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van der Waals torque and force between anisotropic topological insulator slabs
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We investigate the character of the van der Waals (vdW) torque and force between two coplanar and dielectrically
anisotropic topological insulator (TI) slabs separated by a vacuum gap in the nonretardation regime, where
the optic axes of the slabs are each perpendicular to the normal direction to the slab-gap interface and also
generally differently oriented from each other. We find that in addition to the magnetoelectric coupling strength,
the anisotropy can also influence the sign of the vdW force, viz., a repulsive vdW force can become attractive if
the anisotropy is increased sufficiently. In addition, the vdW force oscillates as a function of the angular difference
between the optic axes of the TI slabs, being most repulsive/least attractive (least repulsive/most attractive) for
angular differences that are integer (half-integer) multiples of π . Our third finding is that the vdW torque for
TI slabs is generally weaker than that for ordinary dielectric slabs. Our work provides an instance in which the
vector potential appears in a calculation of the vdW interaction for which the limit is nonretarded or static.
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I. INTRODUCTION

The Casimir effect was first discovered [1] by Casimir in
1948 in the theoretical context of two perfectly conducting
surfaces interacting across a vacuum at zero temperature. The
effect was then generalized to the case of dielectric slabs
interacting across a dielectrically dissimilar gap at a finite
temperature [2,3]. For a long time, the prevailing view was
that Casimir/van der Waals (vdW) interactions between dielec-
trically similar bodies are always attractive [4–7], and in fact
constitute a major cause of stiction and noncontact friction in
microsized devices [8]. These issues have motivated the search
for ways to make Casimir/vdW interactions less attractive or
even repulsive. The search for repulsive Casimir/vdW forces
is circumscribed by the existence of a no-go theorem, which
states that the Casimir/vdW force in a mirror-symmetric setup
is always attractive [9–11]. In the context of conventional
dielectric media, one way to evade the theorem and generate a
repulsive vdW force between two coplanar layers across a gap
of a different material is to have the dielectric permittivities
increase (or decrease) across the layers [7,12,13]. However,
such a scenario does not apply to systems involving a pair of
dielectrics separated by a vacuum gap, which are the systems
that would be relevant to device application [6].

Recently, it was recognized that two dielectrically sim-
ilar layers can repel each other across a vacuum gap via
Casimir/vdW forces, if these layers are made of topological
insulator (TI) material [14–22]. Besides being characterized
electromagnetically by the dielectric permittivity and the
magnetic permeability, TI materials are also characterized by
a third parameter, that of the magnetoelectric polarizability
or theta angle ϑ , which can give rise to exotic electrodynamic
behavior such as the induction of an image magnetic monopole
by an electric charge near a TI surface [17]. By tuning this

*binghermes@gmail.com, bslu@ntu.edu.sg

parameter, one can achieve “Casimir repulsion,” and physically
such repulsion is a consequence of polarization mixing induced
by the magnetoelectric coupling [23]. Such Casimir/vdW
repulsion was studied for dielectrically isotropic TIs [23–25]
and TIs which are dielectrically anisotropic and whose optic
axes are aligned with each other [26–28].

The question thus arises as to the character of the vdW
interaction between dielectrically anisotropic TI slabs whose
optic axes are not aligned with each other. This introduces,
first, the possibility of a vdW torque [29–33], and second, the
possibility of tuning the character of the vdW force via tuning
the angular difference between the optic axes [30]. Our work
sets out to address this twofold question, in particular, exam-
ining the case where the TI slabs possess uniaxial anisotropy
(i.e., the dielectric permittivity along the optic axis direction
is different from the one characterizing the two directions that
are perpendicular to it, and the dielectric permittivities along
the two remaining directions are identical), and the optic axes
of both of the slabs are perpendicular to the direction normal
to the planes of the slab surfaces which are facing each other
(cf. Fig. 1).

