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Influence of defects on the thermal conductivity of compressed LiF
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Defect formation in LiF, which is used as an observation window in ramp and shock experiments, has significant
effects on its transmission properties. Given the extreme conditions of the experiments it is hard to measure the
change in transmission directly. Using molecular dynamics, we estimate the change in conductivity as a function
of the concentration of likely point and extended defects using a Green-Kubo technique with careful treatment
of size effects. With this data, we form a model of the mean behavior and its estimated error; then, we use this
model to predict the conductivity of a large sample of defective LiF resulting from a direct simulation of ramp
compression as a demonstration of the accuracy of its predictions. Given estimates of defect densities in a LiF
window used in an experiment, the model can be used to correct the observations of thermal energy through
the window. In addition, the methodology we develop is extensible to modeling, with quantified uncertainty, the
effects of a variety of defects on the thermal conductivity of solid materials.
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I. INTRODUCTION

LiF is an ionic solid that is extremely transparent to short
wavelength radiation due to its large band gap and, hence,
is commonly used in observation optics for ramp and shock
loading experiments. These high-rate experiments [1] can
reach strain rates of 1010 s−1 and inevitably introduce defects
in the LiF windows which affect their transmission properties
and, thus, the accuracy of the observations. Given the extreme
conditions of the experiments it is difficult to measure the
change in transmission directly during the loading process.
Since the experiments are nonequilibrium processes, it is
likely that they result in a population of defects in excess of
equilibrium concentrations derived from energies of formation
and possibly of different types than observed at ambient
conditions [2,3].

The myriad variety of possible lattice defects fall into
the broad categories of: point (e.g., vacancies), line (e.g.,
dislocations), surface (e.g., stacking faults), and volume (e.g.,
voids) defects. Given the technological importance of LiF,
its properties and the influence of defects on its utility has
been studied for some time. In alkali halides, like LiF, the
on-site Schottky vacancy is considered the predominant pre-
existing defect [4,5]. Others types, such as Frenkel point
defects [6], dislocation lines [7,8], areal stacking faults [9,10],
and crystal boundaries [11] have been observed, particularly
after the material has undergone irradiation [6], plastic defor-
mation [12,13], or shock [14]. Also there is evidence of strong
interactions between defect types. Specifically, “decorated”
dislocations have been observed where the compressive part
of the stress field of the dislocations attract point defects to
dislocation cores [15,16].

Classical theory of the effect of defects on phonon scattering
and thermal conductivity is typically limited to the linear in-
fluence of defect density expected at the dilute/well-separated
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limit. This classical theory is more informative about size,
mass, and frequency effects than defect correlation effects
that are likely to occur at high defect densities. The theory
is typically based on solutions to the related elasticity problem
and characteristic scattering times and related properties in
the context of kinetic theory have been derived for: point
impurities [17–20], dislocations [21–24], stacking faults [25],
and grain boundaries [26]. Summaries of these findings can
be found in the texts by Ziman [27], Srivastava [28], and
Kaviany [29]. There is experimental evidence of significant
departures from classical predictions in LiF, particularly in
phonon-dislocation interaction [30–32]. There have also been
computational efforts to extend or refine these theories, notably
the work of Volz and co-workers on the thermal transport par-
allel to screw dislocations [33]. Their work touched on the fact
that extended defects have geometric attributes beyond simple
densities, such as line direction and Burger’s vector for disloca-
tions [34,35]. The Kapitza resistance of tilt boundaries and the
like has also attracted study with molecular dynamics [36–38].

In this paper, we focus on estimating the effect of the
defects that are likely to appear in LiF under extreme loading
have on thermal conductivity. Given that these conditions are
not easy to investigate experimentally, the types of defects
and their densities and distributions are not well known.
Since it is not feasible to survey all likely defects in this
computational study, we chose those that are most likely
to occur given the experimental evidence and that are also
amenable to simulation. Using a Green-Kubo (GK) method
and molecular dynamics (MD), we predict the dependence of
thermal conductivity on Schottky vacancies, dislocations, and
tilt boundaries. In the process, we apply the GK technique to
computational cells much larger than typical in order to span
the range from very high defect densities to the dilute limit and
capture coordination effects. Using uncertainty quantification
(UQ) techniques we build a model of this thermal conductivity
data and compare its predictions to a direct application of the
GK method to a large, crushed LiF system representative of
the extreme experimental conditions of interest.
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II. THEORY

As mentioned, our objective is to develop a model of the
dependence of thermal conductivity on defects in the material.
A spatial distribution of defects can be represented [39] by its
moments ρ(n). For example, a population of point defects with
locations {xi} can be characterized by:

ρ(n) = 1

V

∫
xn

∑
i

δ(x − xi) d3x = 1

V

∑
i

xn
i , (1)

where x0 = 1, x1 = x, x2 = x ⊗ x, etc. This formalism can be
extended to lines xi(ξ ), where ξ is an arc-length coordinate,
and surfaces xi(ξ1,ξ2), where ξ1,ξ2 are surface coordinates. For
instance, the zeroth moment, ρ(0), is the point density (number
of point defects per volume) for point defects such as vacancies,
the line density (length per volume) for line defects such as
dislocations, or the areal density (area per volume) for interface
defects such as grain boundaries. The higher moments, which
characterize the relative distances between the defects and
moments of mixed types such as point and line defects, can
also be constructed.

