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A hyperuniform many-body system is characterized by a structure factor S(k) that vanishes in the small-wave-
number limit or equivalently by a local number variance σ 2

N (R) associated with a spherical window of radius R

that grows more slowly than Rd in the large-R limit. Thus, the hyperuniformity implies anomalous suppression
of long-wavelength density fluctuations relative to those in typical disordered systems, i.e., σ 2

N (R) ∼ Rd as R →
∞. Hyperuniform systems include perfect crystals, quasicrystals, and special disordered systems. Disordered
hyperuniform systems are amorphous states of matter that lie between a liquid and crystal [S. Torquato et al., Phys.
Rev. X 5, 021020 (2015)], and have been the subject of many recent investigations due to their novel properties.
In the same way that there is no perfect crystal in practice due to the inevitable presence of imperfections, such
as vacancies and dislocations, there is no “perfect” hyperuniform system, whether it is ordered or not. Thus, it is
practically and theoretically important to quantitatively understand the extent to which imperfections introduced
in a perfectly hyperuniform system can degrade or destroy its hyperuniformity and corresponding physical
properties. This paper begins such a program by deriving explicit formulas for S(k) in the small-wave-number
regime for three types of imperfections: (1) uncorrelated point defects, including vacancies and interstitials, (2)
stochastic particle displacements, and (3) thermal excitations in the classical harmonic regime. We demonstrate
that our results are in excellent agreement with numerical simulations. We find that “uncorrelated” vacancies or
interstitials destroy hyperuniformity in proportion to the defect concentration p. We show that “uncorrelated”
stochastic displacements in perfect lattices can never destroy the hyperuniformity but it can be degraded such
that the perturbed lattices fall into class III hyperuniform systems, where σ 2

N (R) ∼ Rd−α as R → ∞ and 0 <

α < 1. By contrast, we demonstrate that certain “correlated” displacements can make systems nonhyperuniform.
For a perfect (ground-state) crystal at zero temperature, increase in temperature T introduces such correlated
displacements resulting from thermal excitations, and thus the thermalized crystal becomes nonhyperuniform,
even at an arbitrarily low temperature. It is noteworthy that imperfections in disordered hyperuniform systems can
be unambiguously detected. Our work provides the theoretical underpinnings to systematically study the effect
of imperfections on the physical properties of hyperuniform materials.

DOI: 10.1103/PhysRevB.97.054105

I. INTRODUCTION

Hyperuniform many-body systems in d-dimensional Eu-
clidean spaceRd are characterized by anomalously suppressed
density fluctuations at large length scales, which can be
quantified by a local number variance σ 2

N (R) that grows more
slowly than the window volume Rd in the large-window
radius R limit. Equivalently, the hyperuniformity can be
identified by a structure factor S(k) that vanishes in the
small-wave-number limit, i.e., lim|k|→0 S(k) = 0 [1–3]. The
hyperuniformity concept provides a unified way to categorize
crystals, quasicrystals [4,5], and certain unusual disordered
systems [1,3,6]. Disordered hyperuniform systems are ideal
amorphous states of matter that lie between a crystal and liquid:
they behave like perfect crystals in the manner in which they
suppress large-scale density fluctuations and yet, like liquids

*torquato@electron.princeton.edu; http://chemlabs.princeton.edu/
torquato/

and glasses, are statistically isotropic without Bragg peaks.
In this sense, disordered hyperuniform systems have a hidden
order on large length scales, which endows them with novel
physical properties [7–13].

Over the last decade, there has been an increasing realization
that disordered hyperuniform systems play a vital role in
a number of problems in physics, mathematics, biological
sciences, and engineering. For example, disordered hyperuni-
form systems exist as both equilibrium and nonequilibrium
states, including disordered classical ground states [14–18],
certain classical Coulomb plasmas [19–23], ground states of
fermionic and bosonic systems [24–26], maximally random
jammed (MRJ) hard-sphere packings [27–29], driven nonequi-
librium systems [30–34], highly excited cold atoms [35],
spatial patterns of photoreceptors in avian retina [36], novel
disordered photonic materials [7,8,13], optimized patterns
of pinning sites in type-II superconductors [11], transparent
dense disordered materials [9], highly diffusive porous me-
dia [12], nearly optimal conducting two-phase media [37],
and number theory [19,38]. Recently, Torquato [39] has
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categorized hyperuniform systems into three classes: classes I,
II, and III, which are defined by the large-R behavior of σ 2

N (R),
i.e., σ 2

N (R) ∼ Rd−1, σ 2
N (R) ∼ Rd−1 ln R, and σ 2

N (R) ∼ Rd−α

for 0 < α < 1, respectively.
It is well known that imperfections play significant roles

in determining physical and structural properties of crystals;
see Refs. [40–42] and references therein. For instance, metallic
crystals can be significantly hardened by increasing densities of
point defects and dislocations, i.e., strain hardening [40,43]. In
semiconductors and insulators, impurities of certain elements
can change their properties, such as electrical conductivities
and colors [40,41]. Another example is an anomalous phe-
nomenon that the electrical resistivity of metal increases as
the temperature drops below a certain value due to magnetic
impurities, called the Kondo effect [44,45].

Importantly, understanding how imperfections can affect
the hyperuniformity of a system and its associated physical
properties has been currently lacking for both ordered and
disordered hyperuniform solid-phase systems. Our interest in
this paper is to explore the degree to which the introduction of
imperfections in perfectly ordered or disordered hyperuniform
systems degrades or destroys their original perfect hyperunifor-
mity. This is accomplished by quantifying the corresponding
structure factors. Interestingly, the hyperuniformity concept
provides a precise mathematical means of detecting imper-
fections in amorphous hyperuniform systems via either the
violation of the hyperuniformity criterion, i.e., lim|k|→0 S(k) =
0, or changes in the small-wave-number behavior of S(k).
It is important to note that in the same way that there is
no perfect ordered hyperuniform system (i.e., crystals and
quasicrystals) in practice due to the inevitable existence of
imperfections, such as point defects [40–42], dislocations
[40–42], and phasons [46], there is no perfect disordered
hyperuniform system.

It is instructive to discuss briefly computational and ex-
perimental methods that have been formulated to construct
disordered hyperuniform systems. Computational methods
have been developed in both equilibrium and nonequilibrium
systems. For example, the collective-coordinate optimization
technique is a computational tool that generates classical
ground states with a target structure factor S(k) for a set
of wave vectors [14,16–18,47,48]. Packing protocols such
as Lubachevsky-Stillinger (LS) and Torquato-Jiao (TJ) al-
gorithms are used to obtain (putative) strictly jammed MRJ
hard-sphere packings, which are conjectured to be hyperuni-
form [1,29,49]. Random organization models [30,34,50,51]
can yield disordered hyperuniform point configurations at
the critical point. Recently, Ma and Torquato demonstrated
that the Cahn-Hilliard and Swift-Hohenberg equations can
yield disordered hyperuniform scalar fields [52]. Experimental
methods have been devised to produce (nearly) disordered
hyperuniform systems, including periodically driven colloidal
suspensions [31], jammed colloidal suspensions [53–55], an-
nealed amorphous silicon [56], and self-assembling patterns
of block copolymers [57].

Such disordered hyperuniform systems, whether they are
in thermal equilibrium or not, inevitably include some fraction
of imperfections. Such imperfections may degrade or destroy
the hyperuniformity, albeit in some cases to a small degree.
For instance, any compressible system in thermal equilibrium,

which has a positive isothermal compressibility (κT > 0),
cannot be hyperuniform at positive temperatures due to thermal
excitations. This conclusion follows from the fluctuation-
compressibility relation [3,16,39], i.e., S(0) = ρκT kBT , where
ρ is number density, kB is the Boltzmann constant, and T is the
temperature. By theoretically estimating the isothermal com-
pressibility of excited states at sufficiently low T associated
with certain disordered hyperuniform ground states, Torquato
et al. [16] utilized the aforementioned compressibility relation
to quantify how hyperuniformity is destroyed in such cases.
However, an understanding of the underlying mechanisms
that result in the destruction of hyperuniformity for positive
temperatures as well as the behavior of the structure factor
away from the origin, whether the ground states are ordered or
not, has heretofore been lacking.

It can be also difficult to generate perfect realizations of
nonequilibrium hyperuniform systems, partly due to a type
of critical slowing down phenomenon [39,49]. This refers
to the fact that such nonequilibrium systems are at critical
points, which require significantly longer and longer compu-
tational times to achieve as the critical states are approached
[29,30,33,49,50]. For instance, MRJ hard-sphere packings
correspond to the hyperuniform critical states that occur at
the jamming transition [29,49]. Due to a critical slowing down
as well as the presence of “rattlers” imperfections, numerically
generated MRJ packings deviate from being perfectly strictly
jammed and hence are not perfectly hyperuniform, e.g., S(0) ∼
10−4 [29,49]. It has been conjectured that the ideal MRJ state
is free of any rattlers and hence would be exactly hyperuniform
[1,39].

Since imperfections as well as finite-size effects and nu-
merical errors affect hyperuniformity of systems in computer
simulations and experiments, it is desirable to develop a
rough criterion to determine whether a system is “nearly” or
“effectively” hyperuniform. A useful empirical and operational
criterion that has been proposed [39,49] for this purpose is the
hyperuniform metric H , which is defined by

H ≡ S(k → 0)

S(kpeak)
, (1)

where S(kpeak) is the structure factor at the first dominant
peak. A given disordered system can be regarded as effectively
hyperuniform if the ratio H is of the order of 10−4 or smaller.

The overall objective of this paper is to understand quan-
titatively the extent to which hyperuniformity is degraded or
destroyed when one introduces the following three types of im-
perfections into perfectly hyperuniform many-body systems:
(1) uncorrelated point defects, including vacancies and inter-
stitials, (2) stochastic particle displacements, and (3) thermal
excitations. The left panel of Fig. 1 illustrates configurations of
(a) a perfect integer lattice and (b)–(e) four imperfect variants.
While the integer lattice (a) is obviously hyperuniform, it is
difficult to determine whether the others are hyperuniform with
the naked eye.

Note that the right panel of Fig. 1 enables one to gauge
qualitatively whether they are hyperuniform by looking at the
deviation δN (x0; L) or the volume average of δN(x0; L)2, i.e.,
the local number variance σ 2

N (L). We show that while in three
systems (b), (c), and (e), density fluctuations are larger [i.e., the
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FIG. 1. Left panel: Configurations of (a) an initially perfectly hyperuniform integer lattice and (b)–(e) imperfect lattices. The different
types of imperfections include the following: (b) a single vacancy, (c) a single interstitial defect (denoted by a solid cyan five-pointed star),
(d) uncorrelated stochastic particle displacements u via a uniform distribution with the variance 〈u2〉 = 0.05, and (e) thermalized excitations,
i.e., elastic waves at T = 0.05, where T is a dimensionless temperature (54). Right panel: Corresponding deviations in the number of particles
N (x0; L) inside a window centered at x0, i.e., δN (x0; L) ≡ N (x0; L) − 〈N (x0; L)〉 at two different window sizes L. The local number variance
σ 2

N (L), or equivalently the volume average of δN (x0; L)2, measures the degree of density fluctuations at a given length scale L. Roughly
speaking, a system is nonhyperuniform if σ 2

N (L) grows as the window size increases, as in cases (b), (c), and (d). By contrast, the perturbed
system (d) is hyperuniform.

deviation δN (x0; L) becomes nonzero more frequently] at the
larger length scales (L = 10) than at the smaller ones (L = 1),
the density fluctuations in (d) barely change with length scales.
This observation qualitatively shows that the imperfect system
described in (d) is hyperuniform, but the others in (b), (c), and
(e) are not, although counterintuitively the particles in (d) look
more clustered than those in (e). The nonhyperuniformity of
the example in (e) can be qualitatively understood by noting
that thermalized excitations in a crystal can be decomposed
into a sum of sinusoidal functions with different wavelengths.
The longitudinal lattice wave of the longest wavelength induces
global inhomogeneity with density modulation in which one
half of the system becomes denser than the other half of the
system, and hence results in nonhyperuniformity.

In the main text, we will quantitatively validate all of these
qualitative explanations by deriving explicit formulas for S(k)
in the small-|k| regime for each type of imperfection. We
then demonstrate that our theoretical results are in excellent
agreement with corresponding numerical simulations.

We begin by showing that uncorrelated point defects (both
vacancies and interstitials) destroy the hyperuniformity in
proportion to the defect concentration p for small p. While we
focus in this context on two types of point defects, these results
can be easily generalized to other types of point defects. Sub-
sequently, we quantitatively study perturbed point processes
[58–60], which are generated from an initial point process by
stochastically displacing each point in either an uncorrelated
or correlated manner. When displacements are uncorrelated,
although the hyperuniformity is degraded to some extent, it
is never destroyed, i.e., still lim|k|→0 S(k) = 0. Using this
property, we present a simple method that transforms class
I systems (e.g., lattices and disordered stealthy hyperuniform

systems) to class III systems [39]; see Eq. (12). In addition,
we ascertain conditions under which stochastic displacements
can destroy the hyperuniformity of initial hyperuniform point
processes, both ordered and disordered.

