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The 4π kz periodicity in photoemission from graphite
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The valence band dispersion of the graphite π band along the kz axis was measured using a sequence of photon
energies between 60 and 230 eV. The interlayer interaction induces the well-known splitting of the π band into
two, a lower binding energy band πL and a higher binding energy band πH. However, in the photoelectron spectra,
the bands πL and πH appeared alternatively in the Brillouin zones along the kz direction. As a result, a 4π -periodic
oscillation in the binding energy as a function of photon energy was observed for the π band dispersion. This is
explained by considering the constructive and destructive interference of pz orbitals within the unit cell, called
the photoelectron structure factor. We derived the analytic expression of the photoelectron structure factor for
graphite. The resonance integrals of the pz orbitals were determined for the in-plane and interlayer. Furthermore,
the inner potential of graphite from the vacuum level was determined to be 17.17 eV.
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I. INTRODUCTION

Photoelectron spectroscopy is a powerful technique for the
investigation of the electronic structure of solids and surfaces.
Photoelectron energy distribution curves for valence bands and
core levels reflect the density of states and composition, respec-
tively. The behaviors of valence electrons and the interference
of photoelectrons appear as band dispersions and photoelectron
diffraction patterns, respectively, in photoelectron intensity
distributions in momentum space. Using the laws of energy
and momentum conservation in the photoemission process,
the valence band structure can be measured directly and a rich
variety of information on the electronic structure of solids can
be obtained.

Furthermore, the transition matrix elements affect the in-
tensity of the photoelectron. In the case of linearly polarized
excitation, the symmetry relation in the photoelectron exci-
tation process also appears as the angular distribution from
atomic orbital (ADAO) [1,2], which is used to distinguish
the atomic orbitals constituting the valence band dispersion.
Another important effect in angular distribution is the photo-
electron structure factor (PSF) [2–6], which originates from
the interference among photoelectron waves from individual
atoms. Daimon et al. introduced the concept of PSF and
succeeded in explaining the difference in the graphite π band
intensity for the first and the second Brillouin zones (BZs) in the
kxy plane [2]. The phase of each atomic orbital wave function
which determines the bonding character of the valence band
dispersion can be accessed through the PSF observed as an
intensity disparity among different BZs.
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Here, we investigated PSF along the kz axis of the layered
material, graphite, which is important for the understanding of
the interlayer interaction, but has not been studied well so far.
The electronic structure of graphite has been studied exten-
sively by angle-resolved photoelectron spectroscopy [2–24],
inverse photoelectron and secondary electron spectroscopy
[25–32], core level photoelectron spectroscopy [33–37], Auger
electron and x-ray fluorescence spectroscopy [38–40], x-ray
absorption spectroscopy [41–45], and circularly polarized
photoemission [46,47], as well as by theoretical approaches
[48–57]. Therefore, we chose graphite as a playground for
typical layered materials to study the PSF along the interlayer
direction. The interlayer interaction induces the well-known
splitting of the π band into two, a lower binding energy band
πL and a higher binding energy band πH. In the photoelectron
spectra, the bands πL and πH appear alternatingly in the
odd and even BZs along the kz direction [7–10]. For the
explanation of this phenomenon, the dipole selection rules
tabulated by Benbow were cited [58], however, this does not
give information on the angular distribution nor the disparity
of photoelectron intensity among different BZs.

Takizawa et al. have measured the photoelectron intensity
of graphite in the vicinity of the Fermi level using several
different photon energies, and pointed out the importance
of the PSF along the kz axis [5]. Here, we revisited the
valence band dispersion of the graphite π band along the
kz axis and measured using a photon energy of 60–230 eV.
A 4π -periodic oscillation in the binding energy was clearly
observed for the bottom of the π band dispersion during
the photon energy scan. We derived an analytic form of
PSF and showed that this phenomenon can be understood
by considering the constructive and destructive interference
of pz orbitals within the unit cell. The PSF along the kz

direction is also important in the interpretation of the band
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dispersion of low-dimensional materials, such as transition
metal dichalcogenides, iron pnictide superconductors, and Bi
compound topological insulators.