Hence, the dependence of the thermal conductivity ten-
sor on defects can be expressed as κ = κ(ρ), where ρ =
{ρ(0)

a ,ρ(1)
a , . . . ,ρ

(0)
b , . . .} is compact notation for the moments

of all the relevant defects. If we expand the functional de-
pendence of the (log of the) thermal conductivity tensor κ on
defects in moments of defect distribution, we obtain the series
representation:

log
(
κ−1

0 κ(ρ)
) = c0 +

∑
a

caρa +
∑
a,b

cabρaρb + . . . , (2)

where the coefficients ca,cab are the sensitivities of
log (κ−1

0 κ(ρ)) to first and second order effects. With the
expectation that κ → κ0, the perfect lattice conductivity, as
ρ → 0, and κ → 0 as ‖ρ‖ → ∞, we see that exp c0 becomes
the identity tensor and we expect that every (diagonal) element
of ca is negative. Also we expect, given the cubic symmetry
of LiF, that the conductivity tensor κ is diagonal, with nonzero
components relating components of the temperature gradient
to corresponding components of the heat flux. Hidden in
this notation is the usual thermodynamic dependence on
pressure/density and temperature. These variables will be held
fixed for simplicity and specified in the Methods section.

Using MD and GK we can only obtain thermal conductivity
data at specific densities with uncertainty. This uncertainty
arises from finite sampling of two ensembles: the thermody-
namic ensemble and the defect distribution at fixed ρ. Given the
typical MD cell sizes, the densities that are feasible to represent
are typically larger than typically measured defect densities
and, hence, data from the strongly correlated regime is used in
predictions of thermal conductivity in the dilute regime. For
these reasons we are motivated to create a model with inherent
uncertainty quantification and error estimation.

Following Kennedy and O’Hagan’s seminal paper [40],
Rasmussen and Williams’ text [41], and our previous
work [42,43], we use Bayesian regression to calibrate the
coefficients of Eq. (2). In particular, we employ Gaussian
process regression (GPR)

log
(
κ−1

0 κ(ρ)
) = c̃T b(ρ) + ε, (3)

where b = {1,ρa,ρaρb, . . .} is a vector of monomial basis
functions with coefficients c̃ = {ca,cab, . . .}, and ε is the noise
in the mean due to statistical finite sampling errors. GPR
is an attractive representation of the thermal conductivity as
a function of defect density since many of the necessary
integral evaluations can be done analytically, and yet it is a
flexible model of the statistical variation. Note we are using
a polynomial basis to represent deviations from an assumed
mean trend, in this case κ ∼ κ0 exp(−ρ), which is in line with
methods developed in Ref. [40].

As described more fully in the Methods section, we collect
data D ≡ [r,k] = [{ρi}I ,{log κ i}I ] to calibrate c̃ at selected de-
fect densities ρI over a number of replicates {ρi}I . Given these
observations, we obtain the (posterior) probability density of
the coefficients p(c|k,r) through Bayes’ rule

p(c|k,r) = p(k|r,c)p(c)

p(k|r) . (4)

p(k|r,c) is the likelihood of observing k given the coefficients
c and the densities r, p(c) = N (0,�) is the prior assumption
of the distribution of the coefficients with covariance �, and
p(k|r) is a normalizing factor. The form of the likelihood

p(k|r,c) = N (rT c,�̃) (5)

is tied to assumptions about the error model. In this case
we assume a diagonal covariance �̃ based on the observed
variance in k. On the other hand, the covariance structure of the
prior �, which is related to the distribution of the coefficients,
is given by a chosen covariance kernel k:

covar(ρI ,ρJ ) ≡ b(ρI )T A−1b(ρJ ) = k

(
−‖ρI − ρJ ‖2

2�2

)
.

(6)
(Here, we use a generalized radial basis function, the Matérn
kernel.) The hyper-parameter � is a correlation distance that
is tuned to the data based on the (log) likelihood. Finally, the
posterior is

p(c|k,r) ∝ N (A−1B,A−1) (7)

with A = r�̃
−1

rT + �−1 and B = r�̃
−1

k, which leads to
the model predictions: (A−1B)T b(ρ) for the mean and
bT (ρ)A−1b(ρ) for the associated covariance. The mean is also
the most likely/maximum a posteriori (MAP) estimate in this
model. For further details consult Rasmussen and Williams’
text [41].