This study is followed by an investigation of thermalized
crystals, i.e., classical crystals in thermal equilibrium in the
harmonic regime. Due to thermal motions, particles in a
thermalized crystal are displaced from their ideal arrangement,
i.e., a ground-state crystal. At first glance, one might think
that at a sufficiently low temperature, a thermalized crystal is
the same as an uncorrelated perturbed lattice, and thus it is
hyperuniform. However, this picture is wrong because excited
particles move collectively and form long-wavelength lattice
waves. We prove that thermalized crystals can be mapped to
special correlated perturbed lattices that are “nonhyperuni-
form.” We show that our expression for S(k) is in excellent
agreement with numerical simulations at temperatures much
lower than the melting point.1 Our expression for S(k) in
the zero wave-number limit also yields the correct isothermal
compressibility κT in the low-temperature limit.

We present basic mathematical definitions and concepts in
Sec. II. In Sec. III, we theoretically and numerically investigate
effects of uncorrelated point defects on the hyperuniformity
of otherwise hyperuniform systems. In Sec. IV, we study
the hyperuniformity of perturbed point processes. Here, we
introduce and examine a family of singlet displacement
probability densities to generate class III systems [39]. In

1As the temperature increases, anharmonic effects would also
contribute to the destruction of hyperuniformity in crystalline ground
states.
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Sec. V, we investigate effects of thermal excitations in classical
harmonic lattices on their hyperuniformity. Finally, we provide
concluding remarks in Sec. VI.

II. BASIC DEFINITIONS AND CONCEPTS

A. Point processes

Roughly speaking, a point process in d-dimensional Eu-
clidean space Rd is a spatial distribution of infinitely many
points x1,x2, . . . , in Rd , which can be described by a micro-
scopic density function n(r):

n(r) =
∞∑
i=1

δ(r − xi) , (2)

where δ(x) denotes the Dirac delta function in Rd . The n-point
density correlation function ρn(rn) is defined by ρn(rn) ≡
〈n(r1) n(r2) . . . n(rn)〉, where rn = r1,r2, . . . ,rn and 〈. . .〉
represents an ensemble average. This function is proportional
to the probability density associated with finding n different
points at r1,r2, . . . ,rn. For statistically homogeneous point
processes at a given number density ρ (number of particles
per unit volume), the n-point correlation function depends on
relative positions of points, i.e., ρn(rn) = ρn gn(r21, . . . ,rn1)
with r ij ≡ rj − r i for 1 � i �= j � n and ρ1(r) = ρ.

The pair-correlation function g2(r) and total correla-
tion function h(r), defined as h(r) ≡ g2(r) − 1, are of
special importance in statistical mechanics [61]. For sys-
tems without long-range order, g2(r) → 1 and h(r) →
0 as |r| → ∞. The autocovariance function χ (r) ≡
〈[n(r + r0) − ρ][n(r0) − ρ]〉 is related to h(r) via

χ (r) = ρ[δ(r) + ρ h(r)]. (3)

B. Structure factor

The static structure factor is a mathematical description of
scattering intensities. For a finite point configuration {xi}Ni=1
of N particles in a unit cell of volume V , the static structure
factor is defined as

S(k) ≡ 1

N
|ñ(k)|2 = 1 + 1

N

N∑
i �=j=1

exp[−ik · (xi − xj )], (4)

where the collective coordinates ñ(k) is the Fourier transform
of the microscopic density n(r). Under periodic boundary
conditions, wave vectors k are constrained to lie on reciprocal
lattice vectors of the unit cell, satisfying exp(ik · aj ) = 1 for
all basis vectors aj of the unit cell. Thus, in the thermodynamic
limit (N → ∞ with ρ ≡ N/V fixed), a wave vector k becomes
a continuous parameter.

In the thermodynamic limit, the static structure factor of a
point process is defined by an ensemble average 〈S(k)〉 of (4)
with the forward scattering excluded:

S(k) ≡ 〈S(k)〉 − (2π )dρδ(k). (5)

The static structure factor (5) is related to the Fourier transform
of two-point functions h(r) and χ (r), defined in the expression
(3): S(k) = 1 + ρ h̃(k) = χ̃ (k) /ρ. In the rest of this paper,
unless otherwise stated, S(k) denotes the static structure factors
defined in (5).

We will use the following definition of Fourier transform
f̃ (k) and the inverse transformf (r) (assuming their existence):

f̃ (k) =
∫
Rd

f (r) e−ik·r d r , (6)

f (r) =
(

1

2π

)d ∫
Rd

f̃ (k) eik·r dk . (7)

C. Hyperuniformity

Consider a statistically homogeneous point process at
number density ρ in d-dimensional Euclidean space Rd .
Hyperuniform [1,3] (also known as “superhomogeneous” [62])
point processes are ones in which long-wavelength density
fluctuations are suppressed. Quantitatively, hyperuniformity
can be defined in Fourier space via

lim
|k|→0

S(k) = 0 (8)

or, alternatively, in direct space via the local number variance
σ 2

N (R):

lim
v1(R)→∞

σ 2
N (R)

v1(R)
= 0, (9)

where v1(R) is the volume of a d-dimensional hypersphere of
radius R. Here, the local number variance σ 2

N (R) represents
the variance in the number of points sampled by randomly
placed spherical windows of radius R (see Fig. 1), which can
be calculated from the following relations [1,39]:

σ 2
N (R) = ρ v1(R)

[
1 + ρ

∫
Rd

d r h(r) α2(r; R)

]
(10)

= ρ v1(R)

(2π )d

∫
Rd

dk S(k) α̃2(k; R) , (11)

where α2(r; R) represents the scaled intersection volume of
two spherical windows of radius R that are separated by r , and
α̃2(k; R) is its Fourier transform.

Consider hyperuniform systems that are characterized by
structure factors with power-law form for small wave num-
bers; S(k) ∼ |k|α . The exponent α determines the large-R
asymptotic behavior of σ 2

N (R) [1–3]. Using this asymptotic
behavior, Torquato recently has categorized hyperuniform
point processes into three classes [39]:

σ 2
N (R) ∼

⎧⎪⎨
⎪⎩

Rd−1, α > 1 (class I)

Rd−1 ln(R) , α = 1 (class II)

Rd−α, 0 < α < 1 (class III).

(12)

Class I systems include crystals, some quasicrystals, and dis-
ordered stealthy hyperuniform systems [1,2,16,17]. A variety
of examples of class II and III systems are given in Ref. [39].

Stealthy hyperuniform ground-state systems are defined
by the condition that S(k) = 0 for 0 � |k| < K for some
positive number K . The parameter χ provides a measure of
the relative fraction of the number of wave vectors at which
S(k) is constrained to be zero to the total number of degrees
of freedom [16,39]. For 0 < χ < 1

2 , the entropically favored
stealthy hyperuniform ground states are highly degenerate and
disordered, while they crystallize for 1

2 < χ � 1.
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For single-component systems in thermal equilibrium, the
fluctuation-compressibility relation is given by [61]

lim
|k|→0

S(k) = ρκT kBT , (13)

where κT is the isothermal compressibility, and T is the
temperature of the system. Since the left-hand side of (13)
is directly related to the long-wavelength density fluctuations,
i.e., S(0) = limR→∞ σ 2

N (R) /(ρ v1(R)), any compressible sys-
tem (κT > 0) in thermal equilibrium cannot be hyperuniform
at a positive T ; see Refs. [16] and [39] for more discussion on
this subject.

III. EFFECT OF SPATIALLY UNCORRELATED DEFECTS

The dimensionality of spatial distribution of imperfections
enables a classification into four types: point, line, surface,
and volume defects. Roughly speaking, three types of point
defects can be considered; vacancies (missing atoms), inter-
stitial impurities (excess atoms), and substitutional impurities
(different kinds of atoms). Dislocations and stacking faults
are examples of line and surface defects, respectively. Volume
defects include pores and cracks.

Some theories have been devised to identify types and
amount of point defects in crystalline solids via existing
experimental techniques such as EPR and x-ray scattering
experiments [63,64]. For instance of scattering experiments,
one can determine types and sizes of point defects, and whether
they are isolated or aggregated, by analyzing the shifts of Bragg
peaks and asymmetric diffuse scattering around the Bragg
peaks called Huang diffuse scattering [65,66].

In this section, we investigate how the introduction of
uncorrelated point defects influences hyperuniformity of an
original hyperuniform point process at number density ρ. Here,
we consider a d-dimensional hyperuniform point configuration
{r i}Ns

i=1 in a periodic unit cell of volume V , and two types of
point defects: (1) vacancies and (2) interstitials. The structure
factor of this original configuration is denoted by S0(k). For the
simplicity, we do not consider elastic deformations in imperfect
configurations due to defects, which can arise in Huang diffuse
scattering [65,66], as well as steric repulsion that can restrict
the interstitial positions.

A. Point vacancies

Here, we consider spatially uncorrelated point vacancies by
independently removing particles in original configurations.
Let us define a stochastic function f (r) to describe point
defects in Rd . In general, f (r) is complex valued, but for
uncorrelated point vacancies, it becomes real valued such that

Pr(f (r) = a) =
{

1 − p, if a = 1

p, if a = 0,
(14)

where p is the concentration of vacancies. After introducing
uncorrelated point vacancies, one can express the structure
factor of a defective configuration in terms of the function
f (r);

S(k) = 1 +
〈

1

N

Ns∑
i �=j=1

fifj
∗e−ik·(r i−rj )

〉
f

, (15)

where fi is an abbreviation of f (r i) , fi
∗ is its complex

conjugate, 〈. . . 〉f represents an expectation value over f (r).

Here, N ≡ ∑Ns

i=1 fi is the number of remaining particles in
the configuration, which is a random variable that follows the
binomial distribution:

Pr(N = N ) =
(

Ns

N

)
(1 − p)NpNs−N, (16)

and its expectation value is 〈N 〉f = (1 − p)Ns .
One can alternatively express the expectation in (15) as〈

1

N

Ns∑
i �=j=1

fifj e
−ik·(r i−rj )

〉
f

=
Ns∑

N=0

Pr(N = N )
1

N

Ns∑
i �=j=1

〈fifj 〉Ne−ik·(r i−rj ) (17)

= (1 − p)
1

Ns

Ns∑
i �=j=1

e−ik·(r i−rj ), (18)

where the conditional expectation value of fifj when N = N

is given by

〈fifj 〉N = N (N − 1)

Ns
2 =

(
N

Ns

)2

+ O
(
Ns

−1
)
, (19)

where O(f (x)) means that its value is smaller than a f (x) for
some positive constant a as x increases. Substituting Eqs. (16)
and (19) into Eq. (17) yields the result (18), and thus the
structure factor (15) of the defective point process in any space
dimension is given by

S(k) = 1 + (1 − p)
1

Ns

〈
Ns∑

i �=j=1

eik·(r i−rj )

〉

= 1 + (1 − p)[S0(k) − 1]

= p + (1 − p) S0(k) . (20)

This result was previously known for defective crystals [64,65].
We note that Eq. (20) is valid for any original point configu-

ration whether it is hyperuniform or not. Formula (20) implies
that the rescaled structure factor as [S(k) − p]/(1 − p) yields
the structure factor S0(k) of the original system, regardless of
the vacancy concentration p. Using this rescaling idea in insets
in Fig. 2, we show that numerical simulations are in excellent
agreement with our theoretical prediction (20). Application
of the effective hyperuniformity criterion (1) to the imperfect
disordered systems described in Fig. 2(b) shows that their
hyperuniformity metric H is of the same order of p (i.e.,
Hvacancies ∼ p), and thus they cannot be regarded as effectively
hyperuniform whenever p > 10−4.

Using Eqs. (20) and (11), the local number variance
σ 2

N (R; p) of a point process in Rd with the vacancy concentra-
tion p is straightforwardly obtained as

σ 2
N (R; p) = (1 − p)pρ v1(R) + (1 − p)2 σ 2

N (R; 0) , (21)

where ρ is number density of the initial point process. Note
that the first term in Eq. (21) corresponds to variance in the
number of vacancies inside a spherical window. Thus, the
nonhyperuniformity due to uncorrelated point vacancies is
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FIG. 2. From (a)–(c): semilog plots of simulated structure factors of two-dimensional defective point configurations with point vacancies
of the fraction p. Three types of original configurations include (a) the square lattice, (b) stealthy disordered hyperuniform configurations
with χ = 0.1, and (c) perturbed square lattices via a distribution f1(u; δ = 10−4,α = 0.8) given by (35). In (c), theoretical values of S0(k) for
perturbed lattices (magenta dashed line) are calculated from (36). Insets of each panel zoom into the small-wave-number regime in linear scale,
but y axes are rescaled as [S(k) − p]/(1 − p). Note that peaks observed in (a) and (c) correspond to the first two Bragg peaks of the square
lattice. Subfigure (d) is comparison of the prediction (20) to corresponding computer simulations of S(0) of defective systems as functions of
the vacancy concentration p for three original systems.

attributed to the tendency of vacancies to cluster, as in Poisson
point processes. This result is consistent with an expression
derived by Chieco et al. [67] for the related volume-fraction
variance of two-dimensional square lattices with uncorrelated
vacancies.

Remarks:
(1) In the limit of p → 1, S(k) → 1, which implies that

the system behaves like the ideal gas regardless of the initial
configuration.

