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Crosstalk error correction through dynamical decoupling of single-qubit gates in capacitively
coupled singlet-triplet semiconductor spin qubits
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In addition to magnetic field and electric charge noise adversely affecting spin-qubit operations, performing
single-qubit gates on one of multiple coupled singlet-triplet qubits presents a new challenge: crosstalk, which
is inevitable (and must be minimized) in any multiqubit quantum computing architecture. We develop a set of
dynamically corrected pulse sequences that are designed to cancel the effects of both types of noise (i.e., field
and charge) as well as crosstalk to leading order, and provide parameters for these corrected sequences for all
24 of the single-qubit Clifford gates. We then provide an estimate of the error as a function of the noise and
capacitive coupling to compare the fidelity of our corrected gates to their uncorrected versions. Dynamical error
correction protocols presented in this work are important for the next generation of singlet-triplet qubit devices
where coupling among many qubits will become relevant.
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I. INTRODUCTION

Correcting for error in operations on qubits is of utmost
importance to building a working quantum computer. The
fact that quantum error correction is possible is what started
the whole world-wide effort in trying to build a practical
quantum computer. Operations on qubits require very high
precision and accuracy; in fact, a fidelity of at least 99% is
required to implement error correction using surface codes
[1]. Other error correction techniques require an even higher
fidelity of 99.99%. Several different platforms for realizing
qubits exist, but our focus in this work will be on electronic
spins in semiconductor quantum dots. Several different types
of semiconductor quantum dot electron spin qubits exist,
such as the single-spin exchange qubit [2–9], the singlet-
triplet two-electron double-dot qubit [10–19], the exchange-
only three-electron triple-dot qubit [20–24], and the “hybrid”
three-electron double-dot qubit [25–27]. The semiconductor
spin-qubit platform has the advantages of being compatible
with the existing semiconductor electronics industry as well as
the ability to perform gates more quickly (using fast electrical
pulses) than other platforms, such as superconducting and ion
trap qubits. Other perceived advantages of semiconductor spin
qubits include the scalability inherent in semiconductors and
the relatively long spin relaxation times in solids. However,
noise-induced error has been a formidable challenge adversely
affecting experimental progress in spin qubits. Fortunately,
considerable progress has been achieved recently, with single-
qubit gate fidelities of 99% and two-qubit gate fidelities of
90% having been reported in singlet-triplet double-dot qubits
[28]. Several methods for reducing error have been developed
for these platforms. Methods such as isotopic purification in Si
and polarization of nuclei in GaAs reduce noise at the materials
level simply by eliminating the sources of field noise. Other
methods instead combat the effects of noise through pulse
control techniques such as dynamical decoupling, Bayesian
estimation of parameters, and designing dynamically corrected

pulse sequences that partially cancel the effects of noise
[17,29–33]. The goal is to sufficiently reduce both one- and
two-qubit gate errors in the physical qubits so that surface code
architectures become feasible, eventually leading to quantum
error corrections producing logical qubits.

In spite of enormous progress over the last 5–10 years,
the experimental situation in semiconductor spin qubits is
still somewhat discouraging compared with superconducting
and ion trap qubits since reasonable two-qubit gate operations
have only been demonstrated in singlet-triplet qubits in GaAs
with the fidelity improving from [15] 70% to [28] 90% over
the 2012–2017 five-year period. Although single-qubit fidelity
approaching or even exceeding 99% has been reported for
both single spin and singlet-triplet qubits, these experiments
are not carried out in multiqubit platforms and, therefore, one
does not know the limiting single-qubit fidelity in circuits
where multiple qubits are being operated. Given that the most
advanced gate operations by far have happened so far only in
the singlet-triplet spin qubits, our focus in this work is entirely
on this system. The specific issue we address is the mitigation
of crosstalk errors where the quantum computing platform
consists of many singlet-triplet qubits with single-qubit gate
operations going on simultaneously in many of them, as
would eventually be necessary for any meaningful quantum
information processing task.

There has been considerable work on error correction tech-
niques in semiconductor quantum dot systems. For the single-
electron exchange qubit, NMR-inspired decoupling techniques
such as the Carr-Purcell-Meiboom-Gill (CPMG) technique,
a generalization of the Hahn echo technique [34–36], exist.
Unfortunately, these techniques cannot be applied to singlet-
triplet qubits, which are the focus of this work. These general-
ized spin-echo-type protocols for restoring quantum coherence
require one to be able to apply, for example, a π rotation pulse
and then later apply a −π rotation pulse about the same axis,
which cannot be done in existing experimental singlet-triplet
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systems. To see why, we consider the effective Hamiltonian
for a singlet-triplet qubit within the logical subspace, which is

H = J (t)Z + hX, (1)

where J (t) is the exchange coupling, h is the magnetic field
difference between the two qubits, and X and Z are the Pauli
matrices. The magnetic field difference is realized using a
micromagnet or by polarizing the nuclei (if possible). This
difference may in principle also be realized by electrically
tuning the effective g factors in the quantum dots [37–39], but
this technique has not been used in any singlet-triplet qubit
experiment to date. It is very difficult to control this field
difference quickly in the actual experiments, and thus it is held
constant. This means that all control is achieved by electrically
tuning the exchange coupling, either by tilting the dot potential
or by changing the height of the potential barrier between them
so that the wave-function overlap is modified. Furthermore, at
least in the presence of just two electrons, it is very difficult
to make the exchange coupling negative. We should note,
however, that it can be made negative in a sufficiently strong
magnetic field or in the presence of more than two electrons
[40–42], though the presence of these additional electrons
enlarges the total Hilbert space of the system, creating a new set
of challenges such as leakage errors. All of this means that we
cannot apply the time-reversed version of a given pulse or pulse
sequence in a singlet-triplet qubit. We must therefore seek other
methods for error correction through dynamical decoupling.

There have been several papers proposing dynamically
corrected pulse sequences for performing single-qubit singlet-
triplet gates. Three papers have been written using the SUPCODE

technique, one for the case in which only (electrical) charge
noise is present [43] and two others in which (magnetic) field
noise is also included [44,45]. This method, which we will
be employing a generalization of in this work, consists of
inserting an uncorrected “identity” operation into the pulse
sequence for a given gate that is arranged in such a way
as to cancel the noise-induced error to leading order. These
works consider sequences of square pulses; another work [46]
considers the case with only field noise and proposes smooth
pulses that cancel noise-induced error to arbitrary orders. In
relation to two-qubit operations, the problem of the dynamics
of two coupled singlet-triplet qubits under the influence of
noise has been investigated [47], and a recent paper discusses
the fidelity for realizing a maximally entangled state from a
tensor-product state [48]. Dynamical error correction has also
been investigated for controlled-NOT (CNOT) gates, first to a
limited extent in Ref. [44] and then in more detail in Ref. [49].
While correcting for noise-induced error is important, it is
not the only issue that needs to be addressed in the context
of practical quantum information processing. At least one
two-qubit entangling operation, along with the ability to
perform arbitrary single-qubit gates, is necessary to achieve
universal quantum computation. Thus, one must consider also
the coupling among the singlet-triplet qubits.

Unfortunately, the couplings between qubits required to
perform two-qubit operations also adversely affect single-
qubit operations via crosstalk. However, as discussed later,
the strength of the capacitive coupling is proportional to the
value of the exchange couplings J for each qubit, so one could
set J for the neighboring qubit to zero while performing the

single-qubit gate to counter this problem. Unfortunately, this
poses two problems. First, there are experimental limitations
in setting J to exactly zero, and thus some small crosstalk
would still persist. Second, a dynamical pulse sequence is
required even for qubits on which no gates are performed
to maintain coherence. Therefore, in order to be compatible
with a large-scale architecture, it is necessary to address the
system as a whole, which is in fact the subject of this work.
Our dynamical decoupling sequence for correcting crosstalk
errors (along with field and charge noise) is not an essential
ingredient for the currently ongoing experiments where one
has at best only two qubits coupled with each other. But, this
is of course a very primitive state of affairs as far as quantum
computing goes. Eventually, the platform must consist of many
coupled qubits with substantial crosstalk among them. Our
work will become an important ingredient when both single-
and multiqubit gate operations are being carried out in quantum
computing platforms with many coupled singlet-triplet qubits.
Our work is also relevant to a system containing only two
singlet-triplet qubits where the exchange coupling within the
qubit cannot simply be tuned to zero while turning on the
two-qubit capacitive coupling.

We will be considering here two capacitively coupled
singlet-triplet qubits. This form of coupling, which is used
extensively for interqubit coupling in singlet-triplet qubits
[15,28], is simpler to treat than a Heisenberg exchange cou-
pling since capacitive coupling, as we will see, cannot cause
leakage out of the logical subspace. We also assume that
the field and charge noise in our system is quasistatic. As
noted earlier, our approach to dynamical error correction is a
generalization of the SUPCODE approach of Refs. [44,45] and,
like this approach, the overall idea is to insert an uncorrected
“identity” operation into the pulse sequence for a given gate
that is arranged in such a way as to cancel both noise- and
crosstalk-induced error to leading order. We begin by deriving
expressions giving the noise- and crosstalk-induced error to
leading order for a single pulse (i.e., all Hamiltonian param-
eters held constant). From this, we show how to derive the
error for a general, multipulse, sequence. Our error correction
procedure consists of first applying our “naïve” pulse sequence
for a given gate to the qubits, and then following that with an
uncorrected “identity” with its parameters arranged in such
a way as to cancel both noise- and crosstalk-induced errors.
This “identity” consists of a set of “blocks” of pulse sequences
such that one qubit is subject to a single pulse and the other is
subject to two pulses with a combined duration equal to that
of the single pulse; we adopt such a form for mathematical
simplicity. We then determine the parameters needed to make
the sum of the errors from the “naïve” sequence and the
“identity” zero. We present the parameters that we extract
from this procedure for all 24 Clifford gates and present an
example, a rotation by π about the �̂x + �̂y axis. Overall, the
resulting pulse sequences consist of more “blocks” (up to
nine) than those used to correct only noise-induced error for
a single qubit in isolation. The presence of crosstalk also
forces us to propose sequences that never set the exchange
couplings to their maximum experimentally possible values.
This is because the capacitive coupling strength is proportional
to the exchange couplings, and thus large exchange couplings
will result in more crosstalk. We then, as an important check,
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demonstrate that these proposed error-corrected sequences do,
in fact, cancel noise- and crosstalk-induced errors to leading
order.