III. METHOD

We employ an empirical potential to represent the interac-
tions of B1 LiF crystals with a variety of defects. The details
of the atomistic model of LiF have been given in a previous
publication [44]. Briefly, we use an empirical Tosi-Fumi/Born-
Mayer-Huggins potential developed by Belonoshko et al. [45]
for studying high pressure phase transitions. It has the common
long-range Coulomb plus short-range repulsive interactions
form:

� =
∑
a�b

∑
α,β

(
Aab exp(−Babrαβ) + qaqb

ε0r
2
αβ

)
, (8)
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where rαβ is the distance between atoms α and β, a ∈ {Li+,F−}
is the element type and qa is the charge of atom α, and
ε0 is the vacuum permittivity. The Belonoshko et al. pa-
rameters are {A++,A+−,A−−} = {98.933,401.319,420.463}
eV, {B++,B+−,B−−} = {3.3445,3.6900,3.3445} Å

−1
, with

charges {q+,q−} = {+1,−1}e. We use a particle-particle
particle-mesh (PPPM) [46] long/short-range split method
(with short-range cutoff 1 nm) to solve the Poisson electrostat-
ics problem for the Coulomb interactions. Additional details
are given in our previous publication, Ref. [44]. For validation
of the potential in the present context, defect energies calcu-
lated with the method described in Ref. [47] will be reported
in the Results section.

By observing the equilibrium fluctuations in the system-
wide heat flux J = J(t) in these systems, the thermal conduc-
tivity tensor κ can be obtained from the Green-Kubo formula:

κ = V

kBT 2

∫ ∞

0
〈J(0) ⊗ J(t)〉 dt , (9)

where V is the system volume, T is the temperature, and kB is
the Boltzmann constant. The bracket 〈·〉 denotes the appropri-
ate ensemble average, where 〈J〉 = 0. A formula [48,49] for
the heat flux J suitable for MD is:

J = 1

V

∑
α

(
εαI + νT

α

)
vα , (10)

where the per-atom energy εα is formed from the kinetic energy
of the atom α and a partition of the total potential energy �

to individual atoms [50], and the virial stress να for atom α in
terms of the fundamental positions xα , velocities vα , and forces
fα . (The virial expression is described in detail in an appendix
of Ref. [44].)

Interface conductance of planar defects can also be esti-
mated directly via a GK method [51,52]

G = 1

kBT 2A

∫ ∞

0
〈ḢL(0)ḢL(t)〉ds, (11)

where HL(t) is the energy of atoms in region L on one side of
the planar defect (regionR being the other withAbeing the area
of the interface between them) and hence ḢL is the total heat
flux into region L (from region R since energy is assumed to be
conserved). Direct evaluation of Eq. (11) using the expression
in Ref. [52] is infeasible to evaluate with a long-range Coulomb
interaction and a Poisson solver like PPPM since it involves
forces on atoms in L by all atoms in R. Instead we use a central
difference approximation:

ḢA(tn) ≈ 1

2�t
(HA(tn+1) − HA(tn−1)) (12)

for the change in energy of the region on one side of the planar
defect, where �t is the time step of the integration scheme and
the subscript n in tn denotes the index of the particular time.

Since we extract thermal conductivity from the molecular
dynamics of defected LiF crystals using finite size, periodic
cells, the range of representable densities and separations of the
defects is limited. To explore a wide range of defect densities
we use 323 unit cells as a nominal system volume. These
large systems allow us to explore the coordination effects of
neighboring defects on conductivity beyond that of nearest

neighbors. Furthermore, the cubic B1 crystal structure of LiF
restricts the types and relative orientations of defects such as
dislocations. As discussed in the Theory section, the proba-
ble distribution of defects can be characterized by densities
and higher moments. We marginalize mean conductivities
at specific densities over the higher moments by sampling
over atomic arrangements relaxed to equilibrium. Ten replica
systems were used to estimate the mean thermal conductivity
response and its variance for each defect density. The details
of how these configurations were obtained for each defect
type examined will be given in the following sections. In
general, perfect crystals were created at the compressed lattice
parameter associated with the selected pressure (100 GPa),
atoms were removed or rearranged to create the various defects
at random locations, and then these systems where relaxed with
isothermal, isobaric dynamics.

Attention was given to the possibility that thermalization
and stress equilibration in isobaric dynamics might lead to
the formation of additional defects or the coalescence of
defects especially for the configurations with vacancies and
dislocations. The interactions of dislocations and vacancy point
defects have already been rigorously explored [15]. Here, we
focus on the fact that a population of vacancies equal to the
number of atoms in the extra half plane in a dislocation can
result in annihilation of both. The diffusion barriers for the
vacancies and the related barriers for dislocation climb and
glide, as well as any elastic costs, prevent this from happening
instantaneously. In preliminary studies we found that vacancy
densities on the order of 3.8 nm−3 (0.15 vacancies per unit
cell) and smaller in the presence of a dislocation density
of 0.1 nm−2 were stable over the duration needed to run
the GK simulations. This vacancy density is the annihilation
limit for the particular configuration we employed (aligned
dislocation dipoles spanning half the width of a simulation cell
with a square cross section and a compressed lattice spacing,
described in more detail in the following sections), and much
higher than the actual vacancy densities for which we collected
GK data. We did observe that in some cases the dislocation
dipoles climbed which decreased the size of the extra half plane
and indicated an accumulation of vacancies at the compressive
side of the dislocations.