(2) To treat the case of substitutional impurities, one needs
to replace the random function f (r) in Eq. (15) with the
following expression;

[1 − f (r)] a0(k) + f (r) as(k) , (22)

where a0(k) and as(k) are the scattering amplitude of a
dominant atom and an impurity atom, respectively. Here, f (r)
is identical to the random function (14), but now its expectation
value p stands for the concentration of the substitutional
impurities.

(3) In Fig. 2, we generate 100 independent initial con-
figurations of Ns = 104 for each type of two-dimensional
system, which correspond to the case p = 0. In order to
generate stealthy hyperuniform systems, we use the collective-
coordinate optimization technique described in Refs. [14,17].

From these initial configurations, for a given p( �= 0), we gen-
erate 10 000 defective configurations by randomly removing n

particles, where n is a random variable following the Poisson
distribution with a mean pNs . In Fig. 2(d), S(0) represents an
average of S(k) at the three lowest wave numbers.

B. Point interstitials

Here, we consider spatially uncorrelated interstitials by
independently adding particles in original perfectly hyperuni-
form configurations inRd . Suppose that the original configura-
tion has Ns particles at number density ρ, and pNs interstitials
are introduced into the configuration. Thus, number density of
a defective system becomes (1 + p)ρ. Separating the collective
coordinate ñ(k) of a defective system into those of the original
system and the interstitials, ñ0(k) and ñI (k), the structure factor
of the defective system can be written as

S(k) = 1

(1 + p)Ns

〈| ñ0(k) + ñI (k) |2〉

≈ 1

(1 + p)Ns

[〈|ñ0(k)|2〉 + 〈|ñI (k)|2〉] (23)

= 1

1 + p
S0(k) + p

1 + p
SI (k) , (24)
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FIG. 3. Left panel: Comparison of the predictions of Eq. (25)
to the corresponding computer simulations of S(0) of the defective
configurations with the fraction p of interstitials. Right panel: Semilog
plot of numerical results for the structure factor of defective point
configurations with uncorrelated interstitials. The original perfectly
hyperuniform systems are one-dimensional stealthy hyperuniform
ground states with χ = 0.3 and K = 1.

where an approximation 〈ñ0(k) ñI (−k)〉 ≈ 0 is used under the
assumption that interstitials are uncorrelated with respect to
the original systems. Here, the structure factor of interstitials
is denoted by SI (k) ≡ 〈| ñI (k) |2〉/(pNs).

When the interstitial positions are completely uncorrelated
[i.e., SI (k) → 1], Eq. (24) can be simplified as

S(k) = p

1 + p
+ 1

1 + p
S0(k) . (25)

As in the case of Eq. (20), Eq. (25) is valid for any original
configuration whether it is hyperuniform or not, and in any
space dimension d. For instance, if an original configuration
is a Poisson point configuration [S0(k) = 1], then the defec-
tive configuration obviously becomes another Poisson point
configuration at a different number density, i.e., S(k) = S0(k).

For computer simulations, we consider only in one di-
mension for simplicity; corresponding results for higher di-
mensions will not change qualitatively. Figure 3 compares
the predictions of Eq. (25) to numerical simulations of
one-dimensional (entropically favored) stealthy hyperuniform
ground states [16,17] with χ = 0.3,K = 1, and Ns = 103. For
each of 100 original configurations, we generated 100 defective
configurations by randomly adding m particles, where m is a
random number chosen from the Poisson distribution with a
mean pNs . According to the effective hyperuniformity crite-
rion (1), the imperfect disordered systems described in Fig. 3
are definitively not hyperuniform (Hinterstitials ∼ p > 10−4).
Figure 3 shows that Eq. (25) can provide a good approximation,
even for large values of p.

Using Eqs. (11) and (25), one obtains an expression for
the local number variance in the presence of uncorrelated
interstitials as follows:

σ 2
N (R; p) = pρ v1(R) + σ 2

N (R; 0) , (26)

where p is the fraction of interstitials and ρ is the number
density of the original system. Since the first term in Eq. (26)
corresponds to the number variance of a Poisson point process
at number density pρ, the nonhyperuniformity of the defective
systems is attributed to the tendency of the defects to cluster,
which also occurs in a Poisson point process.

IV. EFFECT OF STOCHASTIC PARTICLE
DISPLACEMENTS

We consider a perturbed point process, in which the position
of ith particle in an initial point process is stochastically
displaced from r i to r i + u(r i), where i = 1,2, . . . . When
the initial point process is a lattice, the perturbed system is
referred to a perturbed lattice [58,60] (also known as “shuffled
lattice” [1,68]). Perturbed lattices have been studied or used in
various contexts, including models of lattice disorders [58,69],
and subjects in probability theory, such as distribution of
zeros of random entire functions [70] and number rigidity
[71,72]. Moreover, perturbed lattices are used to generate
disordered initial configurations for numerical simulations
[73], configurations of sampling points [74], and disordered
hyperuniform point configurations [11,75]. Here, we start with
a summary of results in the previous studies.

A. General properties of perturbed point processes

In the rest of this section, we consider a hyperuniform point
process {r i}∞i=1 at number density ρ in Rd , and its structure
factor and pair-correlation function are denoted by S0(k) and
g

(0)
2 (r), respectively. For simplicity, in the rest of this section,

we assume that the stochastic displacement vectors u(r) follow
an identical and isotropic singlet probability density function
f1(u), and thus 〈u〉 = 0.

The structure factor of a perturbed point process depends on
the initial point process and statistical properties of displace-
ments [58,60]:

S(k) = 1 + ρ

∫
d r e−ik·r g

(0)
2 (r) φ̂(k; r) , (27)

where φ̂(k; r) ≡ ∫
du dv exp[−ik · (u − v)] f2(u,v; r), and

f2(u,v; r) stands for a conditional joint probability density
function that two particles, separated by r in the initial point
process, are displaced by u and v, respectively.

If displacements of distinct particles are uncorrelated,
then the joint probability density function can be reduced
into a product of two singlet probability densities f1(u) and
f1(v), i.e., f2(u,v; r) = f1(u) f1(v), where f1(u) is the singlet
probability density function of a displacement vector u. Thus,
the structure factor (27) of a perturbed point process with
uncorrelated displacements is simply expressed by [59,60]

S(k) = (1 − | f̃1(k) |2) + | f̃1(k) |2 S0(k) , (28)

where φ̂(k; r) = | f̃1(k) |2 and f̃1(k) is the characteristic func-
tion, or equivalently the Fourier transform, of f1(u). In contrast
to the effect of point defects described in Sec. III, “uncorre-
lated” displacements cannot destroy the hyperuniformity of an
original hyperuniform point process because f̃1(k = 0) = 1
by definition.

Suppose that the singlet probability density can be ap-
proximated by f1(u) ≈ A|u|−(d+γ ) for large |u|, and thus the
small-wave-number behavior of f̃1(k) depends on the exponent
γ [60]:

f̃1(k) ≈ 1 − Bγ |k|min{2,γ } (|k| � 1), (29)
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where 〈u〉 = 0, min C represents the smallest element of a set
C, and the coefficient Bγ is written as

Bγ =
{

1
2d

〈|u|2〉, γ > 2

A(2π )d/2
∫ ∞

0 dx
Jd/2−1(x)
x(d/2+γ ) , 0 < γ � 2.

(30)

If S0(k) ∼ |k|α for small |k|, then the structure factor (28) of
a perturbed point process is approximately given as

S(k) ∼ |k|min{2,γ,α} (|k| � 1). (31)

Thus, an uncorrelated perturbed point process can belong to
any class of hyperuniformity, i.e., classes I, II, and III [39], as
long as the growth rate of its local number variance σ 2

N (R) is
faster than or equal to that of the original hyperuniform system.

For instance of one-dimensional perturbed lattice, if f1(u)
has a finite variance, e.g., Gaussian distribution, the system
always belongs to class I. Using the Cauchy distribution (γ =
1)2 and the Pareto distribution (γ < 1)3 as f1(u), one obtains
class II4 and class III perturbed lattices, respectively. However,
it is impossible to change a class II system (α = 1) to a class I
system (α > 1) via the uncorrelated stochastic displacements.

Now, we consider cases of correlated displacements. As-
suming that a displacement vector u is isotropically distributed
and its variance 〈|u|2〉 exists, φ̂(k; r) in Eq. (27) can be
expanded as a Taylor series of k for small |k| [60]:

φ̂(k; r) = 1 +
d∑

μ,ν=1

kμkν[Gμν(r) − Gμν(0)] + O(|k|4) ,

(32)

where the displacement-displacement correlation function is
defined as Gμν(r) ≡ 〈uμ(r + r0)uν(r0)〉. For simplicity, if
we assume that two orthogonal components of displacements
are uncorrelated when d � 2, which implies that Gμν(r) =
δμν G(r), then the general expression for the structure factor
(27) can be approximated for small wave numbers [60]:

S(k) ≈ [|k|2 G(0) + (1 − |k|2 G(0)) S0(k)]

+ ρ|k|2
(

G̃(k) +
∫

d r h0(r) G(r) e−ik·r
)

, (33)

where G̃(k) is the Fourier transform of G(r). Note that the
terms in the square brackets in Eq. (33) are contributions from
the individual displacements [i.e., G(0)], and these terms are
identical to the right-hand side of Eq. (28) for small |k| because

2The Cauchy probability distribution function is given by
f1(x; δ,μ) = (πδ{1 + [(x − μ)/δ]2})−1, where δ ∈ (0,∞) is a length
scale and μ ∈ R is the mean. For more details, see A. Papoulis,
Probability, Random Variables, and Stochastic Processes, 2nd ed.
(McGraw-Hill, New York, 1984).

3The Pareto probability distribution function has semi-infinite
support, i.e., x ∈ [0,∞) and is given by f1(x; xm,α) =
�(x − xm) α(xm/x)α+1/xm, where �(x) is the Heaviside step
function and α ∈ (0,∞) is an exponent. For more details, see B. C.
Arnold, Pareto Distribution, 2nd ed. (CRC Press, Boca Raton, FL,
2015).

4Gabrielli demonstrated class II perturbed lattices for d = 1 via the
Cauchy distribution; see Ref. [60].

|k|2 G(0) = |k|2〈|u|2〉/d ≈ 1 − | f̃1(k) |2 in the same regime.
The rest terms in Eq. (33) are contributions from “correlations”
in displacements.

Remarks:
(1) Correlated perturbed lattices are different from uncor-

related ones in two respects: (a) Bragg peaks and (b) existence
of nonhyperuniform states. Both types of perturbed lattices
have Bragg peaks that are centered at the same positions of
their progenitor lattices. While correlated perturbed lattices
have broadened peaks as thermalized crystals do, uncorrelated
ones have peaks that are not broadened but weakened compared
to those in the initial lattice.

(2) In contrast to uncorrelated perturbed lattices that are al-
ways hyperuniform, correlated ones can be nonhyperuniform.
Suppose that for a perturbed lattice in Rd , the function G̃(k),
which is given in Eq. (33), exhibits the power-law behavior
G̃(k) ∼ |k|β for small |k|. It follows that the perturbed lattice
is no longer hyperuniform when β = −2, i.e.,

G̃(k) ∼ |k|−2 (|k| � 1), (34)

because the term |k|2 G̃(k) in Eq. (33) converges to a positive
constant as |k| → 0. For low-dimensional perturbed lattices
(d � 2), this condition implies that the variance 〈|u|2〉 becomes
infinite.

B. Class III hyperuniformity

Class III (hyperuniform) point processes are characterized
by the exponent 0 < α < 1 in the large-R behavior of the
number variance σ 2

N (R) or, equivalently, in the small-wave-
number behavior of S(k); see Eq. (12). A few class III systems
have been reported, e.g., critical absorbing states of random
organization models [α ≈ 0.45 (d = 1) and 0.425 (d = 2)]
[30] and some classical ground states generated by the col-
lective coordinates optimization techniques [14,48]. However,
as noted in Sec. IV A, one can generate class III perturbed
lattices with 0 < α < 1. Moreover, in the construction of
class III systems, generating uncorrelated perturbed lattices
is computationally advantageous over other methods, e.g.,
the collective coordinate optimization technique [14,48] and
random organization models [30,33], in two respects: (a)
parallelization is straightforward, and (b) the computational
cost is in the order of particle number N .

To generate d-dimensional class III perturbed lattices, the
singlet probability density should have a power-law tail, i.e.,
f1(u) ∼ |u|−(d+α) as |u| → ∞ and 0 < α < 1 [60,76]. The
α-stable distributions [77] are one-dimensional examples of
such singlet densities, but it is difficult to implement them
since they can only be analytically expressed in terms of their
characteristic functions.

Here, we will present one of the simplest singlet density
functions to generate class III perturbed lattices in Rd :

f1(r; δ,α) ≡
{

K(d,α,δ) , |r| � δ

K(d,α,δ) (|r|/δ)−d−α, |r| > δ,
(35)

where the normalization constant is given by K(d,α,δ) =
�(1+d/2)α

πd/2(d+α)δd , and two parameters: an exponent α ∈ (0,1) and
a characteristic length scale δ ∈ (0,∞). Expressions for the
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FIG. 4. Log-log plots of approximate and numerical results for structure factors of perturbed point configurations, which are generated by
stochastically displacing each particle by the singlet distribution f1(u; δ,α) defined in Eq. (35). Initial configurations include the following:
(a) the integer lattice for d = 1, (b) the square lattice for d = 2, and (c), and (d) stealthy disordered hyperuniform point configurations with
χ = 0.1 [d = 1,2 for (c) and (d), respectively]. A black solid line in each panel shows S0(k) of the initial configurations.

cumulative distribution, its inverse, and the characteristic
function of f1(r; δ,α) are provided in Appendix A. We note
that this method can be applied to any class I system to obtain
class III systems; see Figs. 4(c) and 4(d) for examples.