In addition, the inner potential of graphite from the vacuum
level was determined to be 17.17 eV. This value roughly
corresponds to the midpoint between the bottoms of π and
2s bands at the � point.

II. THEORETICAL FORMULATION OF PSF

The theoretical formulation of the PSF described elsewhere
[2,6] is revised and presented here for extending the discussion.
The photoelectron intensity angular distribution I (θ,φ) is
proportional to the square of the transition matrix element,
M = 〈f |e · r|i〉, between the initial and the final states under
the dipole approximation scheme. G is a reciprocal lattice
vector,

I (θ,φ) ∝ D(EB,q)|M|2δEf ,hν+Eiδk,q+G. (1)

D(EB,q) is the density of states in a BZ at binding energy
EB and at q, i.e., the shape of an isoenergy cross section of
the band structure. The two delta functions enforce the energy
and momentum conservation laws. Thus, Ef = hν + Ei and
G = k − q = αa∗ + βb∗ + γ c∗ (α,β,γ are integer numbers).
The dipole operator e · r can be expressed using spherical har-
monics Y1μ(θ,φ) as e · r = √

4π/3[e−1Y11̄ + e0Y10 + e1Y11].
In the case of σ = 1 helicity, e1 = 1, e0 = 0, and e−1 = 0. In
the case of x polarization, e±1 = ∓1/

√
2 and e0 = 0.

The initial state |i〉 having a wave vector q and energy Ei is
written as a Bloch state in the tight-binding approximation as

|i〉 = 1√
N

∑
j

∑
nν

eiq·(Rj +τn)unν(q)ϕnν(r − Rj − τn), (2)

where N is the total number of atoms, and τn is the relative
position vector within the j th unit cell at Rj for the nth atom.
ϕnν(r) is the νth orbital of the nth atom, which is the product
of a radial function R(r) and a spherical harmonics Ylm(θ,φ).
unν(q) is its linear combination atomic orbital (LCAO) coeffi-
cient.

The final state |f 〉 with the wave vector k and energy Ef

can be approximated as a plane wave at the detector in the
(θ ′,φ′) direction. It is connected to a wave function in the
bulk and expanded using an orthogonal set of atomic orbitals
Yl′m′(θ,φ)R(r) as

|f 〉 = 4π
∑
l′m′

il
′
e−iδl′ Y ∗

l′m′(θ ′,φ′)Yl′m′(θ,φ)R(r). (3)

Using the above equations for the initial and final states
and the dipole perturbation, a formula for matrix elements is
derived,

M = 1√
N

∑
j

∑
nν

exp[−i(k − q) · (Rj + τn)]unν(q)Anν

=
∑
nν

exp(−iG · τn)unν(q)Anν. (4)

The ADAO, Anν ≡ 〈f |e · r|ϕnν〉, is expressed as follows [2],

Anν =
∑

l′=l±1

Rl′

1∑
μ=−1

eμYl′m′(θ ′,φ′)c1(l′,m′,l,m). (5)

The Gaunt coefficient c1(l′,m′l,m) is nonzero only when l′ −
l = ±1 and μ = m′ − m = ±1 or 0. Rl′ is the radial part of the
transition matrix element, which is a constant complex number
depending on l, l′, and photon energy.

When the initial state is composed of only one kind of
atomic orbital, C 2pz, for example, in the present case, the
ADAO term can be separated out of the absolute value as

|M|2 = |F (k)|2|A(θ ′,φ′)|2. (6)

Finally, the PSF F (k) for one kind of atomic orbital is derived
as

F (k) =
∑

n

exp(−iG · τn)un(q). (7)

The term |F (k)|2 is the intensity distribution in reciprocal k
space, which is independent of the energy or the incident angle
of the photons. This factor originates from the interference
of the photoelectron waves from different atoms in the unit
cell and is similar to the structure factors in x-ray or electron
diffraction replacing the scattering factors by the coefficients
for each atomic orbital in the LCAO wave function.