To estimate the ensemble average in Eq. (9) we averaged
over the constant temperature and constant defect density
ensemble using random sampling to marginalize over uncon-
trolled degrees of freedom in phase space and higher spatial
moments of the defect locations. Specifically, we constructed
and relaxed NI = 10 initial structures with initial velocities
sampled from the Maxwell-Boltzmann distribution for each
defect density ρI . Then, the time correlation required by the
GK expression, Eq. (9), was evaluated with constant energy
dynamics with a 0.5 fs time step and a 5 fs sampling interval
for each replica. This use of an ensemble of replicas with
initial conditions sampled from the appropriate distribution and
subsequent flux correlations calculated from constant energy
dynamics is standard practice and is intended to eliminate the
effects of thermostats and barostats on the flux correlation,
Eq. (9). We monitored relaxation of the heat flux J (t) after the
dynamics was switched from isobaric, isothermal to constant
energy to obtain steady statistics to evaluate the GK correlation.
Then, using Eq. (2) as a model of the finite size, finite duration
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statistical errors in the mean conductivity obtained from the
GK method, we apply Bayesian regression to calibration of
the model by:

(1) Sampling κ(ρI ) using NI replicas averaged over MI

steps at selected densities ρI .
(2) Using the sample mean and variance of the replica

data {κ i}I at each point ρI to construct a likelihood with

σI =
√

var{κ i }I
NI

being the expected error in mean κ̄I .
(3) Then, with a prior based on perfect crystal data κ(0)

sampling the posterior, Eq. (7), with a Markov chain Monte
Carlo (MCMC) method and using kernel density estimation
(KDE) to obtain a representation of the posterior distribution.

The number of time samples MI used for each ρI vary
with the computational cost of the particular system but at
least 5 ns of simulation time was used for each. Also the B1
cubic crystallographic structure renders κ of the undefected
crystal isotropic and, hence, NI = 10 nominally isotropic
replica systems with point defects yielded 30 samples of
the components of κ . Systems with (parallel) dislocations or
planar defects break this isotropy leading to 20/10 and 10/20
samples, respectively, of the components in the perpendicular
and parallel directions, respectively.

With this model we predict the thermal conductivity κ of a
large, crushed system and compare a direct, independent GK
estimate of κ . To extract density of defects in the crushed
crystal (and to check the post-relaxation defect densities
of the systems with pre-defined defects) we use the DXA
algorithm [53]. The DXA unambiguously identifies dislocation
lines using a bond-topology scheme, and, as a by-product, can
identify atoms in a noncrystalline environment. By cluster-
ing these we identify point vacancies using a preconceived
range of how many atoms should surround a vacancy. (This
scheme can fail to identify merged or closely neighboring
vacancies.)

IV. RESULTS

After a preliminary validation of the defect energies pre-
dicted by the chosen potential, we calculated the thermal
conductivity of systems with vacancies, dislocations, and their
combinations in order to calibrate the thermal conductivity
model κ = κ(ρ), Eq. (2). Then we compare the prediction
versus a direct estimation of thermal conductivity of a large
crushed system via the same GK methods. Finally, we explore
the effect of planar tilt boundaries on the thermal conductivity
of LiF.

For this study, we chose 100 GPa, 1000 K as representative
conditions for the ramp compression experiments with an
average compressed lattice constant a = 3.483 Å for a perfect
crystal with B1 unit cell. (These conditions are approximately
the center of the study reported in Ref. [44].) At these con-
ditions, the conductivity of a perfect crystal changes slightly
with system size: κ = 27.0 ± 0.5 W/m-K at (4a)3, 30.6 ± 0.6
W/m-K at (8a)3, 30.2 ± 0.5 W/m-K at (16a)3, 30.2 ± 0.4
W/m-K at (32a)3, and effectively converges for V � (8a)3.

A. Defect energies

In previous work [44], we compared the phonon properties
of the chosen potential with ab initio density functional theory

(DFT) estimates; here, we calculate the defect energies as a
means of validating it for this study. We considered two types of
vacancies, a collocated (covacancy) and a separated Schottky
Li-F pair vacancy, as well as a a/2〈110〉 edge dislocation
dipole. The energies are determined with long time (32 ns)
averages at low temperature (≈1 K) based on the work of Zhou
et al. [47] which showed that this approach leads to estimates
that are superior to energy minimization techniques.

Since the cohesive energies we obtained were slightly size
dependent (likely due to the PPPM solver), we calculated the
vacancy energies for system sizes (4a)3, (8a)3, (16a)3, and
(32a)3 relative to the cohesive energy obtained for the same size
system. Using this procedure, we obtained consistent defect
energies of 2.28 eV at zero pressure and 3.43 eV at 100 GPa
for the covacancy where a neighboring Li-F pair (separated by
a/2) was removed. The energy of Schottky vacancies separated
by ≈√

3L/2, where L is the system box length, shows a slight
dependence on system size, see Fig. 1(a). Motivated by the
Coulomb energy of a point charge dipole, we fit this data to
Ev(d) = C0 + C1/r and extracted 3.52 eV for the divacancy
energy at infinite separation.