Substituting the characteristic function (A5) into Eq. (28),
we obtain the small-|k| asymptotic behavior of S(k) for an
uncorrelated perturbed point process via the singlet density
(35):

S(k) = 2 A(d,α)

(
kδ

2

)α

+ O(kmin{2α,2}) (|kδ| � 1), (36)

where k ≡ |k| and A(d,α) is defined as

A(d,α) ≡ �(1 + d/2)�(1 − α/2)/�[1 + (d + α)/2]. (37)

As shown in Fig. 4, our approximation formula (36) is in
excellent agreement with numerical simulations of S(k).

Large system size is necessary to observe the class III
behavior in S(k) because this behavior results from large
displacements. Suppose that an initial point configuration lay
in a d-dimensional periodic hypercubic box of side length L.
Then, one can estimate the relative error ε in the approximation
(36) at the lowest wave number k = 2π/L by comparing terms
in series expansion of S(k) about k = 0. We find the lower

bound Lmin of system size as follows:

L > Lmin ≡ 2π

k
= πδ

(
A(d,α)

2ε

)1/α

, (38)

ignoring statistical uncertainties that also increase as wave
number decreases.

Remarks:
(1) The singlet function (35) can be used to generate class

II perturbed lattices by setting α = 1.
(2) We generate 100 initial configurations at unit number

density for each system. Initial point configurations have
particles of N = 2 × 103 (d = 1) or N = 104 (d = 2). Subse-
quently, we generate 102 perturbed configurations from each
initial configuration via a singlet function f1(u; δ,α), given in
Eq. (35), using parameters in Fig. 4. The computed structure
factors are presented in Fig. 4.

(3) Taking the relative error to be ε = 10−3, some lower
bounds of system size Lmin, calculated from Eq. (38), are listed
in Table I.

TABLE I. Smallest system sizes Lmin that correspond to parame-
ter sets, shown in Fig. 4.

α = 0.8 α = 0.6

d = 1,δ = 10−3, L = 2 × 103 1.1 × 10 1.4 × 102

d = 2,δ = 10−4, L = 102 9.3 × 10−1 1.2 × 10
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V. EFFECT OF PHONON MODES

Previously, Torquato et al. [16] theoretically and numer-
ically showed that disordered stealthy hyperuniform ground
states become nonhyperuniform in proportion to the temper-
ature [i.e., S(0) ∝ T ] for sufficiently low T . In this study,
however, the small-wave-number behavior of S(k) was not
obtained, and the theoretical prediction was derived from the
compressibility relation (13) without considering the underly-
ing mechanisms. In this section, we investigate the mechanisms
associated with thermal excitations that destroy the hyperuni-
formity of ground states, whether they are disordered or not,
and obtain a corresponding predictive formula for the structure
factor S(k) for small wave numbers. For simplicity, we focus
on thermal excitations (phonon modes) in classical crystalline
solids for sufficiently low temperatures.

Consider a ground-state crystal at T = 0, which is nec-
essarily hyperuniform and indeed stealthy [1,16], meaning
that S(k) = 0 up to the first Bragg-peak wave number. Now,
imagine gradually increasing the temperature. One might
surmise that each particle symmetrically moves around its
equilibrium position, and thus the averaged positions of the
particles over a long period of time would be identical to the
ideal crystalline structure. This scenario would lead one to
falsely conclude that thermalized crystals (crystals in thermal
equilibrium) are hyperuniform.

Thermalized crystals have been extensively investigated in
fields of solid-state physics and crystallography. In solid-state
physics, there are two important (quantum mechanical) models
for harmonic crystals, i.e., Einstein and Debye solids; see
Fig. 5. Roughly speaking, in an Einstein solid, constituent par-
ticles behave as independent harmonic oscillators. In a Debye
solid, collective motions of the particles arise as elastic waves,
each mode of which behaves like an independent oscillator,
called a phonon. It is noteworthy that Einstein and Debye solids
can be mapped to uncorrelated and correlated perturbed lat-
tices, respectively. Thus, an Einstein solid, which corresponds
to the aforementioned scenario, cannot be nonhyperuniform at
a positive temperature, and we focus on Debye solids.

In crystallography, it has been known that thermally
excited elastic waves (phonons) in crystals cause background
scattering, called thermal diffuse scattering. In the past,
this subject had been extensively studied by utilizing

FIG. 5. Schematics illustrating particle displacements in Einstein
(left) and Debye solids (right) at a positive temperature. For illustrative
purposes, displacements are exaggerated. The particles (large blue
dots) in an Einstein solid “independently” experience harmonic
restoring interactions (blue line) toward their equilibrium positions.
By contrast, the particles in a Debye solid interact with their nearest
neighbors. In summary, displacements in Einstein and Debye solids
are uncorrelated and correlated, respectively, leading to different
behaviors in long-wavelength density fluctuations.

approximations for φ̂(k; r), which is given in Eq. (27).
For instance, the well-known Debye-Waller factor [40]
exp(−〈(q · u)2〉) is essentially a higher-order expression of
the quantity 1 − ∑d

μ,ν=1 kμkν Gμν(0) in Eq. (32). However,
heretofore, a quantitative description of the small-wave-
number behavior of the structure factor of a thermalized crystal
in the harmonic regime has been lacking. This is partly because
previous studies have mainly focused on diffuse scattering
near Bragg peaks rather than the small-wave-number regime.
Furthermore, many previous theoretical predictions become
invalid for low-dimensional crystals (d � 2) because they
contain the Debye-Waller factor that vanishes at any positive
temperature for these cases [40,78].

Our objective here is to derive an explicit expression
for the structure factor of classical Debye solids within the
harmonic regime, especially in the vicinity of k = 0. In order
to formulate a predictive theory for low dimensions, we
avoid starting from standard formulas with the accompanying
Debye-Waller factor.

A. Simple harmonic lattices

In the harmonic approximation, the potential energy �({R})
of crystalline solids can be described as [40,42,79] �({R}) ≈
1
2

∑
R,R′ uμ(R) Dμν(R − R′) uν(R′) , where uν(R) represents

the ν component of displacement vector u(R) of a particle
whose equilibrium position is R, and Dμν(R) is called the
dynamical matrix.

Suppose a finite subset �(L) of an infinitely large Bravais
lattice inRd , which contains N = Ld particles. Under periodic
boundary conditions, motion of a particle at R can be described
by a superposition of normal modes ũs(q,t) eiq·R, i.e.,

u(R,t) = 1√
N

∑
q,s

ũs(q,t) eiq·R, (39)

where a normal coordinate ũs(q,t) ≡ ũs(q) ε̂s(q) eiωs (q)t rep-
resents elastic wave characterized by a wave vector q, polariza-
tion ε̂s(q), and angular frequency ωs(q). We use the shorthand
notation

∑
q,s ≡ ∑

q∈�∗
1(L)

∑d
s=1, where �∗

1(L) denotes the
first Brillouin zone of �(L). Note that a normal coordinate
is essentially a spatial Fourier component of u(R,t).

The quantities ε̂s(q) and ωs(q) can be determined by solving
the following eigenvalue problem;

m ωs
2(q) ε̂μ

s (q) =
d∑

ν=1

D̃μν(q) ε̂ν
s (q) , (40)

where ε̂ν
s (q) is the ν component of ε̂s(q) ,m is the mass of a sin-

gle particle, and D̃μν(q) is the Fourier transform of the dynam-
ical matrix Dμν(R). Thus, for each wave vector q, there are d

independent normal modes, and their polarization vectors ε̂s(q)
satisfy the orthogonality (41) and closure (42) relations [79];

ε̂s(q) · ε̂s ′ (q) = δs,s ′ , (41)

d∑
s=1

ε̂μ
s (q) ε̂ν

s (q) = δμ,ν, (42)

where δs,s ′ is the Kronecker delta symbol. Using the normal
coordinates (39) and the relation (40), total energy E of a
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harmonic crystal can be decomposed into a sum of elastic and
kinetic energy of each normal mode:

E =
∑
q,s

[
1

2
m ωs

2(q) |ũs(q,t)|2 + 1

2
m

∣∣∣∣∂ ũs

∂t
(q,t)

∣∣∣∣
2
]
. (43)

In Sec. V, we will consider a d-dimensional simple cubic
lattice where each particle is connected to its nearest neighbors
by springs of spring constant K . The potential energy of this
system is approximately given as

�cubic ≈ K

2

∑
〈R,R′〉

| u(R) − u(R′) |2, (44)

where 〈R,R′〉 indicates that two sites R and R′ are near-
est neighbors. Its dynamical matrix is given by Dμν(R) =
δμ,νK

∑
〈R′,0〉 (δR,0 − δR,R′), and its Fourier transform is

D̃μν(k) = δμ,ν4K

d∑
i=1

sin2(kia/2) , (45)

where a is the lattice constant. Using (40) and (45), one can
obtain the degenerate dispersion relations

ω2(k) = 4K

m

d∑
i=1

sin2(kia/2) , (46)

regardless of polarization s. For small |k|, one obtains a linear
dispersion relation

ω(k) = c|k| + O(|k|2) , (47)

where c is the sound speed in the continuum limit (|k| → 0),
given by c ≡

√
Ka2/m. Here, the sound speed c is independent

of the polarization, but in general it depends on the polarization.
In Appendix C, we derive an isotropic expression of (46) as
follows:

ω2(k) ≈ (ck)2

(
1 − (ka)2

4(d + 2)

)
. (48)

B. Static structure factor of thermalized crystals

We will consider a finite subset �(L) of a d-dimensional
Bravais lattice of unit lattice constant, as described in Sec. V A,
and assume the classical harmonic interactions. We first present
a heuristic derivation of the small-wave-number behavior of the
structure factor at low temperatures.5 The rigorous derivation
that leads to the same result is provided in Appendix B.

The collective coordinates can be approximated for small
displacements by

ñ(k) =
∑

R

exp(−ik · R) exp(−ik · u(R,t))

≈
∑

R

exp(−ik · R) [1 − ik · u(R,t)]

=
[∑

R

exp(−ik · R)

]
− i

√
Nk · ũ(k,t) , (49)

5This derivation is similar to that used to derive Huang diffuse
scattering in Ref. [86].

where we use the fact that normal coordinates ũ(k,t) are the
Fourier components of displacement vectors u(R,t). Here,
we note that for small |k|, the quantity

∑
R exp(−ik · R)

is zero in this regime because an ideal lattice is stealthy
hyperuniform. Thus, the structure factor of harmonic crystals
can be approximately given by

S(k) = lim
N→∞

1

N
〈| ñ(k) |2〉 ≈ 〈|k · ũ(k,t) |2〉, (50)

for 0 < |k| � 1. In fact, for low-dimensional crystals (d � 2),
the approximation used in Eq. (49) is not justifiable because
the quantity 〈|u|2〉 diverges in the thermodynamic limit [78].
Nonetheless, it is noteworthy that the result (50) is identical to
the one rigorously derived in Appendix B.

According to the equipartition theorem, the ensemble av-
erage of potential energy (43) of a normal mode with a
polarization index s is expressed as

1
2mωs

2(k)〈|ũs(k,t)|2〉 = 1
2kBT , s =‖ ,2, . . . ,d, (51)

where the index ‖ indicates the longitudinal polarization at a
given wave vector k and m is the mass of a single particle.
Thus, the expression (50) can be simplified as

S(k) = |k|2
m ω‖2(k)

kBT . (52)

For the hypercubic model described in Sec. V A, we obtain
the small-wave-number expression for the isotropic structure
factor S(|k|) by substituting the dispersion relation (48) into
Eq. (52):

S(|k|) = T

[
1 + (|k|a)2

4(d + 2)

]
+ O(|k|4) , (53)

where a is the lattice constant and T is a dimensionless
temperature, defined as

T ≡ kBT /(mc2). (54)

Our approximate result (53) is consistent with numerical
simulations for spatial dimensions d = 1,2,3 (see Fig. 6).
Taking the limit |k| → 0 in Eq. (53) and comparing to the
compressibility relation (13) enables us to determine the
isothermal compressibility explicitly:

κT = (Ka2−d )−1, (55)

which is identical to the inverse of the bulk modulus for the
corresponding spring networks.

Expression (50) implies that only sound waves (longitudinal
elastic waves) contribute to long-wavelength density fluctu-
ations or nonhyperuniformity of thermalized crystals. It is
reasonable because while sound waves are caused by density
modulations, transverse waves result from volume-preserving
shear deformations. In addition, the predicted hyperuniformity
of an “incompressible” system in thermal equilibrium would
result from a nonrelativistic (infinite) speed of sound. The
reader is referred to a recent study on a perfect glass model that
is hyperuniform and has the same attribute of a nonrelativistic
(infinite) speed of sound [80].

