the
distribution of electron localization function along the bond
directions in Bi9Sb1, as shown in Fig. 4(a). One can notice
that the atomic bonds in Bi9Sb1 form a hinge- or bowtielike
structure in the y-z plane. Such structural arrangement has
been reported to yield negative Poisson’s ratio in auxetic
materials (see Fig. 1 of Ref. [67]). A linear chain of Bi-Bi
atoms forming inverted hexagon or hingelike bonds can be
noticed in the highlighted region of Fig. 4(a). Plotting the
electron localization function reveals that two adjacent Bi-Bi
bonds inherit opposite features in their electron distribution.
Along one bond there exists overlap of charges in the middle,
indicating the bonding nature of orbitals from the two nearest
Bi atoms, whereas along the consecutive Bi-Bi bond, no such
charge overlap is present, indicating an antibonding feature
or the presence of a charge nodal plane at the middle of the
Bi-Bi bond. Such two adjacent bonds could form orthogonal
hinges, which are responsible for the observed auxetic behavior
in Bi9Sb1. A similar concept can be applied to explain the
auxeticity of Bi1Sb7 and Bi7Sb1 monoclinic structures. Due to
the intrinsic hinge structures, in the presence of compressive
strain along the longitudinal direction, these structures tend to

shrink in the transverse direction, and vice versa. Figure 4(b)
illustrates the behavior of an auxetic material in the presence
of compressive or tensile strain.

D. Elastic wave velocities, Debye temperature,
and melting temperature

Knowledge of the elastic wave velocities, Debye tem-
perature, and melting temperature is important for practical
applications. Therefore, we estimate these quantities using the
MECHELASTIC code [48]. We calculate the longitudinal (vl),
transverse (vt ), and average (vm) elastic wave velocities using
the following relations [71,72]:

vl =
√

3B + 4G

3ρ
, (2)

vt =
√

G

ρ
, (3)

1

vm

=
[

1

3

(
2

v3
t

+ 1

v3
l

)]−1/3

, (4)

where B and G are the bulk and shear moduli, and ρ is the
density of material. Conversely, one can also determine the
elastic stiffness constants by measuring the distance traveled
by an ultrasonic wave pulse and the corresponding time.

Debye temperature (�D) is another important parameter
that we can estimate from the knowledge of the elastic wave
velocities and the density of material. Debye temperature
correlates with several important physical properties such as
specific heat, elastic constants, ultrasonic wave velocities, and
melting temperature. At low temperatures, acoustic phonons
are the only vibrational excitations that contribute to the
specific heat. Therefore, at low temperatures, the Debye
temperature calculated from the elastic constants is the same
as the �D obtained from the specific-heat measurements. We
calculate �D using the following equation [71]:

�D = h

kB

[
3q

4π

Nρ

M

]1/3

vm, (5)

where h is the Planck’s constant, kB is the Boltzmann’s
constant, q is the total number of atoms in the cell, N is the
Avogadro’s number, ρ is the density, and M is the molecular
weight of the solid. The melting temperature was estimated
using the empirical relation Tmelt = 607 + 9.3B ± 555 [73].

Table II contains a list of the vl, vt , vm,�D , and Tmelt

values calculated with and without inclusion of SOC. We
notice that the magnitude of the elastic wave velocities and
�D decreases due to the SOC effects, which can be associated
to the SOC-induced elastic softening. Figure 5 shows variation
in the elastic wave velocities and �D as a function of the Bi
concentration. In general, we observe a monotonic decrease
in the mentioned quantities with increasing Bi concentration.
However, anomalies from the monotonic trend can be noticed
at low Sb concentration. This observation is consistent with
the previous experimental studies of Gopinathan et al. [26]
and Lichnowski et al. [27], where the authors investigated the
elastic properties of BixSb1−x crystals using ultrasonic waves.
The experimental �D values for pristine Sb and pristine Bi at
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TABLE II. List of the longitudinal (vl), transverse (vt ), and
average (vm) elastic wave velocities, as well as the Debye (�D) and
melting (Tmelt) temperatures, calculated with SOC (PBE+SOC) and
without SOC (PBE). Values calculated with PBE+SOC are given in
parentheses. The space group of each composition is given in square
brackets.