The rest of the paper is organized as follows. In Sec. II, we
present our model and derive the formulas for the noise- and
crosstalk-induced error to first order. Section III details our
dynamical error correction scheme, presents the mathematical
form of the corrected pulse sequences in terms of a set of
numerical parameters, and demonstrates that our correction
scheme does in fact cancel the leading-order noise- and
crosstalk-induced error. We give our conclusions in Sec. IV,
and provide the specific numerical values of the parameters
for the dynamically corrected pulse sequences implementing
the Clifford gates in Appendix A. We also provide in Ap-
pendix B the dynamical decoupling pulse sequences for a
different model of the interqubit coupling, where the coupling
is independent of the intraqubit exchange energy.

II. MODEL

A. Hamiltonian

A singlet-triplet (ST) qubit consists of a pair of quantum
dot spins coupled by the exchange interaction with a com-
putational basis given by |0〉 = 1√

2
(|↑↓〉 + |↓↑〉) and |1〉 =

1√
2
(|↑↓〉 − |↓↑〉). Single-qubit control is obtained by applying

a magnetic field gradient h across the two quantum dots
and by varying the strength of the exchange interaction J ,
yielding the single-qubit Hamiltonian H = hX + JZ, where
X and Z are Pauli matrices in the logical basis. However,
due to physical limitations of the system, these parameters
incur several constraints. First, the time scale on which the
magnetic field gradient can be varied is much longer than the
time needed to vary the exchange coupling, so, in practice, h is
held constant. Second, the strength of the exchange interaction
J must be positive and, in general, bounded between some
values jmin and jmax. Thus, axes of rotation are limited to the
first quadrant of the xz plane.

We consider a system of two such ST qubits with a large
enough potential barrier that there is no exchange interaction
between the two separate qubits, but close enough that a capaci-
tive interqubit coupling of strengthJ12 is present between them.
This coupling arises from the difference in charge distributions
between the two quantum dots of a ST qubit. When a ST qubit is
in the singlet state |1〉, the charge distribution between the two
quantum dots is asymmetric, producing a dipole moment. If
instead the qubit is in the triplet state |0〉, the charge distribution
is symmetric, so no dipole moment is present. The Hamiltonian
thus includes a dipole-dipole interaction which contributes
only when both qubits are in the singlet state [15]. The strength
of this coupling term is proportional to both J1 and J2, and
we will set the proportionality constant ε. Thus, for a system
of two capacitively coupled singlet-triplet qubits we have the
following Hamiltonian:

H = h1X1 + h2X2 + J1Z1 + J2Z2

+ εJ1J2(Z1 − 1)(Z2 − 1). (2)

While the capacitive coupling term of the above Hamiltonian
has often been quoted as an experimentally established fact,
and not derived from any model, it is possible to put it on a

more rigorous footing as follows. Let us consider the Hubbard
model Hamiltonian for the double-dot system considered in
Ref. [50] (Eq. (A3), minus the HJ terms, which are only present
when there are more than two electrons in the double-dot
system [40,41]):

H = He + Ht + HU, (3)

with

He =
2∑

k=1

εknk, (4)

Ht = t
∑

σ=↑,↓
c
†
1σ c2σ + H.c., (5)

HU = U

2∑
k=1

nk↑nk↓ + U ′n1n2. (6)

The ckσ operators annihilate an electron in dot k with spin σ ,
nkσ = c

†
kσ ckσ is the number of electrons of spin σ in dot k, and

nk = ∑
σ nkσ . Throughout, we will assume that U,U ′ � t . We

can write the dipole moment as �d = 1
2e�a(n2 − n1), with e the

electron charge and �a the vector pointing from the first quantum
dot to the second. If we let ε1 = ε0 − 1

2�ε and ε2 = ε0 + 1
2�ε,

then we may write

�d = e�a ∂H

∂�ε
. (7)

By the Feynman-Hellmann theorem, we find that the expecta-
tion value of this dipole moment operator is just

〈 �d〉 = e�a ∂E

∂�ε
, (8)

where E is the (expectation value of the) energy of the system.
The derivative of this energy will be zero in the triplet state
since the Pauli exclusion principle would forbid both electrons
from occupying the same dot, even if ε1 
= ε2. Therefore, only
the singlet state will have a dipole moment. However, in this
case, the energy difference between the singlet and triplet states
just gives the exchange coupling J , so that the expectation
value of the dipole moment in the singlet state is just

〈 �d〉 = e�a ∂J

∂�ε
, (9)

and is zero in the triplet state.
To establish that | 〈 �d〉 | ∝ J , we now use Eq. (A14) of

Ref. [50] (again, minus contributions from the HJ terms):

J = 4t2

U − U ′ − |�ε| . (10)

For |�ε| � U − U ′,

∂J

∂�ε
≈ 4t2

(U − U ′)2
sgn(�ε) = J

U − U ′ sgn(�ε) (11)

and, therefore,

〈 �d〉 ≈ eJ

U − U ′ sgn(�ε)�a. (12)

There will be corrections to this formula, but these will be
small, as they are proportional to powers of |�ε|

U−U ′ . Experimen-
tal data on noise in the system imply that ∂J

∂ε
∝ J , so it seems
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that, at least in experimental systems, this approximation works
very well qualitatively.

Finally, to obtain the interaction term for two double-dot
systems, we may approximate it using the classical dipole-
dipole interaction potential

Udd = 3( �d1 · �r)( �d2 · �r) − �d1 · �d2r
2

r5
, (13)

where �r is the vector pointing from one dipole to the other. We
can already see from our previous result simply by substituting
in the expectation values of the dipole moments of the double
dots that this will be proportional to J1J2 when both double
dots are in the singlet state, with the proportionality factor
being determined by the relative position and orientation of
the double dots, and zero otherwise, thus establishing the
capacitive coupling term given in Eq. (2).

We should note that arriving at these expressions required
a number of simplifying approximations; a more detailed
analysis of this problem, starting from a microscopic model
of the full four-dot system, would be required to give a fully
rigorous justification of this form. While such a calculation
would be of great interest, it is beyond the scope of this work,
where we stick to Eq. (2) as describing the interqubit coupling
Hamiltonian as used extensively in the theoretical literature on
singlet-triplet qubits.

B. Expansion of evolution operator

In practice [15], εJi is found to be on the order of 1
300 ,

so we choose to approach this problem by performing a
power-series expansion in ε. This allows us to consider a
simplified Ising interaction term of the form εJ1J2Z1Z2 since
the terms −εJ1J2Zi can be absorbed into the JiZi terms
without affecting the result to first order in ε [see Eq. (19)].
For convenience, we introduce the shorthand ai =

√
h2

i + J 2
i ,

and perform the expansion in the rotated frame given by

X′
i = (hiXi + JiZi)/ai,

Y ′
i = Yi,

Z′
i = (−JiXi + hiZi)/ai. (14)

This frame preserves the standard Pauli commutation relations
for X′

i , Y
′
i , and Z′

i . Using this notation, the Hamiltonian can be
expressed as

H = a1X
′
1 + a2X

′
2 + εJ1J2

a1a2
(J1X

′
1 + h1Z

′
1)(J2X

′
2 + h2Z

′
2).

(15)

Using the identity for the exponential of a sum of operators,

e−it(A+εB) = e−itA

[
1 + (−it)εB − (−it)2

2!
ε[A,B]

+ (−it)3

3!
ε[A,[A,B]] − · · ·

]
+ O(ε2), (16)

with A = a1X
′
1 + a2X

′
2 and B = (J1X

′
1 + h1Z

′
1)(J2X

′
2 +

h2Z
′
2), we can evaluate the commutators on the right side

and resum the series, yielding a closed-form expression for
the evolution operator e−itH to first order in ε. The result we

obtain is

e−itH = e−it(a1X
′
1+a2X

′
2)

⎛
⎝1 − i

∑
i ′j ′

�
cap
i ′j ′σi ′ ⊗ σj ′

⎞
⎠, (17)

where σi ′ and σj ′ are the rotated Pauli matrices defined by
Eq. (14), and the �

cap
i ′j ′ are given by

�
cap
X′

1X
′
2
= ε

J 2
1 J 2

2

a1a2
t,

�
cap
Y ′

1Y
′
2
= ε

J1J2h1h2

2a1a2
{−t sinc [2(a1 + a2)t]

+ t sinc [2(a1 − a2)t]},
�

cap
Z′

1Z
′
2
= ε

J1J2h1h2

2a1a2
{t sinc [2(a1 + a2)t]

+ t sinc [2(a1 − a2)t]},

�
cap
X′

1Y
′
2
= ε

J 2
1 J2h2

a1
t2 sinc2 (a2t),

�
cap
X′

1Z
′
2
= ε

J 2
1 J2h2

a1a2
t sinc (2a2t),

�
cap
Y ′

1Z
′
2
= ε

J1J2h1h2

2a1a2
{(a1 + a2)t2 sinc2 [(a1 + a2)t]

+ (a1 − a2)t2 sinc2 [(a1 − a2)t]}. (18)

The terms �
cap
Y ′

1X
′
2
, �

cap
Z′

1X
′
2
, and �

cap
Z′

1Y
′
2

can be obtained by
swapping the subscripts 1 and 2. We write the error in terms
of sinc x = limx ′→x

sin x ′
x ′ so that the error will be well defined

when a1 − a2 = 0. Since the rotated Pauli matrices X′
i , Y

′
i , and

Z′
i depend on the Ji , which changes at different points in time,

it is necessary to transform Eq. (18) back to the standard basis
using Eq. (14). The result of this substitution, which involves
considerable algebra and is not particularly illuminating, is not
shown for the sake of space.