For a non-Bravais crystal of Nb basis atoms, there are Nb

independent “longitudinal” normal modes at each wave vector
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FIG. 6. Semilog plots of approximate and numerical results for structure factors for thermalized hypercubic lattices calculated from the
Monte Carlo technique; (a) d = 1, (b) d = 2, and (c) d = 3. Note that structure factors are normalized by the dimensionless temperature
T defined by the relation (54). The approximate results are calculated from the formula (53). Insets in each panel are magnifications in the
small-wave-number regime.

k [40], and thus Eq. (52) will be modified as

S(k) =
Nb∑
i=1

|k|2
μi ω‖(i)

2 (k)
kBT , (56)

where μi are some finite constants of mass unit, and ω‖(i) (k)
is the angular frequency of ith longitudinal normal mode. In
the acoustic mode (i = 1), all basis atoms in the same unit
cell move in phase, while in optical modes (i = 2, . . . ,Nb),
the basis atoms move out of phase. For small wave num-
bers, only acoustic modes have linear dispersion relations,
as in (47), while optical modes have nonlinear ones, i.e.,
lim|k|→0 ω‖(i)(k) �= 0. Therefore, in the limit of |k| → 0, it
is only the “longitudinal acoustic modes” that can contribute
to the long-wavelength density fluctuations, i.e., S(0) = KBT

μ1c
2
1
,

where c1 ≡ lim|k|→0 ω‖(1)(k) /|k|.
Since thermalized crystals at a positive temperature can

be mapped to “nonhyperuniform” perturbed lattices, their
displacement-displacement correlation function Gμν(r) satis-
fies the condition (34). Indeed, the simple harmonic crystal
model in Rd satisfies consistently the condition as follows:

G̃μν(k) ≈ δμ,ν

T

|k|2 (|k|a � 1), (57)

where T is defined by Eq. (54) and a detailed derivation is
provided in Appendix D. Here, we note that since 〈|u|2〉/d =
G(0), the asymptotic relation (57) implies that the variance
in displacements 〈|u|2〉 diverge or, equivalently, the Debye-
Waller factor [78] vanishes for low dimensional crystals.

Remarks:
(1) Equilibrium hard-sphere systems inR3 exhibit the same

structure factor scaling as in (53) as they approach to the
fcc jamming point along the stable crystal branch [81]. This
behavior is attributed to collective “vibrational” motions due
to collisions, which are the hard-sphere analogs of phonons in
systems of particles interacting with continuous pair potentials.

(2) The selection rule
∑

Q δ(−k + ∑
q,s q( z(q,s)

+ z′(q,s) ), Q) in Eq. (B5) can be interpreted as the
crystal momentum conservation [40]. Then, the result
(50) corresponds to the single-phonon scattering.

(3) To gain some physical idea of the dimensionless tem-
perature T , we provide estimations of a melting point TM and
Debye temperature TD [40] in the unit of T . To estimate the
order of magnitude of TM , we use the Lindemann criterion

[40,82] that 〈|u|2〉 ≈ (cla)2 near TM , where a is the lattice
constant and cl ≈ 0.1. In d = 3, T M ∼ 10−2 and T D ∼ 10−3,
which are consistent with experimental data for many solids;
see Table III. In numerical simulations, temperatures are much
lower than the melting point, i.e., T � 0.01T M . We note that
for the illustrative purposes, a thermalized lattice in Fig. 1 is
set to be at an exceedingly high temperature T = 0.05.

(4) We use the simulated-annealing technique to simulate
thermalized crystals with the potential energy (44). Each
simulation starts from the melting point (T = 0.01) and then
employs an exponential cooling schedule to achieve a target
temperature. At each temperature in the cooling schedule, we
adjust the maximum displacement of trial moves such that the
acceptance rate is around a half. We let the systems evolve for
10τs MC cycles before sampling the configurations, and then
check whether the acceptance ratio is around a half for the
next τtest MC cycles. Table II lists the sampling parameters for
d = 1,2, and 3, respectively.

(5) For a N × N symmetric positive-definite matrix A, its
Gaussian integral has the following property [42]:

〈xixj 〉 ≡
∫
RN xixj exp

(
− 1

2

∑N
i,j=1 Aijxixj

)
dx∫

RN exp
(
− 1

2

∑N
i,j=1 Aijxixj

)
dx

= (A−1)ij ,

where A−1 is the inverse of A. Thus, one immediately obtains
an expression equivalent to Eq. (57):

G̃μν(k) ≡ 〈ũμ(k,t) ũ∗
ν(k,t)〉th = (kBT )D̃−1

μν (k), (58)

where D̃−1(k) is the inverse of the Fourier transform D̃(k) of
the dynamical matrix.

TABLE II. Parameters used in the Monte Carlo simulations
of thermalized crystals in Fig. 6. We sample sequentially Nsamp

configurations in the interval of τs MC cycles. For one MC cycle,
a single trial movement per one particle is sequentially made.

d 1 2 3

N 1000 1002 303

Nsamp 5 × 104 104 103

τs 5 × 103 102 10
τtest 103 5 × 102 102
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VI. DISCUSSIONS AND CONCLUSIONS

In this paper, we have theoretically and numerically inves-
tigated the degree to which hyperuniformity is degraded or
destroyed due to the presence of imperfections in otherwise
perfect hyperuniform point processes. We focused on three
types of imperfections, including (1) uncorrelated point de-
fects, (2) stochastic particle displacements, and (3) thermal
excitations. We derived explicit formulas for the small-wave-
number behaviors (20), (25), (36), and (52) for the structure
factors S(k) and showed that these expressions are consistent
with numerical simulations in Figs. 2, 3, 4, and 6. These results
show that either the violation of the infinite-wavelength crite-
rion (8) or changes in the small-|k| behavior of S(k) without vi-
olating the condition provides an unambiguous means to detect
imperfections in otherwise amorphous hyperuniform systems.

Our results indicate that uncorrelated point defects (vacan-
cies and interstitials) and thermal excitations destroy the hy-
peruniformity of initial systems, but stochastic displacements
can destroy it only when displacements are strongly correlated;
see the condition (34). Importantly, we also note that our result
(52) provides a direct demonstration that thermal excitations
can destroy the hyperuniformity of harmonic crystals, which
has been indirectly predicted [16,39] by the compressibility
relation (13).

Note that these results are consistent with the qualitative
arguments that we made concerning the several example
configurations shown in Fig. 1; specifically, the seemingly
more disordered configuration (d) is hyperuniform, but the
others (b), (c), and (d) are not. To explain these counterintuitive
results, it was helpful to examine the local number variance
σ 2

N (R). In the presence of point defects, as we show in Eqs. (21)
and (26), the major contributions in σ 2

N (R) come from the
variances in the number of point defects contained within a
large window. In other words, the tendency of point defects to
cluster, as in the Poisson point process, results in the destruction
of hyperuniformity.

Interestingly, as we see in Fig. 1(d), uncorrelated stochastic
displacements degrade but cannot destroy the hyperuniformity
because particles only near a window boundary can fall in and
out of the window in an independent manner, i.e., σ 2

N (R) < Rd

for large R. Using this property, we presented a simple method
to transform class I systems, such as lattices and disordered
stealthy hyperuniform systems, to class III systems, defined in
Eq. (12), by application of relation (35).

By contrast, correlated stochastic displacements can destroy
hyperuniformity in the way that particles near the window
boundary move in and out of the window simultaneously.6 Our
results (50) and (57) show that for thermalized crystals, long-
wavelength “longitudinal acoustic waves” arise such correlated
displacements; see Fig. 1(e).

We have studied the effect of each type of imperfection on
the small-wave-number behavior of structure factors for other-
wise perfectly hyperuniform systems. It would be interesting

6For the same reason, the local number variance for a cubic lattice in
R3, which is clearly a hyperuniform system, can increase faster than
window volume when one uses a cubic window that is aligned with
the lattice; see Ref. [84].

to study how multiple types of imperfections simultaneously
affect the hyperuniformity. In the reverse direction, it would
be also interesting to know the general conditions under which
correlated particle displacements in a nonhyperuniform system
can lead to a hyperuniform system.

Our work provides the theoretical underpinnings to study
the effect of imperfections on the physical properties that de-
pend sensitively on the degree of hyperuniformity of materials.
For instance, according to the type of imperfection that is
introduced in a “stealthy hyperuniform” system, the system
becomes merely “hyperuniform” or even “nonhyperuniform.”
Thus, imperfections may influence some exotic physical
properties associated with the stealthy hyperuniformity, e.g.,
complete isotropic photonic band gaps [7,8,13], transparency
at high densities [9], negative compressibilities [83], and nearly
optimal transport properties [12]. For future study, it would be
interesting to investigate the degree to which the presence of
imperfections in otherwise hyperuniform systems affect their
physical properties. Furthermore, one could explore whether
it is possible to continuously modulate the degree of imperfec-
tions in a hyperuniform material to achieve desired properties.
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APPENDIX A: MATHEMATICAL DETAILS OF
THE SINGLET DENSITY (35)

In this Appendix, we provide explicit formulas for the
cumulative distribution function C(R), its inverse C−1(y), and
the characteristic function of the singlet density function (35).
The cumulative distribution function C(R; δ,α) is

C(R) ≡
∫

|r|<R

d r f1(r; δ,α) =
{

α
d+α

(
R
δ

)d
, R � δ

1 − d
d+α

(
R
δ

)−α
, R > δ,

(A1)

and its inverse function C−1(y) is

C−1(y) =
{

δ(y(1 + d/α))1/d , 0 < y � α/(d + α)

δ((1 − y)(1 + α/d))−1/α, α/(d + α) � y < 1.

(A2)

One can generate a random radius followed by the probability
density function (35) by substituting y in (A2) with a uniformly
distributed random number between 0 and 1.

The explicit expression for the characteristic function of
Eq. (35) is

f̃1(k; δ,α) = − A(d,α)(kδ/2)α

+ α/(d + α) 0F1(; (1 + d)/2; −(kδ/2)2)

+ d/(d + α) 1 F2(−α/2; d/2,1 − α/2;

− (kδ/2)2), (A3)
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where k = |k|, A(d,α) is given in Eq. (37), and the generalized
hypergeometric function pFq({a}; {b}; x) is defined as

pFq({a}; {b}; x) =
∞∑

P=0

(a1)P . . . (ap)P
(b1)P . . . (bq)P

xP

P !
, (A4)

where (a)P ≡ �(a + P ) /�(a), and if p = 0 [i.e., {a} is
empty], then the numerators of coefficients in Eq. (A4) become
1. For small k, Taylor series expansion of Eq. (A3) is

f̃1(k; δ,α) = 1 − A(d,α) (kδ/2)α + O(k2) . (A5)

APPENDIX B: RIGOROUS DERIVATION OF EQ. (50)

Suppose a finite subset �(L) of a d-dimensional infinite large Bravais lattice, as defined in Sec. V A. Using the Jacobi-Anger
expansions

exp(ia cos θ ) =
∞∑

z=−∞
Jz(a) eiz(θ+π/2), (B1)

exp(ia sin θ ) =
∞∑

z=−∞
Jz(a) eizθ , (B2)

and normal coordinates (39), the collective coordinates ñ(k) of a thermalized crystal can be written in a Fourier series:

ñ(k) =
∑

R

exp(−ik · (R + u(R,t)))

=
∑

R

e−ik·R ∏
q,s

exp(ikq,scos(q · R + ωs(q)t))exp(i2kq,ssin(q · R + ωs(q)t))

=
∑

R

e−ik·R ∏
q,s

∞∑
zq,s ,z′

q,s=−∞
Jzq,s

(kq,s) Jz′
q,s

(ikq,s) exp(i(zq,s + z′
q,s)(q · R + ωs(q)t) + izq,sπ/2)

=
∑

R

e−ik·R ∑
{z(q,s),z′(q,s)}

∏
q,s

[Jz(q,s)(kq,s) Jz′(q,s)(ikq,s) exp(i(z(q,s) + z′(q,s))(q · R + ωs(q)t) + i z(q,s) π/2)], (B3)

where Jn(x) is the Bessel function of order n and we use the shorthand notation kq,s ≡ − k · ũs(q)/
√

N . Here,
∑

{z(q,s),z′(q,s)}
represents a summation over all possible functions z(q,s) and z′(q,s) from wave vectors in the first Brillouin zone �∗

1(L) and
polarization indices to integers. Separating the products of exponential functions in Eq. (B3), one obtains

ñ(k) =
∑

{z(q,s),z′(q,s)}

[∏
q,s

Jz(q,s)(kq,s) Jz′(q,s)(ikq,s)

]
exp

(
i

∑
q,s

(
(z(q,s) + z′(q,s)) ωs(q) t + π

2
z(q,s)

))

×
∑

R

exp

(
i

(
− k +

∑
q,s

q(z(q,s) + z′(q,s))
)

· R

)
(B4)

=
∑

{z(q,s),z′(q,s)}

[∏
q,s

Jz(q,s)(kq,s) Jz′(q,s)(ikq,s)

]
× N

∑
Q

δ

(
−k +

∑
q,s

q(z(q,s) + z′(q,s)), Q

)

× exp

(
i

∑
q,s

(
(z(q,s) + z′(q,s)) ωs(q) t + π

2
z(q,s)

))
, (B5)

where we used an identity
∑

R eik·R = N
∑

Q δ(k, Q), and
∑

R and
∑

Q represent a summation over all lattice vectors R and
over all reciprocal lattice vectors Q of the lattice {R}, respectively. The Kronecker delta symbol is denoted here by δ(q,q ′).