The problem of van der Waals torque was first studied
in Refs. [34,35], and a correct (albeit complex) calculation
which accounts for retardation effects was later presented
in Ref. [33]. The complexity of the retarded solution arises
because the crystal anisotropy gives rise to two different types
of waves, viz., ordinary waves and extraordinary waves, which
are characterized by their different wave numbers [33]. On the
other hand, for isotropic dielectrics [36,37] and for anisotropic
crystals in the nonretarded limit [29], there is only one type of
wave. A solution was obtained in Ref. [29] for the latter case,
which is simpler as it made use of the Maxwell equations in the
nonretarded limit, and the solution was shown to be identical
to the nonretarded limit of the solution obtained in Ref. [33].
Building on these works, the character of the vdW torque was
also investigated (in the nonretarded limit) for multilayered
birefringent slab systems [30], and proposals for the detection
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FIG. 1. A pair of flat, coplanar topological insulator slabs (labeled
1 and 3) separated by a vacuum gap (labeled 2) of width �. The optic
axis of slab 1 (3) is colored cyan (green), and the angular difference
between the orientations of the optic axes is θ . In the figure we have
only shown a finite slice of the slabs, which are assumed to have
infinitely large thicknesses and cross-sectional areas.

of the vdW torque have also been made, such as suspending
a birefringent disk on a layer of ethanol above a barium
titanate plate [31], or measuring the rotation of a cholesteric
liquid crystal induced by the vdW torque from a birefringent
crystal [32]. One expects that a theoretical investigation of the
vdW torque is also important for the application of rotating
nanoelectromechanical systems [38], as this involves potential
issues of frictional torque. If the vdW torque is small for TI
rotors, then one expects a corresponding smallness for the
frictional torque.

In this paper we generalize the nonretardation approach of
Parsegian and Weiss [29] to the case of topological insulators.
Our adoption of the nonretardation approach is motivated,
first, by the complexity of the retarded calculation of the
vdW torque, which is already evident for the case of ordinary
dielectrics [33], and expected to be even more so for the case
of TI slabs; second, by the fact that one can use the result
from a nonretardation approach to check the result from a
full, retarded calculation if the latter were carried out. In
our work we derive the nonretarded vdW free energy for
anisotropic TI slabs, which agrees with the result of Ref. [26]
for the case of dielectric isotropy, thus confirming the essential
consistency of both approaches. Owing to the magnetoelectric
coupling present at each dielectric interface, a nonvanishing
and spatially varying vector potential is induced even in the
absence of currents, thereby enriching the physics. In terms of
the force, we find that the mixing of the scalar and vector
potentials in the problem leads to the possibility of vdW
repulsion in the nonretarded or static limit, consistent with
the findings of Ref. [26]. In Sec. II we present the Maxwell
equations in the nonretarded limit. In Sec. III we derive the
boundary conditions. In Sec. IV we compute the secular
determinant, from which we derive the vdW free energy. We
then compute and study the behavior of the vdW force and
torque in Sec. V. Finally, Sec. VI contains a discussion of our
results and our conclusions.

II. FIELD EQUATIONS

In the nonretardation regime (where c → ∞), the modified
Maxwell equations for an isotropic, homogeneous topological

insulator (TI) are given by [39–43]

∇ · (ε E) = ∇ᾱ · B, (2.1a)

∇×B = −∇ᾱ × E, (2.1b)

∇ ·B = 0, (2.1c)

∇×E = 0. (2.1d)

Here ε is the dielectric permittivity tensor, given by

εi(θi)

=

⎛
⎜⎝

εix cos2 θi + εiy sin2 θi (εix − εiy) sin θi cos θi 0

(εix − εiy) sin θi cos θi εiy cos2 θi + εix sin2 θi 0

0 0 εiz

⎞
⎟⎠.