We now consider the addition of charge and field noise on
each qubit. If the noise varies slowly compared to the total
gate implementation time (i.e., quasistatic noise, often a very
reasonable approximation for semiconductor spin qubits), we
can treat the noise as small, unknown shifts to the values hi

and Ji . Thus, the complete Hamiltonian is

H = (h1 + dh1)X1 + (h2 + dh2)X2

+ (J1 + dJ1 − εJ1J2)Z1 + (J2 + dJ2 − εJ1J2)Z2

+ εJ1J2Z1Z2. (19)

We choose to work in the quasistatic noise limit, where
these shifts do not directly depend on time. Thus, we will treat
dhi as constant for the entire pulse sequence, and dJ i as a
function solely of Ji . This is generally taken to be a linear
relationship due to the underlying dependence of Ji on the
quantum dot detuning [44]; however, since our method is a
generalization of SUPCODE, it inherits SUPCODE’s robustness
in handling different dependencies of dJ i on Ji , as long as the
forms of such dependencies are known and sufficiently well
behaved. In this work, we assume dJ i = αiJi for some small
constant parameter αi . Expansions similar to the one above
have already been performed [51] for the case of noise on a
single qubit, and the presence of a second qubit will not affect
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the first order terms of these expansions. Additional terms of
order εdhi or εdJ i will appear, but since both the strength of the
coupling and the magnitude of the error are small, such terms
are second order and can be ignored. Combining this with the
expansion of the Ising term done above, we obtain

e−itH = e−it(h1X1+J1Z1)e−it(h2X2+J2Z2)

×
[

1 − i
∑

i

�
q1
i σi ⊗ 1 − i

∑
i

�
q2
i 1 ⊗ σi

−i
∑
ij

�
cap
ij σi ⊗ σj

]
, (20)

where the �
cap
ij are given by Eq. (18) rotated into the standard

basis as discussed above and the �
qn

i are given by

�qn
x = 2h2

nant + J 2
n sin 2ant

2a3
n

dhn

+hnJn(2ant − sin 2ant)

2a3
n

(dJn − εJ1J2),

�qn
y = Jn(cos 2ant − 1)

2a2
n

dhn

+hn(1 − cos 2ant)

2a2
n

(dJn − εJ1J2),

�qn
z = hnJn(2ant − sin 2ant)

2a3
n

dhn

+2J 2
n ant + h2

n sin 2ant

2a3
n

(dJn − εJ1J2). (21)

There are 27 independent error terms: the 6 components �
qn

i

each have three terms corresponding to dhn, dJn, and ε, plus
the 9 components �

cap
ij which have only a single term each.

III. ERROR CORRECTION

In order to develop dynamically corrected rotation se-
quences, it is necessary to examine in general how errors
from consecutive rotations are combined. To that end, let R

represent an ideal rotation (with no error or crosstalk) for
given values of J1, J2, and t ; U the corresponding uncorrected
rotation; and �R the first-order error in the rotation, so that
U = R(1 + �R), which has the same form as Eq. (20). We
also let M = R1R2 . . . Rm be a sequence of m ideal rotations
and �M the total error of the sequence of corresponding
uncorrected rotations, so that M(1 + �M ) = U1U2 . . . Um. We
can then increase the sequence by one additional rotation using
the following equation, which holds to first order in �M and
�R:

M(1 + �M )U = MR(1 + R†�MR + �R). (22)

Recursively applying this equation allows the error of an
arbitrary number of gates to be combined. The result is that the
total error is a modified sum of the individual errors �R , where
each term in the sum is rotated by the inverse of all rotations

which occur before (to the right of) R as shown below:

m∏
i=1

Ui =
(

m∏
i=1

Ri

)⎡
⎣1 +

m∑
i=1

⎛
⎝ i+1∏

j=m

R
†
j

⎞
⎠�Ri

⎛
⎝ m∏

j=i+1

Rj

⎞
⎠

⎤
⎦.

(23)

In order to perform a corrected gate, we follow a strategy
similar to the one proposed in Ref. [44], in which a simple
set of uncorrected rotations that implements the desired gate is
performed, followed by a longer uncorrected identity operation
which is designed to exactly cancel the first-order error in the
initial rotations. The error term of the initial rotation, which
we will call �rot, can be directly calculated from Eqs. (18)
and (21). The problem now becomes finding an uncorrected
identity with an error term �idt = −�rot, i.e., an uncorrected
identity with a total error that exactly cancels the error in the
initial rotation. The simplest way to do this is by introducing
a family of identity operations described by a set of free
parameters, writing �idt in terms of these parameters, and then
numerically solving the equations �idt + �rot = 0. Since there
are 27 independent error terms, at least 27 free parameters are
required to fully cancel the error.

Again following Ref. [44], we choose to use a family of
interrupted identity operations. For a single qubit, such an
operation consists of a 2π rotation at one value of J interrupted
by a 2π rotation at a different value of J . This second, inner 2π

rotation can again be interrupted, and so forth for arbitrarily
many 2π rotations. The free parameters in this family of
operations include the values of J as well as the angles at which
the interruptions take place. In this way, a family of identity
operations which depends on any number of parameters can be
generated. It is then simply a matter of extending this notion
to a system of two qubits. We first address the case where
h1 = h2, and then discuss the subtleties which arise when h1

and h2 are different.

A. Identity with h1 = h2

A naïve approach to finding an interrupted identity for two
qubits would be to use a different sequence of interrupted 2π

rotations on each qubit. There is, however, one major problem
with such a scheme: the time taken to perform a 2π rotation
depends on the value of J , so the portion of the first sequence
which coincides with a part of the second sequence is also
dependent on the values J takes. Then, for completely arbitrary
parameters, it is not possible to find a simple general expression
for the total error. We illustrate this problem with an example
shown in Fig. 1. On each side is shown a pulse consisting of
three 2π rotations on each qubit. In practice, these would be
nested, but we use consecutive 2π rotations for the sake of this
discussion. The total error would be a modified sum of the �R

terms using Eq. (23). The problem is that the arguments of �R

themselves are different for different values of jn. For example,
the term �R(j1,j6) appears on the left of Fig. 1 but not the
right, and �R(j3,j4) appears on the right but not the left. Thus,
while this is a perfectly valid uncorrected identity operation,
in practice it would be very difficult to tune the parameters jn

to cancel a given error matrix due to the difficulty of finding
a closed-form expression that is valid for all choices of jn.
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FIG. 1. Left: a naïve uncorrected identity operation consisting of
a sequence of three 2π rotations on each of qubit 1 (top) and qubit
2 (bottom). Right: a similar uncorrected identity, but with different
choices of the parameters j1 . . . j6. As shown, the arguments of the
error terms �R are different for different values of j1 . . . j6.

Theoretically, this is a perfectly allowed dynamical decoupling
protocol, but numerically solving for the specific values of the
parameters is challenging, if not impossible.

To circumvent this problem, an identity operation for the
entire two-qubit system which has tunable parameters is re-
quired. Additionally, we require that it should not be symmetric
between the two qubits since the errors accumulated on each
qubit may differ. The simplest such identity operation consists
of a pair of interrupted 2π rotations on one qubit, and one 4π

rotation on the other, as shown in Fig. 2. The value of j ′ for
the 4π rotation is chosen so that it takes the same amount of
time as the two 2π rotations. Note that the condition h1 = h2

is implicitly used here since a value of j ′ which allows the
pulses on each qubit to take the same time is not guaranteed
to exist if h1 and h2 are not equal, as discussed in the next
section. This identity operation can then be nested many times,
alternating which qubit undergoes the 4π rotation and the two
2π rotations.