Note that for small |k| and |q|, the arguments in Bessel functions are small, i.e., kq,s = O(T /
√

N ) so that we can use a
power-series expansion of the Bessel functions [i.e., | Jn(x) | = (x/2)n/n! + O(xn+2) for small x] to approximate the product of
Bessel functions in Eq. (B5):

[∏
q,s

Jz(q,s)(kq,s) Jz′(q,s)(ikq,s)

]
∝ |k|

∑
q,s (|z(q,s)|+|z′(q,s)|) (|k| → 0). (B6)
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Combining the selection rule
∑

Q δ(−k + ∑
q,s q(z(q,s) + z′(q,s)), Q) in Eq. (B5) with Eq. (B6) implies that the leading order

in Eq. (B6) should be the unity:
∑

q,s (|z(q,s)| + |z′(q,s)|) = 1. Thus, the collective coordinates can be approximated as

ñ(k) ≈ N

d∑
s=1

[
[J1(kk,s) i + J1(ikk,s)]e

iωs (k)t + [J−1(k−k,s) (−i) + J−1(ik−k,s)]e
−iωs (−k)t

]

≈ 2N

d∑
s=1

ikk,s

2
eiωs (k)t = −i

√
Nk ·

d∑
s=1

ũs(k) eiωs (k)t = −i
√

Nk · ũ(k,t) . (B7)

Therefore, the leading-order behavior of the structure factor of a thermalized crystal is written as

S(k) ≡ 〈S(k)〉 = lim
N→∞

1

N
〈| ñ(k) |2〉 ≈ 〈|k · ũ(k,t) |2〉 (0 < |k|a � 1). (B8)

APPENDIX C: DERIVATION OF AN ISOTROPIC DISPERSION RELATION (48)

In this Appendix, we derive an isotropic dispersion relation (48). Starting from the second-order power series of the exact
dispersion relation (46),

ω2(k) = c2|k|2
(

1 − (|k|a)2

12

d∑
i=1

(
ki

|k|
)4

)
+ O(|k|6) , (C1)

we will obtain its average over the orientations of k. Its orientational average simplifies as

ω2(k) = (ck)2
(
1 − d

12
(ka)2

〈
x1

4
〉
ang

) + O(k6) , (C2)

where k ≡ |k|, xi is the first component of a unit vector x, 〈xi
4〉ang ≡ ∮

|x|=1 dx xi
4/Sd (1), and Sd (1) = 2πd/2/�(d/2) is the

surface area of d-dimensional sphere of unit radius. Here, we use the fact that 〈xi
4〉ang are identical for i = 1, . . . ,d due to the

rotational symmetry.
In d-dimensional spherical coordinates φ ∈ [0,2π ] and θj ∈ [0,π ] for j = 1, . . . ,d − 2, the Cartesian coordinates of a unit

vector x are expressed as

xi =

⎧⎪⎪⎨
⎪⎪⎩

cos φ
∏d−2

j=1 sin θj , i = 1

sin φ
∏d−2

j=1 sin θj , i = 2

cos θi−2
∏i−3

j=1 sin θj , i = 3, . . . ,d.

(C3)

The infinitesimal area dS of the spherical shell of unit radius is written as

dS = dφ

d−2∏
i=1

[dθi sin(θi)
d−i−1]. (C4)

Using the following identity ∫ π

0
dx sin mx = √

π
�((m + 1)/2)
�((m + 2)/2)

, (C5)

one can calculate

〈
x1

4
〉
ang = 1

Sd (1)

∫ 2π

0
dφ cos4 φ

d−2∏
i=1

[∫ π

0
dθi sin(θi)

d+3−i

]
= �(d/2)

2πd/2

3π

4

d−2∏
i=1

[
√

π
�

(
d+4−i

2

)
�

(
d+5−i

2

)
]

= �(d/2)

2πd/2

3

4
πd/2 �

(
d+4−(d−2)

2

)
�

(
d+5−1

2

) = 3

4

�(d/2)

�(2 + d/2)
= 3

d(d + 2)
. (C6)

Thus, Eq. (C2) becomes

ω2(k) ≈ (ck)2

(
1 − (ka)2

4(d + 2)

)
. (C7)
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TABLE III. Estimations of Debye temperatures TD and melting points TM of solids of some elements in the unit of the dimensionless
temperature T up to two significant figures. The mass and sound speed are denoted by m and c, respectively.

ma (10-23 g) cn (103 m/s) TD
a (K) [T D] TM

a (K) [T M ] ma (10-23 g) cb (103 m/s) TD
a (K) [T D] TM

a (K) [T M ]
Be 1.50 12.9 1000 [0.0056] 1550 [0.0086] Mg 4.04 5.77 318 [0.0033] 922 [0.0095]
Al 4.48 6.42 394 [0.0029] 933 [0.0070] Sn(white) 19.7 3.32 170 [0.0011] 505 [0.0032]
Cu 10.6 4.76 315 [0.0018] 1356 [0.0078] Ag 17.9 3.65 215 [0.0012] 1234 [0.0071]
Au 32.7 3.24 170 [0.00068] 1337 [0.0054] Zn 10.9 4.21 234 [0.0017] 693 [0.0050]
Mo 15.9 6.25 380 [0.0008] 2890 [0.0064] W 30.5 5.22 310 [0.0005] 3683 [0.0061]
Fe 9.44 5.00 420 [0.0025] 1808 [0.011] Ni 9.75 5.04 375 [0.0021] 1726 [0.0096]
Pd 17.7 2.16 275 [0.0046] 1825 [0.031] Pt 32.4 3.26 230 [0.0009] 2045 [0.0082]

aTaken from Ref. [40].
bTaken from Ref. [85].

APPENDIX D: DISPLACEMENT-DISPLACEMENT
CORRELATION FUNCTIONS OF THERMALIZED

CRYSTALS

In this Appendix, we derive Eq. (57) in Sec. V B
for a classical Debye solid. Since Gμν(r) is defined for
the complex variables as Gμν(r) ≡ 〈uμ(r + R,t) u∗

ν(R,t)〉 =
〈〈uμ(r + R,t) uν(R, − t)〉R〉th, we obtain its Fourier transform
by using properties of the autocovariance:

G̃μν(k) = 〈ũμ(k,t) ũν(−k, − t)〉th = 〈ũμ(k,t) ũ∗
ν(k,t)〉th,

(D1)

where 〈. . .〉R means the average over the positions R and,
〈. . .〉th means a canonical ensemble average.

Using normal coordinates (39), Eq. (D1) simplifies as

G̃μν(k) =
d∑

s,s ′=1

ε̂μ
s (k)ε̂ν

s ′ (k)〈ũs(k) ũ∗
s ′ (k) ei[ωs (k)−ωs′ (k)]t 〉th

=
d∑

s=1

ε̂μ
s (k)ε̂ν

s (k)〈ũs(k) ũ∗
s (k)〉th, (D2)

where ε̂
μ
s (k) is the μ component of a unit polarization vector

ε̂s(k) and we used the fact that normal coordinates with
different polarizations are independent of one another.

Applying the equipartition theorem into Eq. (D2), we obtain
the small-|k| behavior of G̃μν(k):

G̃μν(k) =
d∑

s=1

ε̂
μ
s (k)ε̂ν

s (k)

m ω2
s (k)

kBT (D3)

≈
d∑

s=1

ε̂
μ
s (k)ε̂ν

s (k)

mc2|k|2 kBT = δμ,ν

T

|k|2 , (D4)

where the degenerate dispersion relations (47) for a simple
harmonic crystal in Rd and the closure relation (42) are used
in Eq. (D4). Here, T is defined in Eq. (54).

APPENDIX E: DEBYE TEMPERATURES AND MELTING
POINTS OF SOME SOLIDS

In this Appendix, we estimate two quantities T D ≡
kBTD/mc2 and T M ≡ kBTM/mc2 from experimental data of
some solids and list them in Table III. These two quantities
correspond to the Debye temperature TD and melting point
TM , respectively, in the unit of the dimensionless temperature
T , which is defined in Eq. (54).
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[5] E. C. Oğuz, J. E. S. Socolar, P. J. Steinhardt, and S. Torquato,
Hyperuniformity of quasicrystals, Phys. Rev. B 95, 054119
(2017).

[6] C. E. Zachary, Y. Jiao, and S. Torquato, Hyperuniformity,
quasi-long-range correlations, and void-space constraints in
maximally random jammed particle packings. I. Polydisperse
spheres, Phys. Rev. E 83, 051308 (2011).

[7] M. Florescu, S. Torquato, and P. J. Steinhardt, Designer disor-
dered materials with large, complete photonic band gaps, Proc.
Natl. Acad. Sci. USA 106, 20658 (2009).

[8] M. Florescu, P. J. Steinhardt, and S. Torquato, Optical cavities
and waveguides in hyperuniform disordered photonic solids,
Phys. Rev. B 87, 165116 (2013).

[9] O. Leseur, R. Pierrat, and R. Carminati, High-density hyperuni-
form materials can be transparent, Optica 3, 763 (2016).

[10] W. Man, M. Florescu, E. P. Williamson, Y. He, S. R. Hashemizad,
B. Y. C. Leung, D. R. Liner, S. Torquato, P. M. Chaikin, and
P. J. Steinhardt, Isotropic band gaps and freeform waveguides
observed in hyperuniform disordered photonic solids, Proc. Natl.
Acad. Sci. USA 110, 15886 (2013).

[11] Q. Le Thien, D. McDermott, C. J. O. Reichhardt, and C.
Reichhardt, Enhanced pinning for vortices in hyperuniform
pinning arrays and emergent hyperuniform vortex configu-
rations with quenched disorder, Phys. Rev. B 96, 094516
(2017).

054105-16

https://doi.org/10.1103/PhysRevE.68.041113
https://doi.org/10.1103/PhysRevE.68.041113
https://doi.org/10.1103/PhysRevE.68.041113
https://doi.org/10.1103/PhysRevE.68.041113
https://doi.org/10.1088/1742-5468/2009/12/P12015
https://doi.org/10.1088/1742-5468/2009/12/P12015
https://doi.org/10.1088/1742-5468/2009/12/P12015
https://doi.org/10.1103/PhysRevE.94.022122
https://doi.org/10.1103/PhysRevE.94.022122
https://doi.org/10.1103/PhysRevE.94.022122
https://doi.org/10.1103/PhysRevE.94.022122
https://doi.org/10.1088/1361-648X/aa6944
https://doi.org/10.1088/1361-648X/aa6944
https://doi.org/10.1088/1361-648X/aa6944
https://doi.org/10.1088/1361-648X/aa6944
https://doi.org/10.1103/PhysRevB.95.054119
https://doi.org/10.1103/PhysRevB.95.054119
https://doi.org/10.1103/PhysRevB.95.054119
https://doi.org/10.1103/PhysRevB.95.054119
https://doi.org/10.1103/PhysRevE.83.051308
https://doi.org/10.1103/PhysRevE.83.051308
https://doi.org/10.1103/PhysRevE.83.051308
https://doi.org/10.1103/PhysRevE.83.051308
https://doi.org/10.1073/pnas.0907744106
https://doi.org/10.1073/pnas.0907744106
https://doi.org/10.1073/pnas.0907744106
https://doi.org/10.1073/pnas.0907744106
https://doi.org/10.1103/PhysRevB.87.165116
https://doi.org/10.1103/PhysRevB.87.165116
https://doi.org/10.1103/PhysRevB.87.165116
https://doi.org/10.1103/PhysRevB.87.165116
https://doi.org/10.1364/OPTICA.3.000763
https://doi.org/10.1364/OPTICA.3.000763
https://doi.org/10.1364/OPTICA.3.000763
https://doi.org/10.1364/OPTICA.3.000763
https://doi.org/10.1073/pnas.1307879110
https://doi.org/10.1073/pnas.1307879110
https://doi.org/10.1073/pnas.1307879110
https://doi.org/10.1073/pnas.1307879110
https://doi.org/10.1103/PhysRevB.96.094516
https://doi.org/10.1103/PhysRevB.96.094516
https://doi.org/10.1103/PhysRevB.96.094516
https://doi.org/10.1103/PhysRevB.96.094516


EFFECT OF IMPERFECTIONS ON THE … PHYSICAL REVIEW B 97, 054105 (2018)

[12] G. Zhang, F. Stillinger, and S. Torquato, Transport, geometrical,
and topological properties of stealthy disordered hyperuniform
two-phase systems, J. Chem. Phys. 145, 244109 (2016).

[13] L. S. Froufe-Pérez, M. Engel, J. J. Sáenz, and F. Scheffold, Band
gap formation and anderson localization in disordered photonic
materials with structural correlations, Proc. Natl. Acad. Sci. USA
114, 9570 (2017).

[14] O. U. Uche, F. H. Stillinger, and S. Torquato, Constraints on
collective density variables: Two dimensions, Phys. Rev. E 70,
046122 (2004).

[15] R. D. Batten, F. H. Stillinger, and S. Torquato, Classical dis-
ordered ground states: Super-ideal gases and stealth and equi-
luminous materials, J. Appl. Phys. 104, 033504 (2008).

[16] S. Torquato, G. Zhang, and F. H. Stillinger, Ensemble Theory for
Stealthy Hyperuniform Disordered Ground States, Phys. Rev. X
5, 021020 (2015).

