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Specularity of longitudinal acoustic phonons at rough surfaces
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The specularity of phonons at crystal surfaces is of direct importance to thermal transport in nanostructures
and to dissipation in nanomechanical resonators. Wave scattering theory provides a framework for estimating
wavelength-dependent specularity, but experimental validation remains elusive. Widely available thermal
conductivity data presents poor validation since the involvement of the infinitude of phonon wavelengths in
thermal transport presents an underconstrained test for specularity theory. Here, we report phonon specularity
by measuring the lifetimes of individual coherent longitudinal acoustic phonon modes excited in ultrathin
(36–205 nm) suspended silicon membranes at room temperature over the frequency range ∼20–118 GHz. Phonon
surface scattering dominates intrinsic Akhiezer damping at frequencies �60 GHz, enabling measurements of
phonon boundary scattering time over wavelengths ∼72–140 nm. We obtain detailed statistics of the surface
roughness at the top and bottom surfaces of membranes using HRTEM imaging. We find that the specularity
of the excited modes are in good agreement with solutions of wave scattering only when the TEM statistics
are corrected for projection errors. The often-cited Ziman formula for phonon specularity also appears in good
agreement with the data, contradicting previous results. This work helps to advance the fundamental understanding
of phonon scattering at the surfaces of nanostructures.
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I. INTRODUCTION

Recent measurements of thermal transport in nanostructures
have motivated a reexamination of the specularity of phonons’
scattering at surfaces. Specularity is difficult to measure
directly in heat conduction experiments. Instead, a standard
empirical approach is to assume an effective specularity [1]
across all phonon modes without considering any wavelength
dependence. Within this approach, perfectly diffuse scattering
(zero specularity) satisfactorily appears to explain the majority
of thermal conductivity data [2] in structures with characteristic
dimensions larger than ∼0.5 μm. Since dominant phonon
wavelengths at room temperature approach a few nm and
are comparable to the typical cleanroom processed surface
roughness, diffuse scattering appears physically reasonable at
room temperature. However, it is difficult to argue that phonons
should scatter diffusely from similar surfaces even at low
temperatures. The gap in understanding wavelength-dependent
surface scattering is evident in the confusion over transport
in more complicated nanostructures such as metal-assisted
chemically etched nanowires, core-shell nanowires, or holey
silicon [3–6]. The failure of the effective approach in these
select cases has prompted a theoretical examination of the
wavelength dependence in phonon surface scattering [7–9].
The availability of systematic data on specularity, however,
remains a challenge.
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Specularity of a surface to an incident wave depends on
the relative magnitude of the wavelength to the roughness
height and correlation length [10]. The exact dependence
can vary substantially based on simplifying assumptions.
Which theoretical results from wave scattering theory could
be applied to phonon transport remains unclear. A recent
innovative measurement [11] using superconducting tunnel
junctions to identify individual phonon frequencies found
zero specularity for phonons incident at nm scale roughness,
even at �0.1 THz frequencies. Interestingly, the report found
that the measured zero specularity was inconsistent with that
predicted by a formula based on the Rayleigh-Rice theory
[9,12] (also referred to as the Ziman formula in the phonon
transport literature [13]). The formula applies in the limit of
an infinite correlation length, and under the assumption of
small roughness in relation to the incident wavelength. The
specularity is then given by e−16π2η2/λ2

where η is the root mean
square height of surface roughness and λ is the wavelength.
In contrast, in another experiment [14] on coherently excited
phonon modes in silicon membranes, the Ziman expression
was used to fit data in the similar frequency range (20–500
GHz). The lack of detailed statistics of surface roughness
in either measurement further makes data interpretation dif-
ficult. In this paper, we show that the roughness statistics
from detailed surface characterization is necessary to interpret
boundary scattering data. Distinct from these measurements,
we find that phonons in the measured 20–118 GHz range
reflect specularly for surfaces with typical �1 nm roughness.
These sub-THz frequencies are important for nanomechanical
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resonators and thermal transport at low and intermediate
temperatures.