We now define h1 = h2 = h to be the common value of
h1 and h2. This situation is in fact typical for two-qubit
experiments, with typical values of h being 30 MHz (Ref. [15])
and 23 MHz (Ref. [19]). We introduce the following notation in
order to clearly define the nested identity operation discussed

FIG. 2. An uncorrected identity for which a closed-form expres-
sion for arbitrary choices of the parameters is easy to obtain. There
are four free parameters, namely, j1, j2, φ1, and φ2. The values of j ′

and φ′ are determined by the other parameters.

above. Let U (J1,J2,t) be an uncorrected rotation at values J1

and J2 for a time t . Also let t(j,φ) be the time required to
perform a rotation by an angle of φ about the axis with the
given value of j . Then, t(j,φ) is given as follows:

t(j,φ) = φ

2
√

h2 + j 2
, (24)

Since our scheme requires alternating on which qubit
the two 2π rotations are performed, we define the quantity
U(n)(j,j ′,φ) to encode this alternation. The notation corre-
sponds to Fig. 2, where j gives the height of a particular
2π rotation, and φ gives the angle at which the rotation is
interrupted, while j ′ is the value of the exchange coupling at
which the other qubit is held during this rotation. Whether
qubit 1 or 2 corresponds to j or j ′ is given by the parity of the
subscript (n), so that in terms of U (J1,J2,t) described above,
U(n)(j,j ′,φ) can be written as

U(n)(j,j
′,φ) =

{
U (j,j ′,t(j,φ)) if n is odd,

U (j ′,j,t(j,φ)) if n is even.
(25)

Because the total time taken to perform the two 2π rotations
must equal the time required to perform the 4π rotation, the
value j ′ at which the 4π rotation is performed must depend
on the values of j chosen for the two 2π rotations. Thus, we
define j ′

n as the value needed in order to fulfill this condition
in terms of the values j2n−1,j2n, and find that j ′

n is given as
follows:

j ′
n =

√
−1 +

(
2π

t(j2n−1,2π ) + t(j2n,2π )

)2

. (26)

One level of the identity operation consists of four rotations,
as shown in Fig. 2. Nesting N copies of this identity will then
result in a product of 2N partial 2π rotations followed by the
product of the 2N completions of these rotations in the reverse
order. Thus, in terms of our previous notation, an N th level
nested uncorrected identity denoted I (N) is given by

I (N) =
N∏

n=1

[U(n)(j2n−1,j
′
n,φ2n−1)U(n)(j2n,j

′
n,φ2n)]

×
1∏

n=N

[U(n)(j2n,j
′
n,2π − φ2n)

×U(n)(j2n−1,j
′
n,2π − φ2n−1)]. (27)

This method can correct to first order any single-qubit gate
or product of single-qubit gates. As a demonstration of this
procedure, we provide pulse sequences for gates of the form
R ⊗ 1, where R is one of the 24 Clifford gates. To implement
this method of deriving dynamical pulse sequences, we first
find short uncorrected pulse sequences which implement the
desired gates. Reference [45] covers this topic in great detail,
and we use the equations for implementing arbitrary rotations
found there, many of which have extra degrees of freedom.
(We refer to Ref. [45] for the necessary technical details here.)
In principle, these degrees of freedom could be added to
the list of free parameters ji , φi in the uncorrected identity
operation, possibly resulting in a marginally more optimal
pulse sequence. However, these extra parameters are gate
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FIG. 3. A corrected pulse implementing a π rotation about the x + y axis. J1 (top) and J2 (bottom) are plotted against time, with h1 = h2 = 1.

dependent, and so in order to treat all gates identically, we
make arbitrary choices for these parameters, giving preference
to choices which have low values of J1 or J2 since the strength
of the capacitive coupling is proportional to J1 and J2. During
this initial rotation sequence, which is performed on qubit 1,
we perform a single uncorrected 2nπ rotation at constant J2

on the qubit 2, with J2 and n chosen so that the total time of
the initial pulse sequence and the 2nπ rotation are the same.

After calculating the error �rot using Eqs. (18) and (21), we
construct an uncorrected identity of the form given in Eq. (27).
Since 27 parameters are needed, at least a level 7 uncorrected
identity is required; however, we have used a level 9 identity in
order to introduce extra parameters, which helps the numerical
methods used to solve the equations converge more quickly
and consistently. In particular, we minimize the norm of the
sum �rot + �idt. A local minimization technique is used which
requires initial values for the parameters, and a poor choice
of these values can cause the method to converge to a local
minimum not equal to zero. We find that choosing ji to have
magnitudes alternating between large (j2n−1 > h) and small
(j2n < h), and choosing φi close to π generally give good
results. We leave some room for variation, pseudorandomly
generate many sets of values of ji and φi , and use for the
set of initial values the one which gives the smallest norm
of �rot + �idt. During this minimization, we require that
jmin � ji � jmax, with jmin and jmax equal to 1

30h and 30h,
respectively. These values have been chosen to approximate
current experimental capabilities [52]. Our method works with
tighter constraints, though a higher level identity (longer pulse)
may be required to find a solution.

B. Constraints with h1 �= h2

We now address the case where h1 and h2 differ by a known
amount �h greater than dh1, dh2, so that terms second order
in �h cannot be ignored (if �h � 1, then we can simply treat
h1 = h2 and let �h be absorbed into the dh1 and dh2 error
terms). We can use a similar method as in subsection A above,
with Eq. (24)–(26) becoming

h(n) =
{
h1 if n is odd,

h2 if n is even,
(28)

t(n)(j,φ) = φ

2
√

h2
(n) + j 2

, (29)

U(n)(j,j
′,φ) =

{
U (j,j ′,t(n)(j,φ)) if n is odd,

U (j ′,j,t(n)(j,φ)) if n is even,
(30)

j ′
n =

√
−h2

(n+1) +
[

2π

t(n)(j2n−1,2π ) + t(n)(j2n,2π )

]2

. (31)

Here, parentheses (n) in the subscript denote that only the parity
of n is important and not its value.

The difficulty lies in ensuring that all values of ji and
j ′
i are bounded between jmin and jmax. When h1 = h2, the

constraints jmin � ji � jmax automatically enforce jmin �
j ′ � jmax; however, when h1 
= h2, additional constraints are
needed. We approach this problem by noticing that Eq. (31)
is symmetric between j2n−1 and j2n. This initially motivates
us to require that the constraints on j2n−1 and j2n be identical
as well. This simplifies the initial calculations, but we also
address allowing asymmetric constraints between j2n−1 and
j2n. Solving Eqs. (29) and (31) along with the inequality,
jmin � j ′ � jmax, we find the following constraints on ji :

√
j 2

min − h2
(n) + h2

(n+1) � j2n−1,j2n,

j2n−1,j2n �
√

j 2
max − h2

(n) + h2
(n+1). (32)

In practice, jmax � h1,h2, so the maximum√
j 2

max − h2
(n) + h2

(n+1) ≈ jmax, and thus can be ignored.
The minimum is also ignored when −h2

(n) + h2
(n+1) < 0 since

ji � jmin fulfills this inequality also. This occurs for all odd
or even n depending on whether h1 or h2 is larger. Using this
additional constraint, the same process described above is
used to find a pulse sequence, though a longer pulse may be
necessary due to the tighter constraints.

Since the pulse sequences we find generally consist of
values ji alternating between large and small (due to our choice
of starting values during the minimization process), it is natural
to consider allowing j2n � jmin and deriving the minimum
constraint on j2n−1, which yields

j2n−1 �
[
−h2

(n) +
(
h2

(n+1) + j 2
min

)(
h2

(n) + j 2
min

)
(
2
√

h2
(n) + j 2

min −
√

h2
(n+1) + j 2

min

)2

]1/2

.

(33)

045431-7



BUTERAKOS, THROCKMORTON, AND DAS SARMA PHYSICAL REVIEW B 97, 045431 (2018)

FIG. 4. The total error of corrected (blue) and uncorrected (orange) pulses versus the norm of dhi , αi , ε. It is clear from the slopes of the
lines that the uncorrected pulse error is first order and the corrected pulse error is second order in dhi , αi , ε.

Assuming jmin � h1,h2, this simplifies to

j2n−1 �
2h

3/2
(n)

√
h(n+1) − h(n)

2h(n) − h(n+1)
. (34)

This approach is only valid for h(n+1) < 2h(n). For differences
greater than this, a different choice of uncorrected identity is
needed, which, although possible, is beyond the scope of this
work.

C. Results

Parameters for the corrected pulse sequences for the 24
Clifford gates for the case where h1 = h2 = 1 are given in
Appendix A. We have also considered the simple situation in
which, rather than setting dJi = αiJi , with αi a small constant,
we simply let dJi be constant for the duration of the sequence,
and provided parameters for the resulting corrected sequences
in Appendix B. The top portions of the tables give the param-
eters j ′rot, j rot

i , and t rot
i for the initial uncorrected rotations,

U rot =
∏

i

U
(
j rot
i ,j ′ rot,t rot

i

)
, (35)

and the bottom portions give the parameters ji and φi for the
uncorrected identity I (9) given by Eq. (27). As an example, we

plot the error-corrected pulse sequence for the gate e
− i

2
X+Y√

2
π

in Fig. 3.
To precisely quantitatively calculate the fidelity of the

dynamically corrected gate operations using our pulse se-
quences starting with given error sets, a detailed random-
ized benchmarking analysis is necessary. Such a randomized
benchmarking analysis, which is better done in connection
with the actual experimental work implementing our pulse
sequences in the ST qubit gate operations, is well beyond the
scope of this work. However, it is easy to show that the errors
in the sequences we found are second order in dhi , αi , and

ε, given that these values are constant, i.e., these sequences
correct noise- and crosstalk-induced error to leading order.
For a given pulse sequence and a set of values dhi , αi , and ε,
we can evaluate e−itH for each rotation in the pulse sequence
using the full Hamiltonian with errors given in Eq. (19). By
combining these rotations with error and comparing to the ideal
rotation, the total error of the pulse sequence �P (dhi ,αi,ε)
can be determined for the given values of dhi , αi , and ε.