[17] G. Zhang, F. H. Stillinger, and S. Torquato, Ground states
of stealthy hyperuniform potentials: I. Entropically favored
configurations, Phys. Rev. E 92, 022119 (2015).

[18] G. Zhang, F. H. Stillinger, and S. Torquato, Ground states
of stealthy hyperuniform potentials. II. Stacked-slider phases,
Phys. Rev. E 92, 022120 (2015).

[19] F. J. Dyson, Statistical theory of the energy levels of complex
systems. I, J. Math. Phys. 3, 140 (1962).

[20] B. Jancovici, Exact Results for the Two-Dimensional One-
Component Plasma, Phys. Rev. Lett. 46, 386 (1981).

[21] J. L. Lebowitz, Charge fluctuations in coulomb systems, Phys.
Rev. A 27, 1491 (1983).

[22] E. Lomba, J.-J. Weis, and S. Torquato, Disordered hyperunifor-
mity in two-component nonadditive hard-disk plasmas, Phys.
Rev. E 96, 062126 (2017).

[23] E. Lomba, J.-J. Weis, and S. Torquato, Disordered multihy-
peruniformity derived from binary plasmas, Phys. Rev. E 97,
010102(R) (2018).

[24] A. Scardicchio, C. E. Zachary, and S. Torquato, Statistical
properties of determinantal point processes in high-dimensional
euclidean spaces, Phys. Rev. E 79, 041108 (2009).

[25] R. Feynman and M. Cohen, Energy spectrum of the excitations
in liquid helium, Phys. Rev. 102, 1189 (1956).

[26] S. Torquato, A. Scardicchio, and C. E. Zachary, Point processes
in arbitrary dimension from fermionic gases, random matrix
theory, and number theory, J. Stat. Mech: Theory Exp. (2008)
P11019.

[27] Y. Jiao and S. Torquato, Maximally random jammed packings
of Platonic solids: Hyperuniform long-range correlations and
isostaticity, Phys. Rev. E 84, 041309 (2011).

[28] L. Berthier, P. Chaudhuri, C. Coulais, O. Dauchot, and P. Sollich,
Suppressed Compressibility at Large Scale in Jammed Packings
of Size-Disperse Spheres, Phys. Rev. Lett. 106, 120601 (2011).

[29] A. Donev, F. H. Stillinger, and S. Torquato, Unexpected Density
Fluctuations in Jammed Disordered Sphere Packings, Phys. Rev.
Lett. 95, 090604 (2005).

[30] D. Hexner and D. Levine, Hyperuniformity of Critical Absorbing
States, Phys. Rev. Lett. 114, 110602 (2015).

[31] J. H. Weijs, R. Jeanneret, R. Dreyfus, and D. Bartolo, Emergent
Hyperuniformity in Periodically Driven Emulsions, Phys. Rev.
Lett. 115, 108301 (2015).

[32] K. J. Schrenk and D. Frenkel, Communication: Evidence for
non-ergodicity in quiescent states of periodically sheared sus-
pensions, J. Chem. Phys. 143, 241103 (2015).

[33] E. Tjhung and L. Berthier, Criticality and correlated dynamics
at the irreversibility transition in periodically driven colloidal
suspensions, J. Stat. Mech: Theory Exp. (2016) 033501.

[34] D. Hexner and D. Levine, Noise, Diffusion, and Hyperunifor-
mity, Phys. Rev. Lett. 118, 020601 (2017).

[35] I. Lesanovsky and J. P. Garrahan, Out-of-equilibrium structures
in strongly interacting rydberg gases with dissipation, Phys. Rev.
A 90, 011603 (2014).

[36] Y. Jiao, T. Lau, H. Hatzikirou, M. Meyer-Hermann, J. C.
Corbo, and S. Torquato, Avian photoreceptor patterns represent
a disordered hyperuniform solution to a multiscale packing
problem, Phys. Rev. E 89, 022721 (2014).

[37] D. Chen and S. Torquato, Designing disordered hyperuniform
two-phase materials with novel physical properties, Acta Mater.
142, 152 (2018).

[38] H. L. Montgomery, The pair correlation of zeros of the zeta
function, in Proc. Symp. Pure Math. 24, 181 (1973).

[39] S. Torquato, Hyperuniform States of Matter, arXiv:1801.06924
[Phys. Rep. (to be published)].

[40] N. W. Ashcroft and N. D. Mermin, Solid State Physics
(Brooks/Cole, Cengage Learning, Belmont, 1976).

[41] C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley,
Hoboken, NJ, 2005).

[42] P. M. Chaikin and T. C. Lubensky, Principles of Condensed
Matter Physics (Cambridge University Press, Cambridge, 2000).

[43] G. E. Dieter, Mechanical Metallurgy, 3rd ed. (McGraw-Hill,
New York, 1986).

[44] J. Kondo, Resistance minimum in dilute magnetic alloys, Prog.
Theor. Phys. 32, 37 (1964).

[45] A. C. Hewson and J. Kondo, Kondo effect, Scholarpedia 4, 7529
(2009).

[46] J. E. S. Socolar, T. C. Lubensky, and P. J. Steinhardt, Phonons,
phasons, and dislocations in quasicrystals, Phys. Rev. B 34, 3345
(1986).

[47] O. U. Uche, S. Torquato, and F. H. Stillinger, Collective coor-
dinate control of density distributions, Phys. Rev. E 74, 031104
(2006).

[48] C. E. Zachary and S. Torquato, Anomalous local coordination,
density fluctuations, and void statistics in disordered hyperuni-
form many-particle ground states, Phys. Rev. E 83, 051133
(2011).

[49] S. Atkinson, G. Zhang, A. B. Hopkins, and S. Torquato, Critical
slowing down and hyperuniformity on approach to jamming,
Phys. Rev. E 94, 012902 (2016).

[50] E. Tjhung and L. Berthier, Hyperuniform Density Fluctu-
ations and Diverging Dynamic Correlations in Periodically
Driven Colloidal Suspensions, Phys. Rev. Lett. 114, 148301
(2015).

[51] D. Hexner, P. M. Chaikin, and D. Levine, Enhanced hyperuni-
formity from random reorganization, Proc. Natl. Acad. Sci. USA
114, 4294 (2017).

[52] Z. Ma and S. Torquato, Random scalar fields and hyperunifor-
mity, J. Appl. Phys. 121, 244904 (2017).

[53] R. Kurita and E. R. Weeks, Experimental study of random-
close-packed colloidal particles, Phys. Rev. E 82, 011403
(2010).

[54] R. Dreyfus, Y. Xu, T. Still, L. A. Hough, A. G. Yodh, and
S. Torquato, Diagnosing hyperuniformity in two-dimensional,
disordered, jammed packings of soft spheres, Phys. Rev. E 91,
012302 (2015).

054105-17

https://doi.org/10.1063/1.4972862
https://doi.org/10.1063/1.4972862
https://doi.org/10.1063/1.4972862
https://doi.org/10.1063/1.4972862
https://doi.org/10.1073/pnas.1705130114
https://doi.org/10.1073/pnas.1705130114
https://doi.org/10.1073/pnas.1705130114
https://doi.org/10.1073/pnas.1705130114
https://doi.org/10.1103/PhysRevE.70.046122
https://doi.org/10.1103/PhysRevE.70.046122
https://doi.org/10.1103/PhysRevE.70.046122
https://doi.org/10.1103/PhysRevE.70.046122
https://doi.org/10.1063/1.2961314
https://doi.org/10.1063/1.2961314
https://doi.org/10.1063/1.2961314
https://doi.org/10.1063/1.2961314
https://doi.org/10.1103/PhysRevX.5.021020
https://doi.org/10.1103/PhysRevX.5.021020
https://doi.org/10.1103/PhysRevX.5.021020
https://doi.org/10.1103/PhysRevX.5.021020
https://doi.org/10.1103/PhysRevE.92.022119
https://doi.org/10.1103/PhysRevE.92.022119
https://doi.org/10.1103/PhysRevE.92.022119
https://doi.org/10.1103/PhysRevE.92.022119
https://doi.org/10.1103/PhysRevE.92.022120
https://doi.org/10.1103/PhysRevE.92.022120
https://doi.org/10.1103/PhysRevE.92.022120
https://doi.org/10.1103/PhysRevE.92.022120
https://doi.org/10.1063/1.1703773
https://doi.org/10.1063/1.1703773
https://doi.org/10.1063/1.1703773
https://doi.org/10.1063/1.1703773
https://doi.org/10.1103/PhysRevLett.46.386
https://doi.org/10.1103/PhysRevLett.46.386
https://doi.org/10.1103/PhysRevLett.46.386
https://doi.org/10.1103/PhysRevLett.46.386
https://doi.org/10.1103/PhysRevA.27.1491
https://doi.org/10.1103/PhysRevA.27.1491
https://doi.org/10.1103/PhysRevA.27.1491
https://doi.org/10.1103/PhysRevA.27.1491
https://doi.org/10.1103/PhysRevE.96.062126
https://doi.org/10.1103/PhysRevE.96.062126
https://doi.org/10.1103/PhysRevE.96.062126
https://doi.org/10.1103/PhysRevE.96.062126
https://doi.org/10.1103/PhysRevE.97.010102
https://doi.org/10.1103/PhysRevE.97.010102
https://doi.org/10.1103/PhysRevE.97.010102
https://doi.org/10.1103/PhysRevE.97.010102
https://doi.org/10.1103/PhysRevE.79.041108
https://doi.org/10.1103/PhysRevE.79.041108
https://doi.org/10.1103/PhysRevE.79.041108
https://doi.org/10.1103/PhysRevE.79.041108
https://doi.org/10.1103/PhysRev.102.1189
https://doi.org/10.1103/PhysRev.102.1189
https://doi.org/10.1103/PhysRev.102.1189
https://doi.org/10.1103/PhysRev.102.1189
https://doi.org/10.1088/1742-5468/2008/11/P11019
https://doi.org/10.1088/1742-5468/2008/11/P11019
https://doi.org/10.1088/1742-5468/2008/11/P11019
https://doi.org/10.1103/PhysRevE.84.041309
https://doi.org/10.1103/PhysRevE.84.041309
https://doi.org/10.1103/PhysRevE.84.041309
https://doi.org/10.1103/PhysRevE.84.041309
https://doi.org/10.1103/PhysRevLett.106.120601
https://doi.org/10.1103/PhysRevLett.106.120601
https://doi.org/10.1103/PhysRevLett.106.120601
https://doi.org/10.1103/PhysRevLett.106.120601
https://doi.org/10.1103/PhysRevLett.95.090604
https://doi.org/10.1103/PhysRevLett.95.090604
https://doi.org/10.1103/PhysRevLett.95.090604
https://doi.org/10.1103/PhysRevLett.95.090604
https://doi.org/10.1103/PhysRevLett.114.110602
https://doi.org/10.1103/PhysRevLett.114.110602
https://doi.org/10.1103/PhysRevLett.114.110602
https://doi.org/10.1103/PhysRevLett.114.110602
https://doi.org/10.1103/PhysRevLett.115.108301
https://doi.org/10.1103/PhysRevLett.115.108301
https://doi.org/10.1103/PhysRevLett.115.108301
https://doi.org/10.1103/PhysRevLett.115.108301
https://doi.org/10.1063/1.4938999
https://doi.org/10.1063/1.4938999
https://doi.org/10.1063/1.4938999
https://doi.org/10.1063/1.4938999
https://doi.org/10.1088/1742-5468/2016/03/033501
https://doi.org/10.1088/1742-5468/2016/03/033501
https://doi.org/10.1088/1742-5468/2016/03/033501
https://doi.org/10.1103/PhysRevLett.118.020601
https://doi.org/10.1103/PhysRevLett.118.020601
https://doi.org/10.1103/PhysRevLett.118.020601
https://doi.org/10.1103/PhysRevLett.118.020601
https://doi.org/10.1103/PhysRevA.90.011603
https://doi.org/10.1103/PhysRevA.90.011603
https://doi.org/10.1103/PhysRevA.90.011603
https://doi.org/10.1103/PhysRevA.90.011603
https://doi.org/10.1103/PhysRevE.89.022721
https://doi.org/10.1103/PhysRevE.89.022721
https://doi.org/10.1103/PhysRevE.89.022721
https://doi.org/10.1103/PhysRevE.89.022721
https://doi.org/10.1016/j.actamat.2017.09.053
https://doi.org/10.1016/j.actamat.2017.09.053
https://doi.org/10.1016/j.actamat.2017.09.053
https://doi.org/10.1016/j.actamat.2017.09.053
http://arxiv.org/abs/arXiv:1801.06924
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1143/PTP.32.37
https://doi.org/10.4249/scholarpedia.7529
https://doi.org/10.4249/scholarpedia.7529
https://doi.org/10.4249/scholarpedia.7529
https://doi.org/10.4249/scholarpedia.7529
https://doi.org/10.1103/PhysRevB.34.3345
https://doi.org/10.1103/PhysRevB.34.3345
https://doi.org/10.1103/PhysRevB.34.3345
https://doi.org/10.1103/PhysRevB.34.3345
https://doi.org/10.1103/PhysRevE.74.031104
https://doi.org/10.1103/PhysRevE.74.031104
https://doi.org/10.1103/PhysRevE.74.031104
https://doi.org/10.1103/PhysRevE.74.031104
https://doi.org/10.1103/PhysRevE.83.051133
https://doi.org/10.1103/PhysRevE.83.051133
https://doi.org/10.1103/PhysRevE.83.051133
https://doi.org/10.1103/PhysRevE.83.051133
https://doi.org/10.1103/PhysRevE.94.012902
https://doi.org/10.1103/PhysRevE.94.012902
https://doi.org/10.1103/PhysRevE.94.012902
https://doi.org/10.1103/PhysRevE.94.012902
https://doi.org/10.1103/PhysRevLett.114.148301
https://doi.org/10.1103/PhysRevLett.114.148301
https://doi.org/10.1103/PhysRevLett.114.148301
https://doi.org/10.1103/PhysRevLett.114.148301
https://doi.org/10.1073/pnas.1619260114
https://doi.org/10.1073/pnas.1619260114
https://doi.org/10.1073/pnas.1619260114
https://doi.org/10.1073/pnas.1619260114
https://doi.org/10.1063/1.4989492
https://doi.org/10.1063/1.4989492
https://doi.org/10.1063/1.4989492
https://doi.org/10.1063/1.4989492
https://doi.org/10.1103/PhysRevE.82.011403
https://doi.org/10.1103/PhysRevE.82.011403
https://doi.org/10.1103/PhysRevE.82.011403
https://doi.org/10.1103/PhysRevE.82.011403
https://doi.org/10.1103/PhysRevE.91.012302
https://doi.org/10.1103/PhysRevE.91.012302
https://doi.org/10.1103/PhysRevE.91.012302
https://doi.org/10.1103/PhysRevE.91.012302


JAEUK KIM AND SALVATORE TORQUATO PHYSICAL REVIEW B 97, 054105 (2018)

[55] J. Ricouvier, R. Pierrat, R. Carminati, P. Tabeling, and P.
Yazhgur, Optimizing Hyperuniformity in Self-Assembled Bidis-
perse Emulsions, Phys. Rev. Lett. 119, 208001 (2017).