(2.2)

The index i = 1,2,3 labels the slabs, and θi (not to be confused
with the theta angle ϑ in the topological magnetoelectric
coupling) denotes the orientation of the optic axis of slab
i relative to a reference axis. The symbols εix , εiy , and εiz

denote the values of the dielectric permittivities along the
three principal directions of the TI. For dispersive materials,
the dielectric permittivity is also a function of the frequency
ε = ε(ω). We set the optic axis of slab 1 as our reference axis,
i.e., θ1 = 0. We take slab 2 to be a vacuum gap, which is
dielectrically isotropic. We thus have ε2x = ε2y = ε2z ≡ ε2z,
and we have that ε2 = ε2zI, where I is the identity matrix.

The symbol ᾱ denotes the topological magnetoelectric
coupling strength [16,44], whose value is constant in the
bulk regions, but which changes discontinuously across a
dielectric interface. Magnetoelectric couplings can arise via
various types of mechanisms and materials, such as the
elastic interaction of ferroelectric and ferromagnetic domains
in composite multiferroics [45,46], and the magnetoelectric
coupling generally also depends on the temperature [47,48]
and frequency [49,50]. In TIs, owing to a quantum Hall effect
at the boundary [17], the magnetoelectric coupling is quantized
for smaller frequencies compared to the surface gap, i.e.,
ϑ = (2n + 1)π (n ∈ Z) [51]. On the other hand, for larger
frequencies the quantization breaks down, and the behavior of
the TI reverts to that of an ordinary dielectric [52,53].

For our TI-gap system (cf. Fig. 1), where slab 1 is defined as
the region z � 0, slab 2 (the vacuum gap) as the region 0 < z <

�, and slab 3 as the region z � �, ᾱ2 = 0 and ᾱ1 and ᾱ3 have
nonzero values. Owing to the broken translational symmetry
along the z direction, we can see that ᾱ has a spatial dependence
only on z. Assuming that ᾱ is quantized (we defer a discussion
of the validity of this assumption to Sec. IV), we can write ᾱi =
(2n + 1) αi (i = 1,3 are the labels for the TI slabs), and making
use of the fact that the derivative of a Heaviside function is a
Dirac delta function, we have that

∂zᾱ(z) = (2n + 1) α δ(z). (2.3)

The last two modified Maxwell equations imply that we can
express the E and B fields in terms of the scalar and vector
potentials, viz.,

E = −∇φ, (2.4a)

B = ∇ × A. (2.4b)
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In the bulk regions, ∂zᾱ = 0, and the modified Maxwell
equations simply become the Maxwell equations, which are
known to be invariant under a gauge transformation. We are
thus free to impose a gauge condition. For convenience, we
impose the Coulomb gauge condition, i.e., ∇ · A = 0. By
substituting Eqs. (2.4) into the first two modified Maxwell
equations, we obtain

−∇ ·(ε∇φ) = ∇ᾱ · ∇ × A, (2.5a)

∇2A = −∇ᾱ × ∇φ. (2.5b)

In the bulk regions, the equations for φ and A decouple
and become homogeneous wave equations. To solve for φ in
the bulk region, we postulate the following ansatz (following
Ref. [29]):

φi(r) =
∫

d2q
(2π )2

fi(z) ei(qxx+qyy). (2.6)

Plugging this into Eq. (2.5a) with ᾱ = 0 yields

∂2
z fi(z) − ρ2

i (θ ) fi(z) = 0, (2.7)

where

ρ2
i (θi) ≡ εix

εiz

(qx cos θi + qy sin θi)
2

+ εiy

εiz

(qy cos θi − qx sin θi)
2. (2.8)

By making use of circular symmetry, we can express qx

and qy in terms of a new angular variable ψ (which is
not to be confused with the optic axis orientation θ ), i.e.,
qx = q cos ψ, qy = q sin ψ , where we also obtain a relation
between the corresponding integration measures

∫
dqx dqy =∫

dψ dq q [29]. We can therefore express ρi [Eq. (2.8)] in the
manner [30]