III. WAVE FUNCTIONS OF π BANDS

Four carbon atoms exist within a unit cell of graphite. The
in-plane bonding of carbon has a strong covalent character,
namely, σ bonds with sp2 hybridization. A layer of a hon-
eycomb network structure is formed by sharing the three sp2

electrons of the three neighboring carbon atoms. The in-plane
carbon distance is 1.421 Å. On the other hand, the out-of-plane
bonding of carbon is owing to a weak van der Waals interaction
produced by the delocalized π orbitals. The interplane spacing
of the carbon layers is about 3.35 Å. The carbon layers stack in
an ABAB. . . sequence (Bernal stacking) as shown in Fig. 1(a).
Note that there are three- and five-coordinated type carbon
atoms.

The four C 2pz orbitals pA, pB, pC, and pD, in the unit cell
form four π band dispersions. The wave function of the π band

FIG. 1. (a) Structure model, (b) in-plane atomic arrangement, and
(c) Brillouin zone of graphite crystal.
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ϕ(q,r) is as follows,

ϕ(q,r) = 1√
N

∑
n

eiq·rAn uApA + eiq·rBn uBpB

+ eiq·rCn uCpC + eiq·rDn uDpD

= 1√
N

∑
n

eiq·Rn
[
eiq·d4/2(uApA + eiq·d1uBpB

)
+ e−iq·d4/2

(
uCpC + e−iq·d1uDpD

)]
. (8)

d1, d2, d3, and d4 are the position vectors of the neighboring
C atoms shown in Fig. 1. Here, we introduce in-plane and
interlayer phase factors,

g(q) = eiq·d1 + eiq·d2 + eiq·d3 , (9)

h(q) = eiq·d4 + e−iq·d4 = 2 cos q · d4. (10)

The matrix elements Hij = 〈pi |H |pj 〉 are classified as
follows. Coulomb integrals: Hii = εp; resonance integrals
between two p orbitals in plane (π bond): HAB = HCD =
−Vppπ ; and perpendicular (σ bond): HAC = Vppσ . According
to Harrison, Vppm = ηppmh̄2/med

2, h̄2/me = 7.62 eV Å2,
ηppσ = 3.24, and ηppπ = −0.81 [59]. d is the interatomic
distance. Hereafter, we write −Vppπ and Vppσ as +V‖ and V⊥,
respectively. The reported values by Luiggi et al. were 2.85 and
0.30 for V‖ and V⊥, respectively [60]. The secular equation is⎛
⎜⎝

εp − E −V‖g V⊥h 0
−V‖g∗ εp − E 0 0
V⊥h 0 εp − E −V‖g∗

0 0 −V‖g εp − E

⎞
⎟⎠

⎛
⎜⎝

uA

uB

uC

uD

⎞
⎟⎠ = 0, (11)

which leads to the following equations for the π bands,

EπL = εp −
√

V 2
‖ |g|2 + V 2

⊥|h|2
4

− V⊥|h|
2

, (12)

EπH = εp −
√

V 2
‖ |g|2 + V 2

⊥|h|2
4

+ V⊥|h|
2

. (13)

The LCAO coefficients for the π bands (πH and πL) are as
follows: uA = ±uC ∝ εp − E, uB ∝ V‖g∗, and uD ∝ ±V‖g.
u2

A + u2
B + u2

C + u2
D = 1. Along the �-A symmetry line where

V⊥|h|/2V‖|g| � 1, the energy Eπ can be approximated using
the binominal expansion as follows,

EπL ≈ εp − V‖|g| − 1

2
V⊥|h| − 1

8

V 2
⊥|h|2
V‖|g| , (14)

EπH ≈ εp − V‖|g| + 1

2
V⊥|h| − 1

8

V 2
⊥|h|2
V‖|g| . (15)

Note that εp − V‖|g| and εp + V‖|g| correspond to the binding
energy of the π and π∗ band dispersions for graphene,
respectively. The third term ±V⊥|h|/2 represents the further
splitting of the π and π∗ bands. Along the K-H symmetry line
where |g| is equal to 0, EπL = εp − V⊥|h| and EπH = εp.