We also performed energy minimization DFT simulations
under the local density approximation of a small (4a)3 cell
at zero pressure and 100 GPa with 2 × 2 × 2 k points, and a
800 eV energy cutoff. We obtained cohesive energies, −5.25
and −1.67 eV/atom, respectively, at the two pressures using
a 512 atom perfect lattice cell, and, then, calculated defect
energies, 1.50 and 6.66 eV/divacancy, respectively, using the
difference in energy of 510 atom cells and the corresponding
cohesive energies. Despite the disagreement between MD and
DFT values and with experimental results [54–56] (2.68, 2.34,
2.40 eV at standard ambient conditions) the increased enthalpic
costs with increased pressure is notable. The primary influence
of these discrepancies is in the formation of defects in the rapid
compression simulation since we use systems with pre-existing
defects in the model calibration simulations. Also relevant
to the fidelity of the fixed-charge, empirical potential we
employed, we calculated the charges associated with the nuclei
in the defected systems using Bader analysis and determined
that they do not deviate more that 5% from ±1e.

In addition to the vacancy energies, we calculated the
dislocation energy for a 〈110〉 dislocations dipole in a periodic
cell using a technique outlined in Ref. [47]. At ambient condi-
tions these dislocations have a Burgers’ vector b = 2.865 Å.
By varying the separation of the parallel dislocations in the
dipole the resulting energies can be compared to linear elastic
solution, see Fig. 1(b), and the core energy can be determined
separately from the perturbation elastic energy. Since the
dislocation cores are effectively charge neutral no correction
was made to the elastic solution. (Details on how these systems
were created will be given in the following sections.) The fit to
the analytical series solution, which is in terms of the ratio of
the distance between the dislocation cores to the periodic box
dimension in that direction, yielded a core energy of 1.0 eV/Å
assuming a core radius of 2b.

Despite our primary interest being a nonequilibrium process
that generates defects, we also calculate equilibrium defect
concentrations as a point of reference and to provide an
initial condition for the rapid compression simulation. Well-
established theory for the equilibrium concentration point
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FIG. 1. Defect energy: (a) Schottky divacancy as a function of the inverse separation distance, (b) line energy for a a/2〈110〉 dislocation
dipole as a function of the dislocation core separation relative to the simulation box length aligned with the dipole (the core energy and an
elastic energy dependent on the magnitude of the Burgers’ vector determine the maximum, see Ref. [47] for details).

defects [5,57] gives the mole fractions of the atomic vacancies
comprising a Schottky pair defect x+ = x− = exp (− GS

2kBT
) in

terms of its formation energyGS , Boltzmann’s constant kB , and
temperature T . Using experimental values for GS , we obtain
x± ≈ 10−21 at ambient temperature and pressure, x± ≈ 10−6

at 1000 K and ambient pressure, and x± ≈ 10−11 at 1000 K,
100 GPa accounting for pressure-volume work.

No corresponding theory exists to predict the density of
dislocations at ambient conditions, since the expectation is that
dislocations have annihilated or have moved to the surface at
equilibrium. Nevertheless, experimental measurements exist
of the commonly found metastable states. In LiF, the observed
dislocation density ranges from 109 to 1010 m−2 at ambient
conditions [3,11,58,59] and up to 1014 m−2 for deformed
crystals [12].

B. Point defects

To explore the effect of point defects on thermal conduc-
tivity, we constructed systems with populations of Schottky
divacancies by removing an equal number of Li and F from

periodic (32a)3 perfect crystals at the compressed 100 GPa
lattice spacing, energy minimizing and then equilibrating at the
selected pressure and temperature using isobaric, isothermal
dynamics. We simulated four point defect densities with
{21,24,27,210} vacancies using 10 replica systems each. The
resulting lattice constant was identical to the perfect crystal
at the lowest selected vacancy density, 0.00144 nm−3 (2 : 8 ×
323), and 0.1% smaller at highest vacancy density, 0.738 nm−3

(210 : 8 × 323). Also, by examining a histogram of cluster sizes
of atoms without B1 coordination, we verified that the initial
vacancy density was preserved in the systems used to calculate
the heat flux correlations. We found that the resulting vacancy
density was insensitive using a limited range of noncrystalline
clusters sizes to identify vacancies; in particular, we counted
clusters with sizes 12 ± 4 as point defects.