ρi(θi) = q gi(θi − ψ), (2.9)

where gi(θ − ψ) encodes the effects of dielectric anisotropy,
and is given by

gi(θ − ψ) ≡
√

εiy

εiz

+ εix − εiy

εiz

cos2(θ − ψ). (2.10)

We can easily check that for a dielectrically isotropic slab,
gi → 1 and ρi → q ≡ (q2

x + q2
y )1/2. We shall consider the case

where εiy = εiz, which enables the formula for gi to be further
simplified. If we introduce the parameter

γi ≡ εix

εiz

− 1, (2.11)

the anisotropy factor becomes

gi =
√

1 + γi cos2(θi − ψ). (2.12)

For weak anisotropy (i.e., small dielectric difference between
the optic axis and the ordinary axes), γi � 1, and we have

gi ≈ 1 + 1
2γi cos2(θi − ψ). (2.13)

For slabs of the same dielectric material, γ1 = γ3 ≡ γ . For the
vacuum gap (i = 2), γ2 = 0 and g2 = 1.

Turning back to Eq. (2.7), the solution takes the form

f1(z) = a1 e ρ1z (z � 0),

f2(z) = a2 e ρ2z + b2 e−ρ2z (0 < z < �),

f3(z) = b3 e−ρ3z (z � �). (2.14)

Similarly, as A satisfies a homogeneous wave equation in the
bulk [cf. Eq. (2.5b)], we can postulate the ansatz:

Ai(r) =
∫

d2q
(2π )2

hi(z) ei(qxx+qyy). (2.15)

Plugging this into Eq. (2.5b) yields

h1(z) = c1 e qz (z � 0),

h2(z) = c2 e qz + d2 e−qz (0 < z < �),

h3(z) = d3 e−qz (z � �). (2.16)

III. BOUNDARY CONDITIONS

Our next task is to derive the secular determinant from the
boundary conditions. The boundary conditions for φ can be
derived by integrating Eq. (2.5a) over a narrow strip across
each dielectric boundary, and requiring that φ is continuous
across each dielectric boundary. We have

φ1(0) = φ2(0), φ2(�) = φ3(�),

[ε1z∂zφ1 − ε2z∂zφ2]z=0 = −[ᾱ1(∂xA1y − ∂yA1x)]z=0,

[ε2z∂zφ2 − ε3z∂zφ3]z=� = [ᾱ3(∂xA3y − ∂yA3x)]z=�. (3.1)

We can derive the boundary conditions for A by an analogous
method, via integrating Eq. (2.5b) and requiring the continuity
of A across each dielectric boundary. In component form,
Eq. (2.5b) becomes

∇2Ax = ᾱ δ(z − zm) ∂yφ,

∇2Ay = −ᾱ δ(z − zm) ∂xφ,

∇2Az = 0, (3.2)

where zm (m = L,R) denote the position of the dielectric
interfaces, i.e., zL = 0 and zR = �. Integrating across the
dielectric boundary at z = 0 leads to

[∂zA2x − ∂zA1x]z=0 = −ᾱ1 ∂yφ1(z = 0),

[∂zA2y − ∂zA1y]z=0 = ᾱ1 ∂xφ1(z = 0),

[∂zA2z − ∂zA1z]z=0 = 0. (3.3)

Integrating across z = � leads to

[∂zA3x − ∂zA2x]z=� = ᾱ3 ∂yφ3(z = �),

[∂zA3y − ∂zA2y]z=� = −ᾱ3 ∂xφ3(z = �),

[∂zA3z − ∂zA2z]z=� = 0. (3.4)

The above six equations are supplemented by six additional
equations that describe the continuity of A across each dielec-
tric boundary, viz.,

A1(z = 0) = A2(z = 0), (3.5a)