To verify phonon specularity against expectations from
wave scattering theory, this work combines detailed surface
characterization using high resolution transmission electron
microscopy (HRTEM), with measurements of phonon life-
times of longitudinal acoustic modes. Long-window HRTEM
of roughness profiles enable us to obtain detailed roughness
statistics across multiple membranes. A subtle error arises in
projecting the two-dimensional roughness of the surface to
a one-dimensional profile measured by the HRTEM. We find
that correcting the error is critical toward matching wave theory
predictions against the experimental data. In the optical mea-
surements, individual phonon modes are coherently excited in
the frequency range ∼20–118 GHz in ultrathin suspended Si
membranes (∼36–205-nm thick) using an ultrafast laser pump.
The suspended membrane acts as nanomechanical resonator
in our experiments. The quality factor (Q) of the resonator
is intrinsically limited by scattering with phonons [15–17].
However, extrinsic processes [18] such as surface scattering
dominates attenuation in practice. In our experiments, we
measure the attenuation of each mode using a time-delayed
probe to find that intrinsic Akhiezer damping correctly predicts
phonon lifetimes at the lower frequencies (ν � 24 GHz),
consistent with results for bulk silicon [19]. The reduction in
phonon lifetimes at higher frequencies (�60 GHz), however, is
dominated by roughness-dependent phonon surface scattering.
We analyze the lifetime data using results from wave scatter-
ing theory at rough surfaces [9,10,20–22] and find that the
estimated phonon specularities are in good agreement with the
data over the measured frequency range.

II. EXPERIMENT

For our measurements, we fabricated free-standing single-
crystal silicon membranes from the [100]-oriented silicon-
on-insulator (SOI) wafers [23]. The device layer, buried ox-
ide, and the Si substrate are 205-nm, 410-nm, and 700-μm
thick, respectively. We first deposited a 300-nm-thick film
of silicon nitride (SiNx) on top of the device layer using a
low pressure chemical vapor deposition (LPCVD) process at
800◦ C. To reduce the surface damage and contamination in
subsequent fabrication process, we encapsulated the diced SOI
samples with protective silicon dioxide and SiNx layers using
plasma-enhanced chemical vapor deposition (PECVD). We
then defined a backside window using photolithography and
etched the Si substrate using a combination of deep reactive ion
etching (DRIE—Inductively coupled Bosch Process) and wet
etching in tetramethylammonium hydroxide (TMAH: 80◦ C).
The buried oxide layer is removed by placing the samples
in a buffered oxide etch (BOE) solution. Silicon membranes
are suspended by removing the protective layers covering the
top surface of the SOI samples using Freon RIE. Further
etching with the same Freon RIE process allowed us to
control the thickness of the membrane to within ∼10 nm. The
approach yielded membranes of ∼300 μm× ∼ 400 μm area
with thicknesses in the range 36–205 nm.

We perform lifetime measurements using an ultrafast laser
pump-probe setup which was described in detail previously
[24–26]. Both the pump and probe beams are obtained from

FIG. 1. In-phase voltage (black) obtained from pump-probe mea-
surements for 182-nm-thick membrane. The slowly decaying elec-
tronic background (red) is fitted using a spline. (Inset) Acoustic signal
extracted after removing the electronic background from the in-phase
voltage.

a synchronously mode-locked Ti:sapphire oscillator with a
repetition rate of 74.8 MHz, pulse duration of 200 fs, and a
wavelength of 785 nm. The pump beam is modulated using an
electrooptic modulator at 10 MHz to facilitate lock-in detection
of the reflected probe beam. The 1/e2 radius of the focused
pump and probe spots on the sample surface is ∼5.5 μm. The
pump pulses hitting the sample surface create an electron-hole
(e-h) plasma, which after relaxation (∼1 ps) [27] creates stress
in the illumination region of the membrane [28]. The generated
stress is uniform along the thickness of the membrane due to the
large penetration depth [29] (∼8 μm) of 785-nm wavelength
in silicon and results in excitation of the first-order dilatation
mode of the membrane. The frequency of oscillation is given by
ν = VL/2d0, where VL = 8430 m/s is the longitudinal speed of
sound in silicon [30] and d0 is the thickness of the membrane.
The excited acoustic mode modulates the membrane thickness
(�d0 < 1 pm), which, in turn, changes the reflectivity of the
membrane (�R/R ∼ 10−5) [14,31] measured by the probe
beam. Varying the delay between the arrival of the pump and
the probe beams captures the time evolution of the amplitude
of the excited acoustic mode.