The inset of Fig. 2(a) shows the distribution of pair-wise
distances of vacancies identified in all the replicas with the
cluster analysis post equilibration. As can be seen, the distri-
bution is effectively constant for the higher defect densities
implying that the spatial distribution of vacancies is uniform.
Figure 2(a) shows the distribution of flux correlation integrals
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FIG. 2. Thermal conductivity of LiF with divacancies: (a) correlation integrals (color denotes divacancy population density, thick color
lines are the averages for each density, and the gray trend-line is the expected value for a perfect crystal), and inset: distance distribution (for
concentration higher than 0.002 nm−3), and (b) thermal conductivity as a function of vacancy concentration (red: sample mean and one standard
deviation error of the data, black: mean prediction, and gray: one standard deviation prediction of the model).
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TABLE I. Thermal conductivity (in W/m-K) as a function of point (divacancies) and line (〈100〉 dislocation) defect densities. For systems
with dislocations, the upper entry in the table is the conductivity perpendicular to the dislocation lines and the lower entry is the conductivity
parallel to the lines.

vacancy dislocation [nm−2]

[nm−3] 0 0.0020 0.0080 0.0322 0.1287

0 30.18 ± 0.37 30.89 ± 1.02 29.63 ± 0.92 27.79 ± 1.21 21.30 ± 0.83
30.65 ± 1.20 29.96 ± 0.63 30.20 ± 1.41 24.84 ± 1.27

0.0014 30.59 ± 1.07

0.0116 30.92 ± 0.45 25.84 ± 2.25 20.81 ± 0.82
31.05 ± 2.17 22.17 ± 0.65

0.0924 28.35 ± 0.52

0.7396 22.44 ± 0.44 21.30 ± 0.82 19.96 ± 0.35
20.36 ± 0.43 20.11 ± 0.59

as a function of the upper limit of the integral in Eq. (9)
for each of the 30 replicas at each of the selected vacancy
densities. The distributions resemble normal distributions and
their widths are correlated with the amount of averaging time
allowed for calculation of the flux correlations (the lowest
density was run for less time, and hence broader, than the
highest density). Despite the systematic trend in the average
values [refer to Table I and the thicker lines in Fig. 2(a)],
there is clearly overlap in the distributions of the 30 samples
at each ρI . The GPR model of this data, shown in Fig. 2(b),
indicates that for vacancy densities less than 10−2 nm−3 the
conductivity is effectively that of a perfect crystal to within
error. It is also noteworthy that the GPR model clearly shows
the rapid increase in predicted error when using the model for
extrapolation. A similar prediction was achieved in Ref. [60]
using Monte Carlo sampling.

C. Line defects

To explore the effect of line defects on thermal conductivity,
we constructed replica systems with {21,23,25,27} dislocations
by removing neighboring partial {11̄0} Li,F planes of random

extent less than half box dimension from a (64a
√

2)2 × (8a)
compressed perfect lattice, energy minimizing this structure,
then thermalizing it with isobaric, isothermal dynamics. The
resulting systems were aligned with the 〈110〉, 〈110〉, 〈001〉
crystal directions, and all the parallel dislocations have a/2
〈110〉 Burgers vector and 〈001〉 line direction. For simplicity
and computational efficiency, we kept the cell dimension in
dislocation line direction relatively small (see Fig. 4 for a
representative configuration with additional point defects).
This arrangement did not encourage dislocation entanglement,
which will be discussed in more detail in the next section.
The resulting lattice constant was effectively unchanged at
the lowest dislocation density 0.0020 nm−2 and 0.8% smaller
in-plane for the highest line density 0.1287 nm−2.

The inset of Fig. 3(a) shows the distribution of pair-
wise distances between the parallel dislocations across all
the replicas post equilibration. The distributions appear to
be converging, albeit more slowly than in the point defect
case most likely due to the fewer numbers of dislocation
lines. Figure 3(a) shows the flux correlation integrals for 20
samples (10 replicas × 2 equivalent directions perpendicular

 0

 5

 10

 15

 20

 25

 30

 35

 40

10-3 10

(a) (b)

-2 10-1

DEFECT DENSITY [nm-2]

parallel
perpendicular

C
O

N
D

U
C

T
IV

IT
Y

 [W
/m

K
]

FIG. 3. Thermal conductivity of LiF with 〈110〉 dislocations: (a) correlation integrals for conduction perpendicular to the dislocation lines
(color denotes dislocation population density, thick color lines: average for a specific line density, and gray trend-line: perfect crystal), and
inset: distance distribution (for line density higher than 0.002 nm−2), and (b) thermal conductivity as a function of dislocation concentration
for conduction perpendicular and parallel to the lines (red and blue: sample mean and one standard deviation error of the data, black: mean
prediction, gray: one standard deviation prediction of the model).
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FIG. 4. Vacancy-dislocation system at highest vacancy and dislo-
cation density showing vacancies as clusters of not fully coordinated
(gray) atoms and dislocations as (blue, parallel) lines, and histograms
of pair-wise defect distances.

to the dislocation lines). Clearly dislocation densities higher
than 0.03 nm−2 are necessary to have a significant effect on
conductivity. This is borne out in the GPR models for both the
perpendicular and parallel conduction, Fig. 3(a). The effect on
conductivity parallel to the lines is also significant, albeit of
a lesser magnitude than the effect perpendicular to the lines.
Note that, due to the geometry of the simulation cells, only 10
samples of the parallel conduction data were available at each
density and this is reflected in the larger error band.