A2(z = �) = A3(z = �). (3.5b)
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Equations (3.1), (3.3), (3.4), and (3.5) can be expressed in
terms of the coefficients a1, a2, b2, b3, c1, c2, d2, and d3. Using
Eqs. (2.14) and (2.16), we can rewrite Eqs. (3.1) as

a1 = a2 + b2,

b3 e−ρ3� = a2 eρ2� + b2 e−ρ2�,

ε1zρ1a1 − ε2zρ2(a2 − b2) = −i ᾱ1(qxc1y − qyc1x),

ε2zρ2(a2 eρ2� − b2 e−ρ2�) + ε3zρ3b3 e−ρ3�

= i ᾱ3(qxd3y − qyd3x) e−q�. (3.6)

Equations (3.3) become

c2x − d2x − c1x = −i (ᾱ1/q) qya1,

c2y − d2y − c1y = i (ᾱ1/q) qxa1,

c2z − d2z − c1z = 0. (3.7)

Equations (3.4) become

−d3x e−q� − c2x e q� + d2x e−q� = i (ᾱ3/q) qyb3 e−ρ3�,

−d3y e−q� − c2y e q� + d2y e−q� = −i (ᾱ3/q) qxb3 e−ρ3�,

−d3z e−q� − c2z e q� + d2z e−q� = 0. (3.8)

Finally, Eqs. (3.5) become

c1 = c2 + d2,

c2 e q� + d2 e−q� = d3 e−q�. (3.9)

We have 16 unknown coefficients, viz., a1, a2, b2, b3, c1,

c2, d2, and d3, and 16 equations that describe the boundary
conditions, viz., Eqs. (3.6), (3.7), (3.8), and (3.9). The coeffi-
cients can thus be solved. For the purpose of deriving the vdW
free energy, however, we do not need to know the explicit
values of the coefficients, only the secular determinant of the
equations.

IV. FREE ENERGY

Equations (3.6) to (3.9) can be re-expressed in matrix form
M · r = 0, where r is a 16-component vector formed from the
unknown amplitudes in Eqs. (2.14) and (2.16), viz.,

rT = (
a1,a2,b2,b3,c1

T,c2
T,d2

T,d3
T)

. (4.1)

The matrix M contains the coefficients of the amplitudes.
Equations (3.6) to (3.9) have a nontrivial solution if the
determinant of the secular equation vanishes, i.e., |M| = 0.
A straightforward calculation shows that the determinant is
proportional to D(ω,q�), where

D(ω,ξ )≡1 − 8 ᾱ1 ᾱ3 ε2zg2

v1v3
e−(1+g2)ξ

−u1u3

v1v3
e−2g2ξ − ᾱ2

1 ᾱ2
3

v1v3
(e−2ξ − e−2(1+g2)ξ ). (4.2)

The form of D is such that lnD → 0 as ξ → ∞. Here ξ is
a free, dimensionless variable, not to be confused with the
Matsubara frequency (which we will introduce shortly), and

we have defined (i = 1,3)

ui ≡ ᾱ2
i + 2[εizgi(θi) − ε2zg2(θ2)], (4.3a)

vi ≡ ᾱ2
i + 2[εizgi(θi) + ε2zg2(θ2)]. (4.3b)

For the solution to be nontrivial, we require that the secular
determinant vanishes, i.e., D(ω,q�) = 0. By the argument
principle [54,55], the sum over the allowed frequencies of
the electromagnetic fluctuations between the slabs in the free
energy (which gives rise to the van der Waals interaction) can
be expressed in the form of a contour integral over another
function whose poles occur at the values of the allowed
frequencies. This leads to the following form of the vdW
interaction free energy [29]:

G(�) = kBT

∞∑
n=0

′∫ 2π

0

dψ

2π

∫ ∞

0

dq

2π
q lnD(iξn,q�), (4.4)

where ξn are the Matsubara frequencies, defined by ξn ≡
2πnkBT/h̄, and the prime on the sum over Matsubara fre-
quencies tells one that the n = 0 term should be multiplied by
an additional factor of 1/2. By setting ε1z = ε3z, ε2z = 1, and
ρ1 = ρ2 = ρ3 = q (which would be valid for a pair of isotropic
TI slabs of the same material interacting across a vacuum gap),
and taking c → ∞, we recover the nonretarded limit of the
vdW free energy result of Ref. [26] (see the Appendix for
details). Equation (4.4), supplemented by Eqs. (4.2), (4.3a),
and (4.3b), constitute the central results of our paper.