Figure 1 shows the in-phase voltage obtained from the lock-
in amplifier for a 182-nm-thick membrane which corresponds
to 23.1 GHz longitudinal acoustic mode. The sharp rise in the
signal at t = 0 ps is due to electronic excitation followed by a
multi-exponential decay. The electronic response is removed
to obtain the acoustic modes [32] shown in the inset of Fig. 1.
We detect the peaks in the resulting acoustic signal and use
linear regression to fit a line through the logarithm of the peak
amplitudes. The amplitude damping time is obtained from the
inverse of the slope of fitted line. The phonon lifetime (τ ) is
defined as the rate of energy decay and is half of the amplitude
damping time (since acoustic energy scales as the square of
the amplitude).

To facilitate a quantitative evaluation of boundary scattering
in the measured thin films, we characterize the roughnesses
of the top and bottom surfaces of the membranes in terms
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FIG. 2. (a) Example of a stitched surface roughness profile for the top surface of a silicon membrane obtained from TEM. (b) High resolution
TEM micrograph along the (110) zone axis with crystalline Si membrane at the top, Pt/C composite at the bottom, and native SiO2 in between.
The red line traces the Si-SiO2 interface at the surface of the membrane. (c) Surface roughness profile (left) and the corresponding autocorrelation
function (right) for the top and bottom surfaces of a membrane with 187-nm thickness. The blue line represents the measured autocorrelation
function and the black curve represents the exponential fit.

of the correlation length, L, and the root mean square (rms)
roughness height, η. We use a JEOL 2010 LaB6 transmission
electron microscope (TEM) to obtain roughness profiles for
five membrane samples with thicknesses of 36, 49, 132,
175, and 187 nm. The sample preparation for TEM imaging
includes depositing 100 nm copper on the bottom surface of the
membrane for reinforcement and 200 nm Pt/C composite on
the top surface. We used electron-beam-induced deposition on
the top side to prevent damage to the surface of the membrane
[33]. We slice a thin (∼100-nm width) rectangular portion of
the membrane and transfer it to the TEM grid inside a FIB.
The cross section of the membrane is then imaged in 40–60
nm segments along the (110) zone axis to obtain a series of high
resolution (400K X) images. The individual images are stitched
together [Fig. 2(a)] using ImageJ [34] to obtain a surface profile
over distances of ∼350–450 nm. The [111] direction serves
as a reference to establish correspondences between adjacent
pairs of images during the stitching process. The interface
boundary [Fig. 2(b)] is traced by selecting discrete points
corresponding to the last discernible Si lattice site along the
[111] direction. The surface roughness profile [Fig. 2(c), left
column] is then obtained by interpolating over the unequally
spaced discrete points with a smoothing B-spline at a sampling
interval �0.3 nm.

To determine the correlation length L from the surface
roughness profile, we first evaluate the height-height autocorre-
lation function (ACF). Following prior work on understanding

electron scattering at the Si-SiO2 interface [35,36], we fit
the decay of the ACF as an exponential distribution of the
form C(r) = exp(−r/L) and extract the correlation length L

as shown in the right column of Fig. 2(c). We find that the
measured correlation length lies in the range L ∼ 6–77 nm
between different membranes. Since the lengths are measured
using a finite picture window, we expect a compression of
the correlation length and rms roughness between the actual
and measured values [36], especially when the correlation
length is comparable to the window length. To avoid this issue,
we use long window lengths of ∼375 nm beyond which we
lost TEM focus. We find that the measured values for L are
�20% of the window length, and therefore, the finite window
does not introduce any significant compression in L. We note
that our measurements obviously cannot resolve correlation
lengths longer than the window length of 375 nm. We also
obtain the rms roughness height of the membrane samples
from the standard deviation of the surface roughness profile.
The measured rms roughness, ηm range from 0.4 to 1.3 nm.