Taking the norm of �P , defined as |�P | =
√

Tr �
†
P �P , we

have measure of the error of a given pulse sequence. For each
sequence, we generate many sets of values dhi , αi , and ε,
and plot |�P | against the norm of (dh1,dh2,α1,α2,ε), and find
that the total error is clearly second order in dhi , αi , and
ε. We show an example of such a plot, in this case for the

gate e
−i
2

X+Y√
2

π , in Fig. 4. We generate plots like this for all 24
pulses and find that they are qualitatively identical to the one
shown. As can be seen from Fig. 4, an initial error of 10−3

can be corrected by two or three orders of magnitude by our
pulse sequence whereas the corresponding error correction for
starting errors of 10−1 is more modest (in the range of one
order of magnitude or less). A full randomized benchmarking
analysis is likely to give numbers close to these direct estimates
based on specific pulse sequences. If the uncorrected system
has a fidelity of 95%, our dynamical decoupling scheme should
be able to improve the fidelity to well above 99%, but a starting
fidelity of 90% may be too low for our scheme to improve
it above 99%. It is also important to note that although our
scheme corrects quite well against correlated errors, if the
system is dominated by white noise or uncorrelated errors,
uncorrected pulses are still favorable. Notably this sets limits
on the minimum precision needed to implement the corrected
gates. In particular, a precision of at least 0.1% for each of the
parameters is needed in order for the corrected pulses to offer
an advantage over the uncorrected gates.
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IV. CONCLUSION

We have addressed the issue of crosstalk between two ca-
pacitively coupled singlet-triplet qubits. While such a coupling
is necessary to perform multiqubit operations, it also has a
detrimental effect on single-qubit operations: it causes unin-
tentional rotation of the other qubit(s), and also causes errors
in the intentional rotation of the qubit under consideration.
As a result, it is crucial to develop a method for correcting
for not only noise-induced error, but for crosstalk-induced
error as well. Our proposed dynamical decoupling scheme
does this precisely. Our method is a generalization of the
SUPCODE technique of Refs. [43–45]. We first perform our
naïve pulse sequence for implementing a given single-qubit
gate, followed by an uncorrected identity operation with its
parameters arranged in such a way as to cancel the effects of
noise and crosstalk to leading order. Unlike in the single-qubit
case already considered in the literature, the case of two
capacitively coupled qubits provides additional challenges.
Because of the fact that the capacitive coupling is proportional
to the exchange couplings of the two qubits, we cannot make
these couplings too large, lest we make the capacitive coupling,
and thus the crosstalk, large as well. We must also ensure
that the pulse sequences applied to each qubit take the same
amount of time to complete. Our method for implementing
the uncorrected identity, in which we divide the identity into
segments within which one qubit is subject to two pulses and
the other to just one of identical duration, allows us to address
both of these issues. We provide an analysis of one of the
pulse sequences that results from this procedure, namely, that
of a rotation by π about the �̂x + �̂y axis, and also provide
parameters for all 24 of the Clifford gates used in randomized
benchmarking simulations in the Appendix. We also show that
these pulses, as claimed, do indeed cancel the error in the naïve
pulse sequences to leading order by plotting the error as a
function of the noise and crosstalk strength. Throughout, we
assume upper and lower bounds on the exchange couplings
that approximate experimental constraints.

All of the results that we provide assume that the magnetic
field gradient on the two qubits is the same for both. It is entirely
possible for the gradients to differ. While our sequences can
correct for small variations due to imperfections in fabrication
of the micromagnets or polarization of the nuclei used to realize
the gradients (we simply add them to the error terms), we do not
derive results for cases in which the difference in the gradient
between the two qubits is significant, whether by design or
by accident. We have, however, provided some discussion of
this case; we showed that additional complications arise, in the
form of tighter constraints on the allowed exchange coupling
strengths than we would expect entirely from experimental
constraints. We also note that, throughout this work, we
assumed that the noise in the system is quasistatic. While
this is often a good approximation [19], the noise in actual
experimental systems is known to follow a power-law spectrum
[16,53] (1/f α). We see, however, from the previous work
[44,45] that, even in this scenario, similar approaches to that
which we adopt here to combat the effects of noise still result
in noticeable improvement in gate fidelities. We thus expect
similar results for the capacitively coupled qubits considered
here.

We also note that capacitive coupling is not the only type of
coupling that can be realized between two singlet-triplet qubits.
Exchange coupling is another type of coupling that can exist;
we simply couple one quantum dot from one qubit to a quantum
dot in the other qubit using a Heisenberg exchange interaction.
This can be realized experimentally using a four-quantum-dot
device operated as two singlet-triplet qubits, with the “middle”
potential barrier used to control the exchange coupling between
the qubits. This offers two advantages, but also a drawback.
First of all, this type of coupling enables us to control the
coupling of the qubits independently of the intraqubit exchange
couplings, unlike capacitive coupling, which depends on the
intraqubit exchange couplings. Second of all, it is compatible
with the barrier, or symmetric, control scheme demonstrated
in Ref. [19], which results in an order of magnitude less
charge noise than tilt control. Realizing the capacitive coupling
studied in this work, on the other hand, requires us to tilt
the potential profile in order to produce the electric dipole
moments needed. Therefore, we expect that a putative set
of dynamically corrected pulse sequences for implementing
single-qubit gates on exchange-coupled singlet-triplet qubits
would avoid a number of the issues that arise with capacitively
coupled qubits; we would no longer be required to use tilt
control, thus allowing us to mitigate the effects of charge
noise, and we would be able to use faster pulses. However, the
disadvantage is that exchange coupling introduces yet another
source of error beyond crosstalk, namely, leakage errors. It is
possible for this coupling to take the qubits out of their logical
subspace; for example, it could leave one qubit in the |↑↑〉 state
and the other in the |↓↓〉 state. This would present an additional
challenge to overcome in developing dynamically corrected
pulse sequences for such a system. While a study of error
correction in exchange-coupled singlet-triplet qubits would be
interesting, it is beyond the scope of this work. In the end,
whether capacitive coupling or exchange coupling is a better
avenue for future progress in ST qubits depends quite a bit not
only on the details of the noise and crosstalk in the systems, but
also on the experimental ability to control the leakage error.
We mention in this context that the capacitively coupled ST
qubits are the only semiconductor spin-qubit systems to have
demonstrated two-qubit gate-controlled operations, leading to
our decision to study the ST qubits in depth in this work.

In conclusion, we have developed detailed dynamical de-
coupling pulse sequences for suppressing crosstalk and noise
errors in capacitively coupled singlet-triplet spin qubits and
have explicitly demonstrated their efficacy by showing that
the corrected sequences manifest orders of magnitude lower
errors than the naïve uncorrected sequences.
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APPENDIX A: TABLES OF DYNAMICALLY CORRECTED
PULSE SEQUENCE PARAMETERS

We present here the parameters for the dynamically cor-
rected pulse sequences that we have derived. The complete
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TABLE I. Parameters for the dynamically corrected identity operation, the x and y rotations, and the z rotation by π

2 .

Axis x x x y y y z

Angle Identity π/2 π 3π/2 π/2 π 3π/2 π/2

j ′rot 0.03333 0.03333 0.03333 0.03333 0.03333 0.03333 0.03333 0.03333
j rot

1 0.03333 0.03333 0.03333 0.03333 6.43043 7.31731 8.19725 1.00000
j rot

2 0.88348 1.73498 3.88089 0.73084 0.75954 0.78254 0.21835
j rot

3 0.03333 0.03333 0.03333 6.43043 7.31731 8.19725 1.00000
j rot

4 0.73084 0.75954 0.78254
j rot

5 6.43043 7.31731 8.19725
t rot
1 3.13985 0.40660 0.79532 1.18104 0.12069 0.10635 0.09511 0.61342
t rot
2 2.32664 1.54921 0.77777 1.26821 1.25089 1.23705 1.91300
t rot
3 0.40660 0.79532 1.18104 0.12069 0.21269 0.28532 0.61342
t rot
4 1.26821 1.25089 1.23705
t rot
5 0.36206 0.31904 0.28532