In practice, the nonretarded approximation works well if the
separation distance is smaller than all the resonant absorption
wavelengths of the slab material [7]. If we consider the TI
material TlBiSe2, there are two resonances, viz., a phonon
resonance near 56 cm−1 (which corresponds to an absorption
wavelength of 180 μm), as well as a plasma resonance near
800 cm−1 (which corresponds to an absorption wavelength of
12.5 μm) [56]. Thus, our nonretarded approximation should
work well for d � 12.5 μm.

As we noted earlier, like the dielectric permittivity and mag-
netic permeability [57], the magnetoelectric coupling ᾱ also
depends on the frequency. It is known that ᾱ is only quantized
for low frequencies, and at larger frequencies the quantization
is lost [52,53]. The finite-frequency behavior of the magne-
toelectric response has been studied for three-dimensional
TIs [52] and Chern insulators [53] at zero temperature, and
found to vanish as the frequency becomes infinitely large. On
the other hand, as far as we are aware of, the corresponding
finite-temperature problem has not been studied. However, we
expect that the magnetoelectric response should also become
transparent for infinitely large frequencies. Thus, for ξn < m/h̄

(where m is the surface mass gap), we expect ᾱ to be quantized,
whereas for ξn 
 m/h̄, we expect that ᾱ becomes negligible.

The above considerations suggest the scope in which we
can apply our nonretarded result. Specifically, within the
nonretarded regime, we can study the behavior of sufficiently
hot systems, in which we can approximate the vdW free
interaction by the zero-frequency Matsubara term (for which ᾱ

is quantized). The finite-frequency Matsubara terms, for which
ᾱ is not quantized, do not contribute significantly and can
then be neglected. To obtain an estimate for the temperature
above which the finite-frequency terms can be neglected,
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FIG. 2. Behavior of the van der Waals force (in units of A/β�3, where A is the cross-sectional area of the slabs, β is the inverse temperature,
and � is the interslab separation) as a function of optic axis misalignment θ , between a pair of dielectrically similar topological insulator slabs
with the same dielectric permittivity, but different magnetoelectric polarizabilities ᾱ: (a) ᾱ1 = −ᾱ3 = 3/137 and static dielectric permittivity
ε1z(0) = ε1y(0) = ε3z(0) = ε3y(0) = 4; (b) ᾱ1 = −ᾱ3 = 21/137 and static dielectric permittivity ε1z(0) = ε1y(0) = ε3z(0) = ε3y(0) = 1.20179.
For both cases the intervening gap is a vacuum (ε2 = 1). In (a) the behavior is plotted for γ = 0.11 (green, dot-dashed line), 0.1 (blue, dashed
line), and 0.09 (red, dotted line). In (b) the behavior is plotted for γ = 0.0103 (green, dot-dashed line), 0.01 (blue, dashed line), and 0.0097
(red, dotted line).

we estimate the Matsubara frequency above which the di-
electric response and magnetoelectric response become near
transparent. For the dielectric response, we require 2πkBT/

h̄ 
 ωR (where ωR is the resonant absorption frequency),
which gives T 
 h̄ωR/(2πkB). For the magnetoelectric re-
sponse, we require 2πkBT/h̄ 
 m/h̄, which gives T 

m/(2πkB). To the best of our knowledge, we have not been
able to find simultaneously values of ωR and m for topological
insulator materials. However, individually we have found,
e.g., that ωR ≈ 1.5 × 1014 s−1 for TlBiSe2 (using the plasma
resonance frequency [56] rather than the phonon resonance
frequency, as we want the high-temperature limit to hold for
both the phonon and plasmon resonances), and m ≈ 50 meV
for Bi2Se3 [52,58,59]. This implies that T 
 183 K for the
former and T 
 92 K for the latter. For these temperature
regimes, we can approximate the vdW interaction by its
behavior in the T → ∞ limit.