To quantify the joint effects of vacancies and dislocations,
we created vacancies in selected systems with dislocations,
re-equilibrated them, and calculated thermal conductivities
using the same procedures. A sample configuration of the
highest dislocation and vacancy density is shown in Fig. 4,
and the insets show that the spatial correlations of the defects
are behaving as in the previous studies with just vacancies or
dislocations. Table I summarizes the conductivity results for

the full set of vacancy and dislocation densities we explored.
Clearly, the data shows a monotonic decrease in conductivity
with increasing density of both vacancies and dislocations.
Since we mean to apply this data to a simulation without the
constraint of the dislocations being aligned, we created a GPR
model of the combined effects using a simple homogenization
of the line-parallel κ‖ and line-perpendicular κ⊥ conductivity:

κ̄ =
∫

S2
κnp(n) dS = 1

3
tr κ (13)

assuming κ is diagonal [κn = κ‖n ⊗ n + κ⊥(I − n ⊗ n)] and
the probability density p(n) on the unit sphere S2 is uniform so
that

∫
n ⊗ n dS = 1/3 I. Using 1/3(κ‖ + 2κ⊥) as the average

conductivity of LiF with a randomly oriented network of
dislocations (and vacancies), we constructed the GPR model
of their joint effect on thermal conductivity shown in Fig. 5.
Overall the model displays the expected trend with increased
defect density; however, the sparse, log sampling of densities
leads to regions of high uncertainty >10%.

D. Rapidly compressed crystal

To create a LiF sample representative of the high strain rate
experiments, we created a (64a)3 single crystal with a single
divacancy (2 097 150 atoms) and thermalized it at ambient
pressure and T = 1000 K. The single pair vacancy gives a
pre-existing defect concentration on par with the equilibrium
density at the selected temperature (but far in excess of that
at ambient temperature) and was also lowest concentration
possible for the chosen system size. We then rapidly com-
pressed this system in the 〈100〉 direction to 100 GPa in 10
ps (strain rate ≈109 s−1) to mimic the experimental ramp
compression. We also applied zero strain in lateral directions to
mimic inertial confinement. The resulting compressive stress
state was 100e1 ⊗ e1 + 97(I − e1 × e1) GPa at 0.346 e1 ⊗ e1

strain. Admittedly this method of creating the system deviates
from the actual experimental conditions but was necessary to
create a periodic cell suitable to apply the GK method.
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FIG. 5. Vacancy dislocation: (a) conductivity perpendicular to the dislocation lines and (b) error in conductivity. Points indicate GK sample
locations.
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FIG. 6. Rapid compression: (a) dislocations (blue, density: 0.1231 nm−2) and defect clusters (gray, density: 0.01229 nm−3) at a diagonal
stress state (100, 97, 97) GPa with corresponding strains: (34.5, 0.0, 0.0)% (b) thermal conductivity (color line: correlation integrals for the
components of κ from direct GK calculation, dotted line: κ for a perfect crystal at 100 GPa pressure, solid line and light gray error band: model
prediction using estimated point vacancy density and total line length density, dashed line and dark gray error band: model prediction using
estimated point vacancy density and projected line length density).

Since in this case the defects were not predetermined,
we relied heavily on the DXA algorithm [53,61] to identify
dislocations and the derivative tuned cluster method described
in Sec. IV B to identify vacancies defects. This analysis of
the final configuration shown in Fig. 6(a) gave a point defect
density of 0.01229 nm−3 and a line defect density of 0.1231
nm−2. (Since we have no quantitative way of characterizing
surface defects or measuring their area and hence their density,
we consider them separately in the next section.)

A direct application of the GK method to this system
gave the correlation integrals shown in Fig. 6(b) which are
apparently converged and display anisotropy κ11 < κ33 < κ22.
Prediction of the GPR model, Fig. 5, is also shown in
Fig. 6(b) as the solid black with gray error band. The pre-
diction encompasses the direct κ11 value albeit with marginal
correspondence. If we instead use the projected line density
in the compressed direction, 0.0628 nm−2, instead of the
total line density, we bring the prediction (dashed line) closer
to the direct measurement. (The projected line density is
ρi = ∫ ‖Pi

dx(s)
ds

‖ ds, where Pi is the projection operator for
plane with normal ei .) Also, the projected line densities,
ρ2,3 = 0.0588, 0.0610 nm−2, correlate with the ordering of the
directional components κ22,33 of the conductivity tensor which
are nominally at the same compression. We believe this is an
indication that conductivity is sensitive to dislocation structure
in ways beyond those accounted for in the model we calibrated.

E. Planar defects

We examined both the conductivity of LiF with {210} tilt
boundaries and the intrinsic conductance of these interfaces.
The four (na

√
5) × (8a

√
5) × (8a) systems, with n = 12, 24,

48, 96, were oriented 〈210〉 〈1̄20〉 〈001〉 and had two tilt
boundaries to allow for periodicity. In this study, unlike the
previous point and line defect explorations, we scale the size of
the system for efficiency which may have incurred simulation

size effects in addition to the physical effects of defect density;
however, even the smallest system is larger than that needed to
avoid size effects in a perfect crystal.