A subtle issue with obtaining surface roughness from
HRTEM images is that the images are one-dimensional projec-
tions of the two-dimensional roughness, through the membrane
cross-section [36]. Previous measurements [36,37] on Si-SiO2

interfaces with similar surface treatment reported that rms
roughness extracted from the projection, ηm are lower than
the actual roughness, η. To account for any such reduc-
tion, we numerically obtained a correction factor for every
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FIG. 3. (a) Two-dimensional random rough surface generated using exponential statistics for rms roughness η = 1.0 nm and correlation
length L = 50 nm. (b) Correction to the measured rms roughness ηm as a function of correlation length of the original two-dimensional
exponential surface.

measurement. Specifically, we simulated a two-dimensional
rough surface using exponential statistics with varying cor-
relation lengths and rms roughnesses. An example of such a
surface with L = 50 nm and η = 1 nm is shown in Fig. 3(a). We
then divide the surface into thin segments (∼100 nm) along
the y direction and project the two-dimensional surface to
obtain a one-dimensional roughness sequence. We repeat this
process over 80 segments to obtain an average value of the rms
roughness for the projected sequence. This enables us to obtain
the correction factor, ηm/η. Figure 3(b) plots the correction
factor over the range of correlation lengths measured in our
membrane samples. The reduction in rms roughness is severe
at short correlation lengths, and the measured rms rough-
ness approaches the actual value only at correlation lengths
�90 nm. Table I contains the corrected rms roughness for our
membranes samples. The corrected values are in the range
0.6–1.6 nm.

III. RESULTS AND DISCUSSION

We now discuss the data from the pump-probe measure-
ments. Figure 4 plots the lifetimes for longitudinal acoustic
phonon modes excited at different frequencies by varying
the thickness of the membrane (ν = VL/2d0). The measured
phonon lifetimes decrease rapidly from τ = 5.4 ns at ν =
20.3 GHz to 99 ps at 118 GHz, a nearly two orders of magnitude

reduction. We further observe that τ obeys a ν−2 dependence
in the frequency range ν � 40 GHz, but this dependence grows
stronger, τ ∼ ν−3, at higher frequencies (ν � 60 GHz).

To understand the frequency dependence of phonon life-
times, we first consider the intrinsic attenuation of the excited
acoustic mode due to interaction with thermal phonons. De-
pending on the frequency of the acoustic phonon mode and
temperature, this interaction can be modeled using the Landau-
Rumer [38] or the Akhiezer approach [39]. In the Landau-
Rumer model, the interaction of thermal and acoustic phonons
occurs via anharmonic three phonon scattering. The theory is
valid when ωτth � 1, where ω is the angular frequency of the
acoustic phonon, and τth is the thermal phonon relaxation time.
In the alternate Akhiezer approach, acoustic phonons act as a
driving force to perturb the equilibrium population of thermal
phonons. Nonequilibrium phonons collide with each other and
remove ordered energy from the acoustic phonon mode as
heat. This approach is valid when ω � kBT /h̄, where kB is
Boltzmann’s constant, T is the temperature, and kBT /h̄ is the
average thermal phonon frequency. A fundamental difference
between the two approaches is that the Landau-Rumer method
evaluates phonon-phonon scattering rates under the single
mode relaxation approximation and hence, ignores interactions
amongst thermal phonons. The latter significantly affects the
attenuation of of an acoustic phonon when ωτth �� 1. For
silicon at room temperature, τth is estimated to be of the

TABLE I. Surface roughness parameters for top and bottom surfaces of membranes.