V. VAN DER WAALS FORCE AND TORQUE

A. Force

From the free energy expression Eq. (4.4), we can derive
the vdW force per unit area f from the formula f = −∂G/∂�,
which gives

f (θ,�) = kBT

2π�3

∞∑
n=0

′∫ ∞

0
dξ ξ lnD(iξn,ξ ). (5.1)

In deriving this result we have rescaled the momentum variable
so that the distance dependence comes out into the prefactor,
which scales inversely as the cube of the distance. The scaling
behavior is thus the same as that for ordinary dielectrics and
isotropic TIs.

As discussed in the previous section, we study the character
of the vdW force between TI slabs interacting across a vacuum
gap (g2 = 1,ε2z = 1) in the limit T → ∞. This means that we
can approximate the vdW interaction by the zero Matsubara
frequency contribution, and replace ε, γ , and ᾱ by their static
values. The force behavior as a function of the misalignment
angle θ between the optic axes is plotted in Figs. 2 and 3. First,
let us consider how the behavior of the vdW force changes

as the anisotropy γ is varied. Figure 2(a) shows the behavior
for two TI slabs with static dielectric permittivity of 4 (which
would be close to the dielectric constant of TlBiSe2 [23])
and static magnetoelectric coupling ᾱ1 = −ᾱ3 = 3/137, while
Fig. 2(b) shows the corresponding behavior for static dielectric
permittivity of 1.20179 and static magnetoelectric coupling
ᾱ1 = −ᾱ3 = 21/137. The choice of the signs is motivated
by the finding in Ref. [26] that vdW repulsion is possible
if TI slabs possess magnetoelectric couplings of the same
magnitude but opposite signs, and the integer factor in ᾱ counts
the number of surface states in the TI, the typical number
of surface states being of the order of 1. Thus Fig. 2(a) would
describe the behavior of a more realistic system. For both cases
we see that increasing the anisotropy has the effect of making
the vdW force more attractive/less repulsive. In the case of
Fig. 2(b), we see that the vdW force can become repulsive for
sufficiently weak anisotropy. This is consistent with the results

−

(
/

)×
−

FIG. 3. Behavior of the van der Waals force (in units of A/β�3)
as a function of optic axis misalignment θ , for a pair of dielectrically
similar topological insulator slabs with ᾱ1 = −ᾱ3 = 21/137 and γ =
0.01, separated by a vacuum gap (ε2 = 1); the curves are plotted for
static dielectric permittivity ε1z(0) = ε1y(0) = ε3z(0) = ε3y(0) equal
to the value of (i) 1.2018 (green, dot-dashed line), (ii) 1.20179 (blue,
dashed line), and (iii) 1.20178 (red, dotted line).
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of Ref. [26], there it was found that for isotropic TIs in the
high-temperature limit, vdW repulsion becomes possible only
for static dielectric permittivities smaller than a threshold value
which is approximately 2. As increasing the anisotropy has the
effect of making the vdW force more attractive, we should not
expect to see vdW repulsion for any value of the anisotropy γ

if the static dielectric permittivity is larger than 2. On the other
hand, Casimir/vdW repulsion should become a possibility for
all finite values of the dielectric permittivity at low or zero
temperature, on the basis of results of Refs. [23,26]. However,
the zero-temperature limit falls outside the scope of our study,
as it requires retardation effects to be taken into account.