The thermal conductivity perpendicular and parallel to the
tilt boundary was estimated with the same GK formula, Eq. (9),
used in the point and line defect cases. These results are
summarized in Table II. They show a slow convergence to
the perfect lattice conductivity with decreasing tilt density and
a distinct effect of the tilt boundary on conduction parallel to
the interfaces. Note that the simple homogenization technique,
Eq. (13), also applies in this case.

From flux conservation we can arrive at a version of
Matthiessen’s rule for independent scatterers

1

κ̃
= 1

κ∞
+ ρ

G
(14)

that relates κ̃ , the apparent/effective conductivity of the whole
cell with the interface, to κ∞ the corresponding conductivity
without the interface resistance but with the distortions of the
interface on the lattice, and G, the conductance of the interface.
Note with parallel interfaces ρ is equal to the inverse of the
normal interface spacing. Using regression we can extract both
the conductivity normal to the interfaces κ∞ ≈ 30.3 W/mK

TABLE II. Thermal conductivity (in W/m-K) as a function of
interface defect (210 tilt) densities. The upper entry in the table is the
conductivity perpendicular to the planar defect and the lower entry is
the conductivity parallel to the planar defect.

tilt [nm−1]

0.0267 0.0535 0.1070 0.2140

28.15 ± 0.69 25.42 ± 0.60 20.71 ± 0.32 14.78 ± 0.39
28.68 ± 1.15 28.57 ± 0.92 26.09 ± 0.47 22.07 ± 0.60
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FIG. 7. Tilt boundary conductivity plotted as 1/κ as a function
of density for both the conductivity perpendicular and parallel to the
{210} defect surface. The interface conductance G is recovered from
the perpendicular conductivity data.

and G = 5.92 GW/m2 K from a sequence of κ̃ values at
different densitiesρ, as Fig. 7 shows. This limiting conductivity
is consistent with the perfect crystal value as expected. The
value of the interface conductance is comparable to those
(1–10 GW/m2 K) reported in Ref. [52] and Ref. [62] for a
Si/Ge superlattice. As mentioned in the Theory section, we also
used a GK method, Eq. (11), to directly calculate G. For ρ =
0.0535 nm−1 (normal spacing 18.7 nm) systems, we obtained
a significantly lower value G = 0.28 ± 0.20 GW/m2 K which
seems to suggest a size effect for this method; however,
Chalopin et al. [52] calculated similar conductances (G ≈ 0.8
GW/m2K) for Si/Ge superlattice with spacing greater than
about 10 nm. Furthermore, they reported up to an order of
magnitude discrepancy with the results in Ref. [62] which
employed Eq. (14) with a nonequilibrium method using a
localized heat source and sink. Also, given the consistency
of the data in Fig. 7 with the series resistor model, Eq. (14),
it appears that all the systems are above the limit at which
the majority of phonons travel ballistically from interface to
interface which induces size effects in G [63,64].

V. CONCLUSION

In this paper we examined the effects of defects and
their interactions on the thermal conductivity of LiF using
GK techniques and created models from these sample with
embedded uncertainty estimates. The uncertainty estimates
were important since the model was used to predict the thermal

conductivity of a sample that was rapidly compressed and
contained a network of dislocations and point defects. The
accuracy of the model confounded by the expense of obtaining
sufficient GK samples to drive the statistical noise to zero and
the complexities of characterizing all the aspects of the defect
structure that influence thermal conductivity. Dislocations and
other defects appear at relatively low uniaxial compression of
LiF and the dislocation structure is complex and entangled,
unlike the computational cells we used to calibrate the model.
Determining how to efficiently sample the effects of complex
spatial correlations of dislocations on thermal conductivity is
left for future work.

If we consider the defect types we studied representative
of those created in LiF in high rate experiments, it is apparent
that reductions on the order of a factor of two in the thermal
conductivity of LiF can occur at very high defect densities.
We did not observe larger reductions in thermal conductivity
apparently since the crystal structure in these highly defected
systems is still largely intact and phonons propagation is rela-
tively unperturbed. One basic type of defect, a volume defect
such as a void, was not studied but may have significant effects
on thermal conductivity if present in sufficient density [65].
We did consider voids, which are essentially clusters of point
vacancies which have a tendency to aggregate [66,67], but they
were not stable at the pressure we selected and with the MD
model we used. Also, in contrast to the purely mechanical
loading we employed to create a representative system, recent
results by Zhou et al. [68] demonstrate that dislocation motion
in an electric field can leave a significant number of vacancies
in its wake which is relevant to the use of LiF in pulsed power
experiments.

In conclusion, the methodology of creating a model of the
dependence of thermal conductivity on defects we developed
successfully represented the data and its errors, is extensible to
a wider range of defects, and is transferable to other materials.
Furthermore, it exposed trends in the dependence on defects
not seen in the available approximate analytical models and
is directly extensible to newly emerging thermal conductiv-
ity estimation techniques which employ ab initio dynamics
[69–73].
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