The PSF for each band is obtained by substituting the
coefficients un in Eq. (7). The following equation is for the
PSF for the π bands. Plus and minus signs correspond to H

FIG. 2. Square of structure factors (PSF), |F |2, for (a) πH band
and (b) πL band. C 2pz atomic orbitals at � for (c) πH and (d) πL

bands are shown.

and L bands, respectively,

F = e− i
2 G·d4 (uA + e−iG·d1uB)

±e
i
2 G·d4 (uC + eiG·d1uD). (16)

We finally obtain the PSF formula for graphite. Note that G ·
d1 = 2π (2α + β)/3. For even BZs (γ = 2n, n is the integer),

∣∣FπL

∣∣2 = 2
[
V‖

∑3
x=1 sin(G · d1 + q · dx)

]2(
εp − EπL

)2 + V 2
‖ gg∗

, (17)

∣∣FπH

∣∣2 = 2
[
εp − EπH + V‖

∑3
x=1 cos(G · d1 + q · dx)

]2(
εp − EπH

)2 + V 2
‖ gg∗

.

(18)

For odd BZs (γ = 2n + 1, n is the integer),

∣∣FπL

∣∣2 = 2
[
εp − EπL + V‖

∑3
x=1 cos(G · d1 + q · dx)

]2(
εp − EπL

)2 + V 2
‖ gg∗

,

(19)

∣∣FπH

∣∣2 = 2
[
V‖

∑3
x=1 sin(G · d1 + q · dx)

]2(
εp − EπH

)2 + V 2
‖ gg∗

. (20)

Figures 2(a) and 2(b) show the PSF for the πH band and
πL band, respectively. C 2pz atomic orbitals at the � point for
πH and πL bands are depicted together as Figs. 2(c) and 2(d),
respectively. Note that the pz orbitals in the πL band (bonding)
are aligned so that they are antiphase, while the pz orbitals in
the πH band (antibonding) are aligned so that they have the
same phase. These alignments in the πL and πH bands make
a destructive and constructive interference, respectively, in the
first BZ, while they are vice versa in the second BZ in the kz

direction.
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FIG. 3. Graphite π band dispersion measured by angle-resolved
photoelectron spectroscopy. The photon energy was (a) 60.0, (b) 80.0,
(c) 97.6, and (d) 115.1 eV.

IV. EXPERIMENT

A graphite single crystal of 1 mm diameter was mounted
on a sample holder and cleaved just before introducing it into
an ultrahigh vacuum for measurements. The surface quality
was checked by low-energy electron diffraction (LEED),
Auger electron spectroscopy (AES), and x-ray photoemission
spectroscopy (XPS) measurements. The selected area for
measurement consist of a single domain. No contamination
was detected.

Valence band dispersion as a function of photon energy
was measured by a concentric hemispherical analyzer at the
polarization variable soft x-ray beamline XA03DA of Swiss
Light Source, Switzerland [61]. Linearly polarized soft x rays
were used. The analyzer was centered at 60◦ off from incident
light. The acceptance angle mode of the analyzer was ±30◦
vertical to the plane including the incident light, its electric
vector, and the direction to the center of the analyzer entrance
slit. The photon energy was calibrated on the C K edge peak
of x-ray absorption spectra at 285.50 eV [43,44], while Batson
et al. reported a value of 285.38 eV [42].

V. RESULTS AND DISCUSSION

A series of π band dispersion cross sections in theK/H -�/A
plane was measured at different photon energies. Figure 3
shows some of them at the high symmetric points in reciprocal
space. The binding energy of the top of the σ2,3 bands, indicated
by yellow curves, was 4.1 eV from the Fermi level, independent
of the excitation energy. On the other hand, the binding energy
at the bottom of the π band indicated by red curves differed at
the A, �005, and �006 points. It was the largest and the smallest
at the �005 and �006 points, respectively, while it was in a
midvalue at the A points.

The valence band dispersion cross section of graphite along
the kz axis measured using photon energies between 60 and
230 eV is shown in Fig. 4(a). The oscillation in the binding
energy was clearly observed for the π band dispersion as a
function of photon energy, as indicated by a pink curve.