Thickness RMS roughness Correlation length ηm/η Corrected RMS roughness
(nm) (nm) (nm) (nm)

36
1.2
0.7

55
6

0.85 ± 0.04
0.57 ± 0.01

1.4
1.2

49
1.3
0.4

39
8

0.81 ± 0.04
0.60 ± 0.01

1.6
0.7

132
0.8
0.4

13
9

0.66 ± 0.02
0.62 ± 0.01

1.2
0.6

175
0.6
0.5

29
14

0.77 ± 0.03
0.67 ± 0.02

0.8
0.7

187
0.6
0.8

77
24

0.87 ± 0.06
0.75 ± 0.03

0.7
1.0
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FIG. 4. Lifetimes of longitudinal acoustic phonon modes (�)
excited in thin silicon membranes as a function of frequency. The
line labeled Akhiezer is evaluated using Eq. (1) with τth = 17 ps.

order of tens of picoseconds [19]. The frequency of interest
here, ∼20–118 GHz, corresponds to the condition ωτth ∼ 1
and therefore, Akhiezer’s model is valid. We use a simplified
expression provided by Daly et al. [19,40] to evaluate the
attenuation of the excited acoustic mode due to Akhiezer

τ−1
ph−ph = CT

ρVL
2

ω2τth

1 + ω2τ 2
th

(< γ 2 > − < γ >2), (1)

where C is the volumetric heat capacity, ρ is the density, γ is
the grüneisen parameter, and <> denotes an average over all
modes. At low frequencies (ν � 24 GHz), the phonon lifetimes
predicted by Akhiezer mechanism (Fig. 4, solid green line)
are in close agreement with the measured values. At higher
frequencies (ν � 60 GHz), the Akhiezer model overestimates
the data by at least an order of magnitude. The Akhiezer
mechanism also predicts nearly a constant value of lifetime
over the entire frequency range (20–118 GHz), different from
the observed frequency dependence of τ .

Recent work [14] on silicon nanomembranes (<200 nm)
suggested that intrinsic scattering based on three phonon
interactions instead of Akhiezer damping, are responsible for
attenuating frequencies in the range ∼20–100 GHz. This is
in contradiction of past work on bulk silicon [19] where
the Akhiezer model satisfactorily explains lifetimes even at
100 GHz. Since the dispersion relations for thermal phonons
in the membranes are identical to those in the bulk, we
expect three phonon interactions to be the same as those in
the bulk. Indeed, recent atomistic simulations [16] show that
modifications to Akhiezer damping occur only in much smaller
structures (�10 nm). Finally, with the exception of lowest
frequency excited modes (ν < 21 GHz), we measure phonon
lifetimes that are nearly an order of magnitude higher than
those reported in that work [14], suggesting that the attenuation
is not determined by any intrinsic process. We next consider
the dominant extrinsic mechanism — boundary scattering.

The excited longitudinal acoustic mode scatters at the
surfaces of the film due to surface roughness. Over several
reflections, the energy of the coherent excitation diminishes
due to out-scattering from the mode. Since we are mainly
interested in the coherent part of the excitation that the probe
beam senses, we can apply results from wave scattering
theory to calculate the damping. In the small perturbation
approach [10], the roughness is assumed to introduce a small
perturbation to the flat surface profile. In our measurements,
this nearly smooth assumption is valid since η/λ � 0.01.
The height of the membrane surface above a reference plane
can be described by ζ (x,y) = ζ (r), where <ζ (r) >= 0 and
<ζ 2(r) >= η2, the rms surface roughness. The perturbation
approximation requires that klζ � 1 and ∇ζ � 1, where
kl = 2πν/VL is the wave vector. From the previous discussion,
we assume the autocorrelation function between two points on
the surface follows an exponential distribution

C(r) = 1

η2
< ζ (R)ζ (R + r) >= e−|r|/L. (2)

The two-dimensional Fourier transform of C(r) is given by

C̃(k) = 2πL2

(L2k2 + 1)3/2
. (3)

The surface roughness causes a fraction f of the incident
longitudinal acoustic phonons to be scattered diffusely into
bulk and Rayleigh modes. Following recent work [9] on
scattering of elastic waves from boundaries, we consider the
spectral surface Green’s function G̃ij (k,ω) for an elastically
isotropic half-space [41,42]. We refer the reader to Maznev’s
work [9] for a lucid outline and development of the basic wave
scattering problem. The scattered fraction, f is given by

f = η2k3
l ρV 2

L

π2

∫
C̃(k) Im G̃33(k,ω)dk, (4)

where the subscript 3 denotes the direction perpendicular to
the surface. It is clear from the above expression that diffuse
scattering follows a ∼η2 trend but the dependence of f on the
correlation length L is not obvious.