[56] R. Xie, G. G. Long, S. J. Weigand, S. C. Moss, T. Carvalho,
S. Roorda, M. Hejna, S. Torquato, and P. J. Steinhardt, Hyper-
uniformity in amorphous silicon based on the measurement of
the infinite-wavelength limit of the structure factor, Proc. Natl.
Acad. Sci. USA 110, 13250 (2013).

[57] G. Zito, G. Rusciano, G. Pesce, A. Malafronte, R. Di Girolamo,
G. Ausanio, A. Vecchione, and A. Sasso, Nanoscale engineering
of two-dimensional disordered hyperuniform block-copolymer
assemblies, Phys. Rev. E 92, 050601 (2015).

[58] T. R. Welberry, G. H. Miller, and C. E. Carroll, Paracrystals
and growth-disorder models, Acta Crystallogr., Sect. A: Found.
Crystallogr. 36, 921 (1980).

[59] A. Gabrielli and S. Torquato, Voronoi and void statistics for
superhomogeneous point processes, Phys. Rev. E 70, 041105
(2004).

[60] A. Gabrielli, Point processes and stochastic displacement fields,
Phys. Rev. E 70, 066131 (2004).

[61] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids
(Academic Press, New York, 2013).

[62] L. Pietronero, A. Gabrielli, and F. S. Labini, Statistical physics
for cosmic structures, Phys. A (Amsterdam) 306, 395 (2002).

[63] E. Giamello, M. Chiesa, and M. C. Paganini, Point Defects in
Electron Paramagnetic Resonance, in Defects at Oxide Surfaces,
edited by Jacques Jupille and Geoff Thornton (Springer, Cham,
2015), pp. 303–326.

[64] H. Peisl, Defect properties from X-ray scattering experiments,
J. Phys. Colloq. 37, C7 (1976).

[65] P. H. Dederichs, The theory of diffuse X-ray scattering and
its application to the study of point defects and their clusters,
J. Phys. F: Met. Phys. 3, 471 (1973).

[66] K. Huang, X-ray reflexions from dilute solid solutions, Proc. R.
Soc. London, Ser. A 190, 102 (1947).

[67] A. T. Chieco, R. Dreyfus, and D. J. Durian, Characterizing pixel
and point patterns with a hyperuniformity disorder length, Phys.
Rev. E 96, 032909 (2017).

[68] A. Gabrielli, M. Joyce, and F. S. Labini, Glass-like universe:
Real-space correlation properties of standard cosmological mod-
els, Phys. Rev. D 65, 083523 (2002).

[69] W. J. Stroud and R. P. Millane, Cylindrically averaged diffraction
by distorted lattices, Proc. R. Soc. London, Ser. A 452, 151
(1996).

[70] M. Sodin and B. Tsirelson, Random complex zeros, II. Perturbed
lattice, Isr. J. Math. 152, 105 (2006).

[71] Y. Peres and A. Sly, Rigidity and tolerance for perturbed lattices,
arXiv:1409.4490.

[72] S. Ghosh and J. Lebowitz, Number rigidity in superhomoge-
neous random point fields, J. Stat. Phys. 166, 1016 (2016).

[73] G. Efstathiou, M. Davis, S. White, and C. Frenk, Numerical tech-
niques for large cosmological N-body simulations, Astrophys.
J., Suppl. Ser. 57, 241 (1985).

[74] E. Renshaw, Two-dimensional spectral analysis for marked point
processes, Biom. J. 44, 718 (2002).

[75] D. S. Novikov, J. H. Jensen, J. A. Helpern, and E. Fieremans,
Revealing mesoscopic structural universality with diffusion,
Proc. Natl. Acad. Sci. USA 111, 5088 (2014).

[76] A. Gabrielli, M. Joyce, and S. Torquato, Tilings of space and
superhomogeneous point processes, Phys. Rev. E 77, 031125
(2008).

[77] J. Nolan, Stable Distributions: Models for Heavy-tailed Data
(Birkhauser, New York, 2003).

[78] Y. Imry, Long-range order in two dimensions, Crit. Rev. Solid
State Mater. Sci. 8, 157 (1979).

[79] W. Jones and N. H. March, Theoretical solid state physics,
volume 1: Perfect lattices in Equilibrium, Dover ed. (Wiley, New
York, 1973).

[80] G. Zhang, F. H. Stillinger, and S. Torquato, The perfect glass
paradigm: Disordered hyperuniform glasses down to absolute
zero, Sci. Rep. 6, 36963 (2016).

[81] S. Atkinson, F. H. Stillinger, and S. Torquato, Static structural
signatures of nearly jammed disordered and ordered hard-sphere
packings: Direct correlation function, Phys. Rev. E 94, 032902
(2016).

[82] X. Zheng and J. Earnshaw, On the Lindemann criterion in 2D,
Europhys. Lett. 41, 635 (1998).

[83] R. D. Batten, F. H. Stillinger, and S. Torquato, Interactions
leading to disordered ground states and unusual low-temperature
behavior, Phys. Rev. E 80, 031105 (2009).

[84] J. Kim and S. Torquato, Effect of window shape on the detection
of hyperuniformity via the local number variance, J. Stat. Mech:
Theory Exp. (2017) 013402.

[85] Edited by D. R. Lide, CRC Handbook of Chemistry and Physics,
84th ed. (CRC Press, Boca Raton, FL, 2003).

[86] R. Barabash, J. Chung, and M. Thorpe, Lattice and continuum
theories of Huang scattering, J. Phys.: Condens. Matter 11, 3075
(1999).

054105-18

https://doi.org/10.1103/PhysRevLett.119.208001
https://doi.org/10.1103/PhysRevLett.119.208001
https://doi.org/10.1103/PhysRevLett.119.208001
https://doi.org/10.1103/PhysRevLett.119.208001
https://doi.org/10.1073/pnas.1220106110
https://doi.org/10.1073/pnas.1220106110
https://doi.org/10.1073/pnas.1220106110
https://doi.org/10.1073/pnas.1220106110
https://doi.org/10.1103/PhysRevE.92.050601
https://doi.org/10.1103/PhysRevE.92.050601
https://doi.org/10.1103/PhysRevE.92.050601
https://doi.org/10.1103/PhysRevE.92.050601
https://doi.org/10.1107/S0567739480001921
https://doi.org/10.1107/S0567739480001921
https://doi.org/10.1107/S0567739480001921
https://doi.org/10.1107/S0567739480001921
https://doi.org/10.1103/PhysRevE.70.041105
https://doi.org/10.1103/PhysRevE.70.041105
https://doi.org/10.1103/PhysRevE.70.041105
https://doi.org/10.1103/PhysRevE.70.041105
https://doi.org/10.1103/PhysRevE.70.066131
https://doi.org/10.1103/PhysRevE.70.066131
https://doi.org/10.1103/PhysRevE.70.066131
https://doi.org/10.1103/PhysRevE.70.066131
https://doi.org/10.1016/S0378-4371(02)00517-4
https://doi.org/10.1016/S0378-4371(02)00517-4
https://doi.org/10.1016/S0378-4371(02)00517-4
https://doi.org/10.1016/S0378-4371(02)00517-4
https://doi.org/10.1051/jphyscol:1976705
https://doi.org/10.1051/jphyscol:1976705
https://doi.org/10.1051/jphyscol:1976705
https://doi.org/10.1051/jphyscol:1976705
https://doi.org/10.1088/0305-4608/3/2/010
https://doi.org/10.1088/0305-4608/3/2/010
https://doi.org/10.1088/0305-4608/3/2/010
https://doi.org/10.1088/0305-4608/3/2/010
https://doi.org/10.1098/rspa.1947.0064
https://doi.org/10.1098/rspa.1947.0064
https://doi.org/10.1098/rspa.1947.0064
https://doi.org/10.1098/rspa.1947.0064
https://doi.org/10.1103/PhysRevE.96.032909
https://doi.org/10.1103/PhysRevE.96.032909
https://doi.org/10.1103/PhysRevE.96.032909
https://doi.org/10.1103/PhysRevE.96.032909
https://doi.org/10.1103/PhysRevD.65.083523
https://doi.org/10.1103/PhysRevD.65.083523
https://doi.org/10.1103/PhysRevD.65.083523
https://doi.org/10.1103/PhysRevD.65.083523
https://doi.org/10.1098/rspa.1996.0009
https://doi.org/10.1098/rspa.1996.0009
https://doi.org/10.1098/rspa.1996.0009
https://doi.org/10.1098/rspa.1996.0009
https://doi.org/10.1007/BF02771978
https://doi.org/10.1007/BF02771978
https://doi.org/10.1007/BF02771978
https://doi.org/10.1007/BF02771978
http://arxiv.org/abs/arXiv:1409.4490
https://doi.org/10.1007/s10955-016-1633-6
https://doi.org/10.1007/s10955-016-1633-6
https://doi.org/10.1007/s10955-016-1633-6
https://doi.org/10.1007/s10955-016-1633-6
https://doi.org/10.1086/191003
https://doi.org/10.1086/191003
https://doi.org/10.1086/191003
https://doi.org/10.1086/191003
https://doi.org/10.1002/1521-4036(200209)44:6<718::AID-BIMJ718>3.0.CO;2-6
https://doi.org/10.1002/1521-4036(200209)44:6<718::AID-BIMJ718>3.0.CO;2-6
https://doi.org/10.1002/1521-4036(200209)44:6<718::AID-BIMJ718>3.0.CO;2-6
https://doi.org/10.1002/1521-4036(200209)44:6<718::AID-BIMJ718>3.0.CO;2-6
https://doi.org/10.1073/pnas.1316944111
https://doi.org/10.1073/pnas.1316944111
https://doi.org/10.1073/pnas.1316944111
https://doi.org/10.1073/pnas.1316944111
https://doi.org/10.1103/PhysRevE.77.031125
https://doi.org/10.1103/PhysRevE.77.031125
https://doi.org/10.1103/PhysRevE.77.031125
https://doi.org/10.1103/PhysRevE.77.031125
https://doi.org/10.1080/10408437908243622
https://doi.org/10.1080/10408437908243622
https://doi.org/10.1080/10408437908243622
https://doi.org/10.1080/10408437908243622
https://doi.org/10.1038/srep36963
https://doi.org/10.1038/srep36963
https://doi.org/10.1038/srep36963
https://doi.org/10.1038/srep36963
https://doi.org/10.1103/PhysRevE.94.032902
https://doi.org/10.1103/PhysRevE.94.032902
https://doi.org/10.1103/PhysRevE.94.032902
https://doi.org/10.1103/PhysRevE.94.032902
https://doi.org/10.1209/epl/i1998-00205-7
https://doi.org/10.1209/epl/i1998-00205-7
https://doi.org/10.1209/epl/i1998-00205-7
https://doi.org/10.1209/epl/i1998-00205-7
https://doi.org/10.1103/PhysRevE.80.031105
https://doi.org/10.1103/PhysRevE.80.031105
https://doi.org/10.1103/PhysRevE.80.031105
https://doi.org/10.1103/PhysRevE.80.031105
https://doi.org/10.1088/1742-5468/aa4f9d
https://doi.org/10.1088/1742-5468/aa4f9d
https://doi.org/10.1088/1742-5468/aa4f9d
https://doi.org/10.1088/0953-8984/11/15/013
https://doi.org/10.1088/0953-8984/11/15/013
https://doi.org/10.1088/0953-8984/11/15/013
https://doi.org/10.1088/0953-8984/11/15/013