j1 4.25455 8.64919 8.97960 11.2324 4.69870 11.7867 16.5123 2.69759
j2 0.09332 0.23284 0.05770 0.15526 0.45052 0.04100 0.28630 0.18032
j3 8.02055 2.50370 10.2303 10.1333 14.3073 19.4429 3.79908 20.4549
j4 0.06985 0.39326 0.08544 0.13815 0.06080 0.05751 0.35525 0.07026
j5 10.6268 4.16386 4.11884 3.33988 7.62621 16.7854 4.50812 12.0166
j6 0.21389 0.17203 0.06055 0.07889 0.55734 0.32611 0.04356 0.39711
j7 7.37015 5.72370 3.90696 2.96801 8.28095 16.3807 9.11133 3.51155
j8 0.08986 0.05960 0.26106 0.09212 0.05088 0.03886 0.26085 0.10698
j9 7.64161 3.82995 2.06453 6.86584 4.04735 25.1775 6.51133 5.49661
j10 0.17317 0.07476 0.08354 0.05764 0.67310 0.06981 0.05847 0.10551
j11 4.66221 11.8434 12.2670 7.57279 15.3226 21.3511 5.54262 6.12039
j12 0.13532 0.28465 0.16320 0.30184 0.08241 0.05312 0.56561 0.08912
j13 6.51752 9.38462 8.88344 3.45868 3.78001 2.49265 5.73037 7.88694
j14 0.06160 0.07390 0.06824 0.17500 0.11185 0.34648 0.06432 0.20510
j15 9.20117 6.50713 8.40965 7.15013 6.01842 5.86112 9.20095 11.0451
j16 0.06356 0.09257 0.35852 0.13261 0.31594 0.11879 0.07149 0.07399
j17 4.56705 7.29008 9.44018 6.36630 8.37878 15.1228 21.0147 7.51700
j18 0.09158 0.42999 0.11956 0.26920 0.46082 0.31023 0.05848 0.27828
φ1 2.55322 4.66206 0.30870 4.51951 5.52197 3.64920 2.80854 3.21494
φ2 3.00455 3.23089 2.12926 2.05844 5.00581 2.83173 4.02044 4.77361
φ3 3.33459 4.11162 3.92240 4.21749 4.04230 3.18274 1.71682 2.38512
φ4 2.96052 2.88401 4.33729 3.53703 2.73821 3.72700 3.01457 3.57115
φ5 5.09619 3.21946 1.39096 2.21303 2.27049 0.92820 3.71351 3.80415
φ6 2.33360 3.35709 3.42368 3.34577 4.07169 3.89570 2.73709 2.63703
φ7 5.20802 1.84857 3.66689 4.25246 3.76942 2.01892 4.46601 2.88075
φ8 3.71262 3.47093 2.51816 1.64612 3.20440 2.61221 2.86863 3.03145
φ9 0.46072 3.30053 2.09375 2.84958 1.39429 4.71962 4.02309 3.03890
φ10 3.39227 3.37554 3.27396 3.30266 3.68709 3.88283 3.29495 2.73878
φ11 2.55021 5.62423 1.71873 1.59029 1.43437 2.62054 0.18895 5.34732
φ12 2.65459 1.74187 4.45157 4.16496 4.23973 2.57055 4.15438 3.30636
φ13 5.21937 4.40566 2.93057 2.22547 2.23942 2.75109 3.17595 5.68995
φ14 2.91567 2.92878 2.85932 3.42050 2.13964 2.91979 2.97230 1.91518
φ15 3.79412 2.44601 4.29348 3.91960 4.96730 3.87946 3.41412 4.76460
φ16 2.13795 2.96169 3.57123 2.51887 2.08244 2.82506 3.57640 2.60517
φ17 4.12557 2.35265 0.43890 4.22659 5.48983 3.28908 2.47360 2.86459
φ18 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159

pulses are given by Eqs. (35) and (27) with parameters given
in Tables I–III. All j values are in units of h.

APPENDIX B: DYNAMICALLY CORRECTED PULSE
PARAMETERS FOR CONSTANT dJi

Throughout this work, in the main text, we have used a
model where dJi is proportional to Ji . However, other models

may exist, and the numerics of our method are able to generate
pulse sequences for a range of different models. To demonstrate
this, we also derived pulse sequences for the case where dJi

is independent of Ji , and found that these sequences also
corrected first-order error in the model chosen. The parameters
for these sequences are given in Tables IV–VI. In principle, if
experiments warrant generating dynamical decoupling pulse
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TABLE II. Parameters for the dynamically corrected z rotations by π and 3π/2, and for the rotations by �̂x ± �̂y, �̂x ± �̂z, and �̂y ± �̂z.

Axis z z �̂x + �̂y �̂x − �̂y �̂x + �̂z �̂x − �̂z �̂y + �̂z �̂y − �̂z
Angle π 3π/2 π π π π π π

j ′rot 0.03333 0.03333 0.03333 0.03333 2.64575 0.57485 0.03333 0.03333

j rot
1 2.00000 3.00000 0.50509 0.50509 1.00000 2.53276 1.71541 1.71541

j rot
2 0.45510 0.67658 4.57172 4.57172 0.03333 0.13012 0.13012

j rot
3 2.00000 3.00000 0.50509 0.50509 2.53276 1.71541 1.71541

j rot
4

j rot
5

t rot
1 0.50027 0.42475 1.91411 0.89008 1.11072 0.57686 0.51303 1.06916
t rot
2 2.13931 2.29036 0.33565 0.33565 1.56992 1.55767 1.55767
t rot
3 0.50027 0.42475 0.89008 1.91411 0.57686 1.06916 0.51303
t rot
4

t rot
5

j1 14.9279 23.9766 11.2197 5.88326 0.96910 4.21145 7.89663 10.5977
j2 0.21741 0.08751 0.23548 0.06925 0.33248 0.04880 0.16242 0.15088
j3 2.80327 12.5873 4.50703 6.85985 10.5444 3.73761 9.24311 4.57720
j4 0.24971 0.29095 0.36990 0.19478 0.08280 0.20116 0.05004 0.14168
j5 13.6280 5.05654 3.51726 3.10676 8.22643 6.15100 11.9739 11.9299
j6 0.11850 0.12464 0.25159 0.12773 0.41291 0.07436 0.37828 0.04724
j7 5.43618 10.4596 10.0448 6.14212 10.9543 6.86964 3.16910 11.1235
j8 0.19053 0.16828 0.06464 0.10770 0.05153 0.10872 0.09210 0.19887
j9 2.93129 25.2507 6.21325 3.62073 3.99054 5.02616 5.40783 8.30899
j10 0.17401 0.24332 0.05614 0.04634 0.56279 0.30939 0.24328 0.23214
j11 5.34895 13.9661 10.2701 7.06335 1.16160 19.2500 12.1845 10.3575
j12 0.40949 0.45280 0.45991 0.30292 0.04781 0.12683 0.08331 0.32868
j13 22.1116 19.8886 5.15864 5.85519 5.87043 19.8651 3.88747 9.48442
j14 0.04834 0.04964 0.15747 0.13325 0.21666 0.06943 0.15774 0.07721
j15 8.28348 20.8913 14.3910 4.07973 7.49208 7.38150 14.5753 6.62029
j16 0.03776 0.08864 0.04757 0.06969 0.04560 0.04795 0.08895 0.08536
j17 17.3790 11.8760 5.23171 7.38525 11.1053 9.76455 5.52560 9.49243
j18 0.28731 0.13834 0.53640 0.31872 0.06706 0.20667 0.56000 0.16461
φ1 0.17390 4.46173 3.23390 2.22917 3.39790 5.28562 0.65047 0.63295
φ2 3.09168 2.33997 3.70695 3.85984 3.95766 3.62949 2.92893 3.60713
φ3 3.07075 4.39117 0.80794 2.98899 4.26243 1.80037 3.38641 2.60625
φ4 3.39482 3.60846 3.26099 2.19380 3.35828 3.33234 2.88631 2.80943
φ5 2.93283 2.65185 2.77504 4.15096 1.54770 2.81655 2.51553 4.12300
φ6 2.65427 3.56274 2.93110 3.34935 3.91568 2.96830 3.16500 2.66819
φ7 4.87590 0.86494 4.65637 1.82555 1.90529 3.86311 4.43373 5.59828
φ8 2.51402 3.42610 2.69527 3.99554 3.59852 3.47884 2.45794 2.53965
φ9 4.14460 2.17747 3.14723 3.55778 2.34369 2.19616 5.64073 4.45949
φ10 3.45194 3.09249 2.60268 3.09779 4.24466 3.00242 3.21892 3.53377
φ11 0.26740 5.38412 1.58592 5.06376 0.79352 6.05802 3.55833 0.49920
φ12 3.84950 2.68984 4.40648 2.19840 2.86710 3.79569 2.95205 3.42713
φ13 2.66076 3.07483 2.14367 3.92841 5.36926 2.38004 2.08220 2.48413
φ14 3.27057 3.42195 3.54935 3.08201 1.77750 3.01509 3.04083 3.12396
φ15 2.94726 2.01300 3.96286 2.65718 4.68514 3.74243 3.17084 3.63762
φ16 3.86814 2.82538 3.21533 2.96932 2.63704 3.38304 3.75684 3.40975
φ17 3.27372 3.39624 4.21481 2.24716 3.60030 4.05433 3.12939 3.00546
φ18 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159

sequences for other possible coupling models for ST qubits,
our method can easily be generalized to handle such scenarios.

As in the previous set of tables, all j values are in units
of h.
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TABLE III. Parameters for the dynamically corrected �̂x ± �̂y ± �̂z rotations.