For the case of a small correlation length compared to the
wavelength of the acoustic mode, klL � 1, Eq. (4) reduces to

f0 ≈ 2.84

πs3
η2k4

l C̃(k = 0) = 5.68

s3
η2k4

l L
2, (5)

where s = VT /VL is the ratio of transverse and longitudinal
acoustic velocity and the subscript “0” denotes small correla-
tion length. In the opposite limiting case of a large correlation
length, klL � 1, we obtain

f∞ ≈ 1

π2
η2k2

l

∫
C̃(k) dk = 4η2k2

l . (6)

The diffuse scattering fraction shows ∼L2 dependence
for klL � 1 but the dependence levels off for klL � 1. To
understand the transition between the two limiting cases, we
evaluate the integral in Eq. (4) numerically and plot the results
in Fig. 5(a). The y axis is normalized by the limiting case of
an infinitely long correlation length. Figure 5(a) shows that for
klL � 5, the scattering fraction is not sensitive to the actual
value of L. At klL ∼ 1, f ∼ 80% of f∞ and, for klL � 2,
f is �90% of f∞. In our data, the deviation from Akhiezer
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FIG. 5. (a) The diffuse scattering fraction normalized by its value
at infinite correlation length, as a function of the product of wave
vector and correlation length. The total scattering can be decom-
posed into individual contributions from bulk and Rayleigh modes.
(b) Specularity parameter versus frequency for η = 0.6 and 1.6 nm
and a range of correlation lengths. The upper and lower limit in each
shaded region corresponds to L = 6 and 77 nm, respectively.

damping is significant beyond ∼60 GHz, where the range of kl

is 0.044–0.088 nm−1. The corresponding range of the product
klL is ∼0.27–6.8 considering that the measured values of
correlation length ranges from ∼6–77 nm. Figure 5(b) further
plots the specularity parameter, p = 1 − f , as a function of
frequency. We show two shaded graphs for η = 0.6 nm and
η = 1.6 nm, respectively, corresponding to the smallest and
largest rms roughnesses from the measurements. For each rms
roughness height, the corresponding shaded regions show the
effect of varying the correlation length from 6 to 77 nm. It is
evident that we should expect the measured membranes to be
closely specular.

We obtain a boundary scattering lifetime τbd from the
specularity parameter as follows. Even though the roughness of
the top and bottom sides of the membranes are different, their
theoretical specularities are similar (close to 1). Assuming the
same value of p for both surfaces, the reduction in energy of the
acoustic mode after one round trip over a time, �t = 2d0/VL

is given by p2. We therefore obtain

τbd = −2d0

VL ln(p2)
≈ d0

VL(1 − p)
, (7)

where we approximate ln(p2) ≈ −2(1 − p) since p is close
to 1, in our structures. We note that the lifetime in Eq. (5)
corresponds to the decay of the coherent wave, which is the
signal measured by the probe in our experiments. We do not
use the expression τbd = (1 + p)/(1 − p) × d0/VL used in
previous work [14] that is derived for incoherent transport
[43]. The two expressions yield the same value for the range of
frequencies reported here but will diverge at higher frequencies
when p does not approach 1.

We infer from Eq. (5) that for small correlation lengths
(klL � 1), 1 − p ∝ ν4. In this limit, the boundary scattering
lifetime τbd ≈ d0/VL(1 − p) scales with frequency as ν−5 due
to the inherent frequency-thickness relationship of the mem-
branes, ν = VL/2d0. Similarly, for large correlation lengths
(klL � 1), the boundary scattering lifetime scales as ν−3.
For intermediate klL, the boundary scattering lifetime obeys
τbd ∼ νa dependence, where −5 < a < −3.

FIG. 6. Boundary scattering and total phonon lifetime calculated
using the perturbation approach. The lines labeled τbd are evaluated
using Eq. (7) with η = 0.6 nm, L= 6 nm and η = 1.6 nm, L = 77 nm,
respectively. The shaded pink region shows the total phonon lifetime
calculated by adding the contribution from Akhiezer and boundary
scattering. The shaded orange region shows the phonon lifetime
obtained by evaluating the boundary scattering contribution using
Ziman’s formulation for η ∼ 0.6–1.6 nm.