Composition vl (m/s) vt (m/s) vm (m/s) �D (K) Tmelt (K)

Sb [166] 3240 1946 2152 202.4 930
(3256) (1945) (2152) (202.4) (937)

Expt.a 209.6
Expt.b 210.0
Expt.c 211.3
Expt.d 211.3
Bi1Sb7 [06] 2941 1714 1902 177.2 904

(2943) (1712) (1899) (177.0) (906)
Bi1Sb1 [160] 2548 1432 1593 145.0 881

(2519) (1372) (1531) (139.3) (887)
Bi3Sb1 [160] 2308 1151 1291 116.5 893

(2260) (1077) (1211) (109.2) (893)
Bi7Sb1 [08] 2123 1050 1179 105.0 856

(2097) (975) (1098) (98.0) (863)
Bi9Sb1 [08] 2158 1131 1265 112.5 850

(1989) (885) (999) (88.9) (847)
Bi [166] 2197 1071 1203 108.2 901

(2237) (1102) (1237) (111.3) (908)
Expt.e 112

aReference [77],
bReference [78],
cReference [79] data from specific-heat measurements at low
temperatures.
dReference [80] data from thermal expansion measurements.
eReference [81] data evaluated from the sound velocity measure-
ments.

low temperature are ∼210 and ∼112 K, which are in excellent
agreement with our theoretical findings.

Anomalous changes in the electronic, thermal, elastic,
and mechanical properties of BixSb1−x at very low Sb con-
centration have often been noted in experiments. BixSb1−x

undergoes a semimetal-semiconductor phase transition in the
Sb-concentration range 0.07 < x < 0.22, and a topological
nontrivial insulator phase appears due to the inverted ordering
of bands at the L point of the Brillouin zone [7,8,74,75]. Ro-
gacheva et al. [76] studied the effect of low Sb concentration on
the lattice parameters, microhardness, electrical conductivity,
magnetoresistance, and the Seebeck coefficient of BixSb1−x .

FIG. 5. (a) Elastic wave velocities and (b) Debye temperature
(�D) of Bi-Sb binaries calculated with SOC.

Their experiments revealed an anomalous change in the prop-
erties of BixSb1−x at small x values, which were attributed to
the percolation transition, geometric reordering of atoms, and
semimetal-semiconductor electronic phase transition. They
further argued that at low Sb concentration, the elastic fields of
neighboring atoms begin to overlap, causing partial compen-
sation of elastic stress with reversed signs, which leads to an
abrupt decrease in the elastic stiffness of the entire crystal [76].
For this reason, at low Sb concentration, BixSb1−x exhibits a
rapid decrease in the microhardness, electrical conductivity,
and Seebeck coefficient. Increasing Sb concentration beyond
a critical value yields the formation of new atomic ordering,
causing enhancement in the elastic and mechanical properties
of BixSb1−x . The same argument can be used to explain the
observed variation in the elastic wave velocities and Debye
temperature of BixSb1−x with varying x (see Fig. 5).

E. Specific heat

After evaluating the elastic properties and mechanical
stabilities of the Bi-Sb binaries, we focus our attention on
the specific heat (C) of the crystal lattice. Before we start our
discussion, it is important to mention that at low temperatures
(T ), the difference between Cp(T ) (at constant pressure)
and Cv(T ) (at constant volume) is almost negligible and it
lies within the uncertainty range of the experiments [82].
Therefore, we do not make any distinction between Cp(T )
and Cv(T ) in the present work. In the low-T limit, the general
relationship between C(T ) and T can be described using the
following expression:

C(T ) = γ T + βT 3 + αT −2, (6)

where the first and second terms correspond to the electronic
and crystal lattice contributions to the specific heat, whereas
the last term addresses the interaction of the nuclear quadrupole
moment with the electric-field gradient of electrons and lattice.
The last term is very small even at low temperatures; however,
it might become substantial below 1 K [37]. Usually at low
T , the specific heat follows the T 3 power law due to the
dominant contribution from the lattice vibrations. Therefore,
plotting C(T )/T 3 versus T is a good way to determine the
contribution of the lattice vibrations in the net heat capacity
[37,82–84]. The peak appearing in this plot is the evidence
of the deviation from the Debye behavior that is known to
separate the contribution of the acoustic phonons and optical
phonons in the total specific heat of the material. From the
observed position of the peak in the C(T )/T 3 versus T

plot, one can estimate the Einstein’s oscillator temperature,
which is typically equal to ∼6T0, where T0 is the temperature
corresponding to the maximum, C(T )/T 3 [82,84].