Axis �̂x + �̂y + �̂z �̂x + �̂y + �̂z −�̂x + �̂y + �̂z −�̂x + �̂y + �̂z �̂x − �̂y + �̂z �̂x − �̂y + �̂z �̂x + �̂y − �̂z �̂x + �̂y − �̂z
Angle 2π/3 4π/3 2π/3 4π/3 2π/3 4π/3 2π/3 4π/3

j ′rot 0.03333 0.03333 0.03333 0.03333 0.03333 0.03333 0.03333 0.03333

j rot
1 0.56170 0.74456 0.32145 0.29210 0.56170 0.74456 0.29210 0.32145

j rot
2 2.41400 3.22657 14.0228 8.36716 2.41400 3.22657 8.36716 14.0228

j rot
3 0.56170 0.74456 0.32145 0.29210 0.56170 0.74456 0.29210 0.32145

j rot
4

j rot
5

t rot
1 2.21343 1.97092 1.17574 1.18212 0.52564 0.54891 1.83346 1.81513

t rot
2 0.40078 0.62001 0.14898 0.12427 0.40078 0.62001 0.12427 0.14898

t rot
3 0.52564 0.54891 1.81513 1.83346 2.21343 1.97092 1.18212 1.17574

t rot
4

t rot
5

j1 3.53560 7.40870 9.30530 6.38544 10.7248 17.2594 7.05950 15.1935

j2 0.23139 0.10157 0.11817 0.12981 0.21240 0.17560 0.32670 0.11769

j3 16.0966 6.97001 10.6390 6.51320 3.11017 27.1973 1.29162 9.17358

j4 0.07111 0.11694 0.08366 0.18193 0.14994 0.03927 0.32813 0.11144

j5 19.3300 4.58619 6.75684 5.18100 18.7600 5.91114 3.97861 8.94809

j6 0.16332 0.06442 0.21631 0.12154 0.07568 0.37476 0.13895 0.33521

j7 19.2548 5.60181 8.66110 4.18403 12.5498 7.98067 5.94619 12.1638

j8 0.04468 0.17014 0.14226 0.18787 0.29095 0.03475 0.05824 0.13070

j9 13.7738 13.4672 18.4340 3.59364 6.79908 11.9460 3.70590 19.3022

j10 0.08073 0.13413 0.24654 0.04273 0.15602 0.31084 0.04433 0.20006

j11 5.95821 7.28592 10.7813 6.93732 6.81217 8.42940 8.91232 6.86166

j12 0.13448 0.40891 0.15650 0.33408 0.31731 0.05540 0.33998 0.06192

j13 11.2806 7.39708 7.60260 4.74451 8.48105 21.8867 3.84464 5.46750

j14 0.16682 0.05707 0.30270 0.05037 0.09169 0.16977 0.05388 0.27407

j15 21.0041 11.2817 15.3315 5.09639 4.75689 12.7137 6.22348 4.54025

j16 0.12130 0.06069 0.05541 0.04628 0.08300 0.37435 0.08023 0.06762

j17 14.7728 8.14723 7.37956 6.53512 11.0940 3.36556 7.16938 22.1340

j18 0.17654 0.17674 0.24785 0.21341 0.13782 0.05163 0.51527 0.21191

φ1 2.53825 4.38397 2.65058 2.65215 2.00758 2.68429 5.33741 3.85920

φ2 4.53270 2.20273 2.38158 2.35687 3.52438 2.75927 3.86201 3.37853

φ3 2.59203 4.26832 4.80735 3.92194 2.59147 3.31991 2.81744 2.98401

φ4 3.75470 3.80220 3.24547 3.85075 3.15874 3.39732 2.94563 3.31101

φ5 0.52120 1.79639 2.94582 2.19146 3.34913 2.54966 3.55481 5.69859

φ6 2.78943 3.64199 2.46653 2.92552 2.74580 3.66193 3.26094 3.42371

φ7 2.39957 0.94526 3.64461 4.13605 5.08724 4.01620 1.84110 3.02494

φ8 3.27728 3.49039 3.53042 2.31790 2.53522 2.67545 3.44628 2.23430

φ9 4.13341 2.34697 1.92427 3.04953 4.33241 5.72953 3.24584 5.21972

φ10 3.64683 2.75723 2.99155 3.37997 3.63580 2.60940 3.40564 1.96004

φ11 4.64988 5.83925 5.29808 0.84137 0.28982 4.63477 5.17615 3.73298

φ12 2.94845 2.76326 3.73889 4.18084 3.55508 2.69058 1.48630 2.67019

φ13 6.10583 3.74351 3.17347 1.99631 2.54828 3.63376 3.93282 4.10101

φ14 3.47632 3.35216 2.89166 3.62070 3.25964 2.74220 3.41431 3.90467

φ15 1.43617 2.16943 3.31085 2.91108 2.93229 3.16477 1.31813 2.69967

φ16 3.36972 3.06705 3.20338 3.46981 3.72947 4.28321 3.27278 3.30133

φ17 3.62018 3.37820 2.73933 4.06683 3.07756 0.25141 2.27238 5.24267

φ18 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159
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TABLE IV. Parameters for the dynamically corrected identity operation, the x and y rotations, and the z rotation by π

2 for a model with
constant Ji .

Axis x x x y y y z

Angle (Identity) π/2 π 3π/2 π/2 π 3π/2 π/2

j ′rot 0.03333 0.03333 0.03333 0.03333 0.03333 0.03333 0.03333 0.03333

j rot
1 0.03333 0.03333 0.03333 0.03333 6.43043 7.31731 8.19725 1.00000

j rot
2 0.88348 1.73498 3.88089 0.73084 0.75954 0.78254 0.21835

j rot
3 0.03333 0.03333 0.03333 6.43043 7.31731 8.19725 1.00000

j rot
4 0.73084 0.75954 0.78254

j rot
5 6.43043 7.31731 8.19725

t rot
1 3.13985 0.40660 0.79532 1.18104 0.12069 0.10635 0.09511 0.61342

t rot
2 2.32664 1.54921 0.77777 1.26821 1.25089 1.23705 1.91300

t rot
3 0.40660 0.79532 1.18104 0.12069 0.21269 0.28532 0.61342

t rot
4 1.26821 1.25089 1.23705

t rot
5 0.36206 0.31904 0.28532

j1 5.46325 4.79267 10.3137 19.4597 7.27643 14.6880 12.1954 18.8080

j2 0.11660 0.34036 0.30761 0.09602 0.17189 0.05126 0.17555 0.07608

j3 7.83045 9.43393 15.1785 3.35795 12.5444 4.86269 21.7404 1.77304

j4 0.19007 0.05276 0.06575 0.04726 0.03873 0.06463 0.03914 0.15544

j5 14.0880 8.39676 4.44094 12.2696 14.3122 20.8924 20.9836 11.8583

j6 0.08858 0.55349 0.09376 0.06754 0.05058 0.29920 0.18160 0.08084

j7 7.86256 7.36736 17.6563 4.50145 5.50740 4.24082 3.78485 5.78212

j8 0.24579 0.05809 0.11776 0.20283 0.30428 0.06582 0.06840 0.09301

j9 8.75655 4.55834 23.1891 6.27128 12.4862 6.52354 2.56912 5.09631

j10 0.47191 0.48569 0.06621 0.21726 0.06858 0.44181 0.09971 0.33394

j11 13.0447 8.70805 6.58776 14.2591 10.3155 11.3152 22.5411 5.15544

j12 0.04996 0.04185 0.37826 0.24168 0.10836 0.23690 0.09658 0.33536

j13 8.16027 3.65005 11.7940 5.28220 9.68209 15.1274 10.0745 2.95355

j14 0.37463 0.45310 0.19711 0.12640 0.06406 0.12887 0.05410 0.07845

j15 8.59080 3.72874 14.2332 21.4867 9.12064 23.7044 20.3803 4.59443

j16 0.05091 0.09174 0.11715 0.07025 0.05448 0.05521 0.03650 0.06872

j17 8.68563 3.72280 19.1950 13.6475 1.30298 18.1969 10.1510 9.98698

j18 0.54697 0.74161 0.14063 0.08958 1.17119 0.55345 0.58051 0.44689

φ1 3.77050 2.08723 4.87126 2.05446 3.66034 2.28203 1.37456 3.35636

φ2 3.08246 2.19136 2.24372 2.08569 2.01941 2.62145 3.27109 2.90279

φ3 3.04031 3.88529 4.54342 4.60125 3.91929 4.65150 0.50256 3.47771

φ4 3.59030 3.15322 3.25836 3.34866 2.82642 3.34064 2.86164 2.84707

φ5 0.55135 2.71164 2.55084 2.63841 2.92500 1.62537 2.72019 3.38188

φ6 2.17272 2.90728 2.89031 2.54085 2.96817 3.28533 3.04122 3.85092

φ7 4.89381 3.66293 2.01301 4.18211 1.81668 3.89362 3.95251 1.10297

φ8 3.12411 2.66501 4.03373 2.10076 3.85824 2.42106 3.14859 3.67710

φ9 3.16856 5.35428 0.91936 5.19087 1.22979 4.52306 4.46065 1.64572

φ10 4.44070 2.98250 3.07860 2.49427 3.55619 1.78678 3.99485 3.08432

φ11 3.43482 3.84937 5.27382 6.04607 4.11185 3.63263 1.15521 5.93853

φ12 3.34802 2.63375 3.08498 2.94918 3.42171 2.58892 3.27690 2.30308

φ13 1.45811 2.85588 3.78840 5.01766 3.12784 5.35763 1.04860 3.77584

φ14 3.17489 3.53121 2.87810 2.81372 3.60913 3.02506 2.95315 3.03211

φ15 3.22668 3.15860 2.59690 3.27866 0.85238 4.77421 2.49322 2.77818

φ16 3.22662 3.09129 3.73021 2.69768 3.44236 2.88387 3.38333 2.69569

φ17 4.00536 4.29243 1.89763 2.89193 3.21522 4.92074 4.01619 3.31403

φ18 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159
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TABLE V. Parameters for the dynamically corrected z rotations by π and 3π/2, and for the rotations by �̂x ± �̂y, �̂x ± �̂z, and �̂y ± �̂z for a model
with constant Ji .