FIG. 4. (a) Graphite band dispersion measured at �/A as a
function of photon energy. The red curve indicates the oscillation
of the π band dispersion. (b) The binding energy of the bottom of the
π band dispersion plotted as a function of wave number.

The binding energy of the bottom of π band as a function
of photon energy is plotted in Fig. 4(b). The abscissa is the
wave number normalized by the reciprocal lattice constant
c∗. Integer number positions correspond to the � points. The
kinetic energy for each data point was converted to the wave
number considering the inner potential as a fitting parameter,
so that the position of each energy minimum and maximum
comes to the � point.

At the odd number [kz = (2n + 1)c∗] points, the binding
energy of the π band bottom is large, while at the even number
[kz = 2nc∗] points, it is small. The former corresponds to the
πL band. The latter corresponds to the πH band. This oscillation
is well explained by the PSF effect along the kz direction shown
in Figs. 2(a) and 2(b). The πL band is formed by the pz orbitals
aligned in the antiphase, causing destructive interference at the
even number �002n points. On the other hand, the πH band is
formed by the pz orbitals aligned with the same phase, causing
constructive interference at the even number �002n points.

The fitting was done by using the inner potential as well
as the binding energy and amplitude of the cosine curve as
the fitting parameters so that the energy oscillation maxima
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TABLE I. Band energies with respect to the Fermi level at the �

point of graphite (in eV).

This work Previous works by ARPES

σ2,3 4.1 4.6 [12] 5.5 [25] 5.3 [13] 4.25 [26] 4.1 [8]
π 7.63 7.2 [12] 6.6 [25] 7.6 [13] 8.1 [26] 7.8 [8]

8.69 8.1 [12] 8.5 [25] 9.0 [13] 9.3 [26] 9.2 [8]
σ1 21.6 21.0 [7] 21.7 [14] 21.8 [8]

and minima match with the position of the � points. The inner
potential of graphite was determined to be 17.17 ± 0.1 eV from
the vacuum level. It agrees with the previously reported values
of 16.4 [10], 16.5 [62], and 17.25 eV [24], but is larger than
the older value of 14.5 eV [7]. It is interesting to note that the
few-layer graphene has a similar inner potential [9]. This value
roughly corresponds to the midpoint between the bottoms of
the π and σ1 bands at the � point (see Table I). Furthermore,
the resonance integral between the interlayer pz orbitals V⊥
was derived as 0.53 eV from this fitting. V‖ was determined as
2.72 eV from the in-plane π band dispersion along the A-H
symmetry line. Figures 2(a) and 2(b) are the square of PSF
calculated based on these values and Eqs. (12) and (13).

The PSF effect leads to the complete disappearance of one
π band along the sample surface normal axis [8,32]. There are
some measurements reporting the observation of both πL and
πH band dispersions simultaneously in the vicinity of the K

points [10,21], which can be also explained from Figs. 2(a)
and 2(b). The breaking of the bulk translational symmetry
at the topmost surface layer, the enhancement of the surface
sensitivity at low kinetic energy, and the umklapp scattering
process at the final state were not taken into account in the
present PSF formalism. These may give an additional effect of
breaking the 4π -periodic oscillation (see Table I).

VI. CONCLUSION

The valence band dispersion of the graphite π band along
the kz axis was measured using photon energies between 60
and 230 eV. The interlayer interaction induces the well-known
splitting of the π band into two, a lower binding energy band
πL and a higher binding energy band πH. In the photoelectron
spectra, the band πL was detected in the BZs centered at
(2n + 1)c∗, while the band πH was detected in the BZs centered
at 2nc∗. As a result, an oscillation in binding energy was
observed for the bottom of the π band dispersion during
a photon energy scan. This phenomenon is well explained
by the constructive and destructive interference along the kz

direction, i.e., the PSF effect. The bonding characters of the
π bands can be specified by comparing the photoelectron
intensity with the calculated PSF. This concept is applicable to
the investigation of the electronic structure of various layered
materials. Furthermore, the inner potential of graphite was
determined to be 17.17 eV from the vacuum level.
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