Figure 6 shows the C(T )/T 3 versus T plots for all the
studied binaries. SOC was not included in the calculation of
C(T ). The corresponding phonon dispersion for each structure
is given in Ref. [12]. Noticeably, the peak height in the
C(T )/T 3 versus T plot significantly increases (more than
three times) with increasing Bi concentration from Bi1Sb7 to
Bi9Sb1. Also, the peak shifts towards lower T with increasing
Bi concentration, indicating a decrease in �D as we go towards
the Bi-rich side. This is consistent with �D obtained from the
elastic constants calculations, and it can be associated to the
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)

)(

(

FIG. 6. C(T )/T 3 vs temperature T data for Bi-Sb binaries.

decrease in the average strength of the covalent bonds in Bi-rich
binaries. We further compare our results with the available
theoretical and experimental reports on the pristine Bi [32–35],
pristine Sb [36,37], and Bi-Sb [27] binaries. Our findings are in
remarkable agreement with the reported data in the literature.
Lichnowski and Saunders [27] have experimentally observed a
decrease in �D with increasing Bi concentration. The accepted
T0 values for pristine Sb and pristine Bi are 7.5 and 14 K,
respectively [35,37]. In agreement, we also notice an overall
shift of the T0 towards lower temperatures from 12 K (for
Sb-rich composition) to 8 K (for Bi-rich composition).

Finally, we would like to remark on the effect of SOC on
the specific heat of the studied binaries. Undoubtedly, SOC
is expected to have significant effects on the thermodynamic
properties of Bi-rich binaries. In particular, the SOC effects
in Bi cause an enhancement in the C(T )/T 3 peak height
and decrement in the �D value by ∼1 K, thereby reducing
the discrepancies between the experimental heat capacity
data and ab initio results [35]. However, SOC is found to
have negligible effects on the thermodynamic properties of
pristine Sb [37]. This is the reason why our results (calculated
without inclusion of SOC) for Sb-rich binaries compare well
with the experimental observations, while there exists a small
inconsistency in the data of Bi-rich compositions (for example,
Bi9Sb1). Including SOC effects in the calculations would yield
better agreement with the experimental data, specifically for
Bi-rich compositions. Nevertheless, SOC-induced changes in
the T0 values are expected to be within ±1 K range.

IV. CONCLUSION

In this work, we have investigated the elastic, mechanical,
and thermodynamic properties of several energetically stable

Bi-Sb binary structures. We find that bulk, shear, and Young’s
moduli increase with increasing Sb concentration in BixSb1−x ,
and decrease as we move towards the Bi-rich side. However,
Poisson’s ratio and B/G ratio increase with increasing Bi
concentration, suggesting more ductile behavior in Bi-rich
compositions. Our calculations reveal that Bi1Sb7, Bi7Sb1,
and Bi9Sb1 monoclinic structures exhibit negative Poisson’s
ratio, indicating auxeticity along different spatial directions.
The hinge structure of atomic bonds is the main source of
negative Poisson’s ratio in these structures. We also probe
the effect of SOC on the elastic and mechanical properties
of Bi-Sb binaries. In general, the SOC effects cause elastic
softening in most of the studied structures, which can be
ascribed to the fact that in the presence of SOC, electrons
are redistributed to minimize the total free energy, thereby
recovering some of the strain energy and reducing the effec-
tive elastic stiffness. Our calculations reveal that the Debye
temperature and the magnitude of the elastic wave velocities
monotonically decrease with increasing Bi concentration. This
can be ascribed to the decreasing strength of covalent bonds
(i.e., larger bond length) in the Bi-rich compositions. However,
we observe some anomalies in the elastic properties of Bi-
rich composition Bi9Sb1, which requires further investigation.
The peak of C(T )/T 3 shifts towards lower temperatures
and increases in height with increasing Bi concentration.
We find that SOC plays an important role in the determi-
nation of the properties for Bi-rich compositions, while the
effects of SOC are very small for Sb-rich compositions. Our
overall results are consistent with the available experimental
data.
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