Figure 6 replots the phonon lifetime data. The estimated
Akhiezer damping time, τph−ph is also shown for reference. We
use the above theory to plot the boundary scattering lifetime
τbd (dashed blue line) for the range of (L, η) obtained from the
HRTEM measurements as η ∼ 0.6–1.6 nm and L ∼ 6–77 nm.
The phonon lifetime τ (shaded pink area) can be estimated
using Matthiessen’s rule as τ−1 = τ−1

ph−ph + τ−1
bd . We find that

the data lie within the shaded region across all frequencies. We
note that the spread of the shaded area reflects the spread in the
statistical parameters of surface roughness. The data agree in
magnitude as well as frequency dependence suggesting that
phonon boundary scattering is indeed the dominant limiter
of lifetimes in our measurements. The data appear more
clustered toward the left edge of the shaded region. This may
imply that the correlation lengths are longer than what we
could measure using the finite window of a TEM. In the
limit of infinite correlation length, the specularity given by
Ziman’s formulation [13] is p = e−16π2η2/λ2

, independent of
the correlation length. Using this expression, we obtain the
shaded orange region where the spread is over the range of
measured η. We note that the specularity estimated using
Ziman’s approach and Eq. (6) are essentially identical under
the small perturbation approximation (η/λ � 1). Further, for
the measured range of wave numbers, any correlation length
�130 nm can essentially be considered infinite and would yield
a lifetime in the shaded orange region.

As mentioned before, prior measurements on membranes
using pump-probe techniques [14] attributed the deviation
from Akhiezer damping to three phonon interactions. However,
our measurements suggest that the deviation is due to boundary
scattering. Further, in measurements using superconducting
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0.3 0.8 1.30.5 1.0 1.5
0.0

0.5

1.0

1.0 nm

1.6 nm

p

Frequency, ν (THz)

0.6 nm

FIG. 7. Specularity parameter versus frequency for η = 0.6, 1.0,
and 1.6 nm. For each shaded region, the upper limit corresponds to
L = 5 nm, whereas the lower limit corresponds to infinite L.

tunneling junctions (STJs) [11], data could only be explained at
zero specularity that was inconsistent with Ziman’s expression
corresponding to the measured roughness height. In contrast,
the data from our work is in excellent agreement with Ziman’s
expression. As the authors have themselves suggested, the pos-
sibility of scattering due to surface contamination or excessive
oxidation in the STJ experiments may be responsible for the
zero specularity. In either case, our measurements highlight the
importance of obtaining detailed surface roughness statistics
in order to interpret surface scattering data.

In conclusion, our measurements clearly show that for
60–118 GHz, wave scattering theory agrees well with the data
provided detailed roughness statistics are obtained from the

measured samples. Consistent with theory, ∼0.1 THz phonons
reflect nearly specularly at room temperature from surfaces
with ∼1-nm scale roughness. The agreement between theory
and data represents an important validation for these theoretical
results for phonons. Obtaining detailed surface roughness
statistics is key to testing surface scattering theories. In par-
ticular, subtle errors in estimating roughness parameters such
as the one arising from projecting two-dimensional roughness
to one in an HRTEM image can introduce significant errors
in theoretical predictions. The frequency range considered
here is relevant to damping in nanomechanical resonators
and low to intermediate temperature thermal transport. Room
temperature thermal transport is dominated by phonons at
�1 THz frequencies which is a more challenging target
for future experiments. Figure 7 uses the theory discussed
above to calculate the specularity of longitudinal phonons at
frequencies higher than those measured here. We note that the
assumption of small perturbation is suspect when η

λ
exceeds

∼0.05, which is the case when p → 0 in these calculations.
However, the calculations can be considered as an upper bound
on specularity. The prediction of a nonzero specularity for a
∼1 THz phonon incident on low-roughness surface presents
an interesting target for future investigations. If confirmed
experimentally, this might imply that treating surfaces as
diffuse scatterers of thermal phonons at room temperature is
an overly simplistic assumption.
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