Axis z z �̂x + �̂y �̂x − �̂y �̂x + �̂z �̂x − �̂z �̂y + �̂z �̂y − �̂z
Angle π 3π/2 π π π π π π

j ′rot 0.03333 0.03333 0.03333 0.03333 2.64575 0.57485 0.03333 0.03333

j rot
1 2.00000 3.00000 0.50509 0.50509 1.00000 2.53276 1.71541 1.71541

j rot
2 0.45510 0.67658 4.57172 4.57172 0.03333 0.13012 0.13012

j rot
3 2.00000 3.00000 0.50509 0.50509 2.53276 1.71541 1.71541

j rot
4

j rot
5

t rot
1 0.50027 0.42475 1.91411 0.89008 1.11072 0.57686 0.51303 1.06916

t rot
2 2.13931 2.29036 0.33565 0.33565 1.56992 1.55767 1.55767

t rot
3 0.50027 0.42475 0.89008 1.91411 0.57686 1.06916 0.51303

t rot
4

t rot
5

j1 14.8320 6.08606 12.9511 2.98902 9.36914 5.01120 6.21125 5.20786

j2 0.08568 0.07273 0.17844 0.32786 0.04832 0.06079 0.14018 0.06111

j3 17.4859 5.41369 1.75872 10.2626 8.17962 8.18877 6.64681 5.73146

j4 0.04172 0.15263 0.13529 0.10200 0.31474 0.04798 0.06600 0.09549

j5 10.6823 11.8655 2.87996 12.5734 8.40274 4.43495 6.24976 4.24419

j6 0.14942 0.09036 0.06331 0.06508 0.13463 0.10140 0.06618 0.10577

j7 18.4109 7.12383 11.4745 11.8260 4.71318 8.08935 8.75777 5.42467

j8 0.22390 0.33033 0.29352 0.22181 0.24977 0.27460 0.12328 0.09174

j9 19.9055 6.73884 7.19879 10.0370 9.68484 1.04517 7.22767 3.56681

j10 0.22414 0.06294 0.10262 0.05338 0.28410 0.10052 0.07137 0.06428

j11 13.7704 10.7659 3.49491 14.3384 6.16179 7.94141 6.30792 8.25962

j12 0.23365 0.31156 0.05490 0.24371 0.49621 0.09732 0.19631 0.18793

j13 21.2667 8.21772 12.9055 2.82533 7.59476 5.90722 8.13722 2.81933

j14 0.18113 0.05662 0.21813 0.08250 0.07428 0.22768 0.08147 0.06690

j15 10.3561 5.26986 3.93531 12.2900 14.9265 2.69925 4.29169 4.53299

j16 0.08696 0.10441 0.07098 0.07438 0.04470 0.06062 0.08320 0.08701

j17 6.22164 5.54215 16.6152 9.95958 13.3491 5.46497 3.83547 6.02802

j18 0.20041 0.11415 0.21540 0.27869 0.04341 0.27100 0.15614 0.33781

φ1 1.75669 0.49652 3.09290 3.85330 3.10342 4.02203 5.43418 0.98434

φ2 2.33422 3.96681 4.50049 1.47780 3.95197 4.57343 2.59242 4.13376

φ3 5.30954 2.49781 2.81283 4.59337 0.93831 2.09934 3.69553 2.48926

φ4 3.12939 2.27810 3.59551 1.79992 2.66582 3.83942 3.39603 2.08419

φ5 3.28294 4.08082 5.27644 3.92107 4.21612 3.34398 1.55155 4.53314

φ6 2.98278 3.30503 2.87973 2.89507 2.69878 3.40785 3.35411 3.41282

φ7 2.97049 2.86190 3.01380 3.17126 4.52586 2.99563 0.90107 1.87910

φ8 3.59125 3.44407 1.64479 3.88246 2.98595 2.30693 4.03589 4.29502

φ9 1.48541 3.47186 5.16677 2.82468 3.74931 2.66493 1.96720 2.63959

φ10 3.27256 2.84195 3.83777 3.36406 3.60174 5.02774 2.53451 3.23638

φ11 5.26209 5.76930 2.23586 4.49378 0.60704 2.67576 5.92522 4.83535

φ12 3.40959 2.13972 3.66723 2.42232 3.33144 2.96314 2.81749 1.66024

φ13 3.45772 4.43079 0.72011 1.64091 2.42357 2.97994 4.50915 4.35308

φ14 2.92306 2.96829 4.41970 3.49835 3.12093 2.89307 3.28735 3.44457

φ15 3.57310 3.28504 3.75495 2.01767 4.37853 3.39137 2.10098 2.08324

φ16 3.08844 2.50621 3.16872 3.79660 3.71673 3.13385 3.66449 2.83612

φ17 2.42464 3.66783 4.04567 2.14381 1.88580 0.77083 2.15351 3.94458

φ18 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159
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TABLE VI. Parameters for the dynamically corrected �̂x ± �̂y ± �̂z rotations for a model with constant Ji .

Axis �̂x + �̂y + �̂z �̂x + �̂y + �̂z −�̂x + �̂y + �̂z −�̂x + �̂y + �̂z �̂x − �̂y + �̂z �̂x − �̂y + �̂z �̂x + �̂y − �̂z �̂x + �̂y − �̂z
Angle 2π/3 4π/3 2π/3 4π/3 2π/3 4π/3 2π/3 4π/3

j ′rot 0.03333 0.03333 0.03333 0.03333 0.03333 0.03333 0.03333 0.03333

j rot
1 0.56170 0.74456 0.32145 0.29210 0.56170 0.74456 0.29210 0.32145

j rot
2 2.41400 3.22657 14.0228 8.36716 2.41400 3.22657 8.36716 14.0228

j rot
3 0.56170 0.74456 0.32145 0.29210 0.56170 0.74456 0.29210 0.32145

j rot
4

j rot
5

t rot
1 2.21343 1.97092 1.17574 1.18212 0.52564 0.54891 1.83346 1.81513

t rot
2 0.40078 0.62001 0.14898 0.12427 0.40078 0.62001 0.12427 0.14898

t rot
3 0.52564 0.54891 1.81513 1.83346 2.21343 1.97092 1.18212 1.17574

t rot
4

t rot
5

j1 10.7661 11.5740 5.00930 5.44077 10.2269 18.7776 5.90484 7.15782

j2 0.11510 0.28828 0.09538 0.29018 0.11723 0.05318 0.31409 0.17930

j3 8.89117 3.65918 19.1213 11.3119 10.2021 10.0969 4.31741 7.46876

j4 0.20559 0.05901 0.09606 0.04124 0.09354 0.15789 0.06110 0.05518

j5 4.83475 25.6828 16.7694 9.32045 8.16447 22.2191 6.51526 5.27719

j6 0.13395 0.06718 0.05482 0.43300 0.11700 0.17654 0.08278 0.05364

j7 4.48507 3.05551 5.41672 17.3620 11.0271 3.90888 6.85651 17.3085

j8 0.04527 0.04005 0.26657 0.17560 0.21473 0.32907 0.18002 0.07704

j9 2.18431 6.29185 4.22555 3.67047 12.0647 21.4374 0.55896 13.0452

j10 0.04490 0.20990 0.50948 0.50657 0.07343 0.39065 0.86102 0.13407

j11 17.2965 5.91075 18.5654 18.3140 8.36832 20.4086 7.40366 15.0703

j12 0.04339 0.06178 0.03382 0.11821 0.27946 0.04014 0.13026 0.05362

j13 6.82614 27.2096 19.6292 6.85666 6.94247 26.3145 7.57882 6.28250

j14 0.14376 0.06382 0.34693 0.30954 0.16238 0.16546 0.10877 0.19997

j15 5.06561 4.64735 4.87618 15.9969 7.65720 9.27366 4.90249 5.97533

j16 0.22779 0.05061 0.03903 0.04383 0.07173 0.13057 0.06292 0.05197

j17 7.64291 5.61436 26.8249 12.2456 6.38671 20.9800 6.40504 6.57259

j18 0.29524 0.36538 0.51048 0.70207 0.22653 0.26497 0.46266 0.07298

φ1 1.86227 2.26580 1.99571 2.43151 3.12683 3.13524 2.02942 4.30594

φ2 2.39636 1.49241 3.47874 2.99874 3.84944 3.11065 3.65426 3.40109

φ3 3.09316 3.37813 2.91187 3.89836 1.93029 3.27606 3.38573 2.83522

φ4 4.08038 3.08759 2.24376 3.35420 2.90934 3.18770 3.04261 3.13690

φ5 1.96027 3.05081 5.45630 4.98881 4.25714 1.86445 3.74543 2.14373

φ6 3.21424 3.14847 4.07229 2.53448 3.14612 2.39157 2.14569 2.56715

φ7 4.16769 3.99172 2.41585 2.77336 4.61272 4.62757 4.16869 4.07547

φ8 2.17830 3.35751 2.70266 3.66705 2.39626 3.51918 2.41949 3.83791

φ9 3.57785 5.37022 3.51253 1.23518 4.24717 1.58182 4.95506 2.07100

φ10 2.70602 1.22627 1.69335 3.06442 3.74150 4.54924 1.50139 2.59654

φ11 1.35997 5.20760 3.18859 2.74756 0.31262 2.40164 2.38693 5.09851

φ12 4.48065 2.96135 2.94189 3.71204 3.34590 3.69582 4.17284 3.64342

φ13 2.31352 2.31340 4.59434 2.49796 1.86224 1.83430 2.89132 4.21655

φ14 3.43885 2.63958 3.43121 3.79832 2.96260 3.20157 3.45387 2.74168

φ15 3.35857 2.41218 2.67771 2.05334 3.99016 2.92032 2.11405 2.92801

φ16 3.31546 3.96840 2.93719 2.76419 2.94494 2.73833 3.89997 3.22086

φ17 2.51257 4.36821 2.44037 6.09444 3.72074 6.00654 1.43218 3.49669

φ18 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159 3.14159
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