Figure 3 shows that the vdW force becomes less at-
tractive/more repulsive as the static dielectric permittivity is
decreased. From Figs. 2 and 3, with γ �= 0, we see that the force
oscillates with θ , becoming most repulsive (or least attractive)
for θ = (n + 1/2)π (where n ∈ Z) and least repulsive (or most
attractive) for θ = nπ . Intriguingly, for certain ranges of values
of γ and ᾱ we can also “tune” the force to be attractive when θ is
an integer multiple of π , and repulsive when θ is a half-integer
multiple of π [cf. the blue-colored curves in Figs. 2(b) and
3]. The dependence of the vdW force on the orientation of the
optic axis of the TI slab thus opens up a means to control the
strength of stiction or repulsion between the components of a
nanodevice.

To summarize, in the high-temperature limit, the vdW force
can become repulsive for sufficiently small values of γ and/or
sufficiently large values of ᾱ, if the static dielectric permittivity
is smaller than a threshold value (which is around 2).

B. Torque

Having explored the behavior of the vdW force, we turn
next to the behavior of the vdW torque experienced by the TI
slabs, which is given by

τ (θ,�) = −∂G

∂θ
. (5.2)

Let us consider a similar type of system as the one just analyzed
for the force, where two TI slabs of the same material are
separated by a vacuum gap. As in our analysis of the vdW force,
we specialize to the limit T → ∞. To make our calculations
analytically tractable, let us expand lnD in Eq. (4.4) in powers
of γ and e−2q� to quadratic order, and perform the integrations∫

dψ and
∫

q dψ . To find the torque we apply Eq. (5.2). We
obtain the following result:

τ (θ,�) ≈ − γ 2
(
1 + 1

4 ᾱ1ᾱ3
)

sin 2θ

1024π
(
1 + 1

4 ᾱ2
1

)3(
1 + 1

4 ᾱ2
3

)3
�2

×
(

1 + 1

4

(
ᾱ2

1 + ᾱ2
3

) + 3

8
ᾱ1ᾱ3 + 3

16
ᾱ2

1 ᾱ
2
3

+ 1

32
ᾱ1ᾱ3

(
ᾱ2

1 + ᾱ2
3

) + 3

128
ᾱ3

1 ᾱ
3
3

)
. (5.3)

In the above, the parameters ᾱ and γ refer to their static
values, i.e., ᾱ(0) and γ (0). We can check that in the limit of
zero magnetoelectric coupling, we recover the known result of
Ref. [29]. We plot the behavior in Fig. 4 for TI slabs with |ᾱ|
equal to 69/137 and 11/137. We find that the vdW torque for a
pair of TI slabs has the same sign as that for a pair of ordinary

−

−

(
/

)×
−

FIG. 4. Behavior of the torque (multiplied by �2/A, where A is
the cross-sectional area of each slab and � is the interslab separation
distance) for (i) ordinary dielectric slabs (black, thin line), (ii) topolog-
ical insulator slabs with ᾱ1 = ᾱ3 = 69/137 (green, dashed line), (iii)
topological insulator slabs with ᾱ1 = −ᾱ3 = 69/137 (red, dot-dashed
line), and (iv) topological insulator slabs with ᾱ1 = −ᾱ3 = 11/137
(blue, dashed line). We take the slabs to be dielectrically uniaxial,
with static dielectric permittivity εz(0) = εy(0) = 4 and γ = 0.2, and
the gap to be a vacuum (ε2 = 1).

dielectrics, the sign being such that the torque is restoring when
θ is a small perturbation from an integer multiple of π , and half-
integer values of π represent unstable configurations. For TI
slabs the strength of the torque is generally weaker than that for
ordinary dielectrics, which we can interpret as a consequence
of the magnetoelectric coupling. For weaker magnetoelectric
couplings (e.g., the system represented by the thin black curve
in Fig. 4), the torque behavior virtually coincides with that
of ordinary dielectrics, and differences in torque behavior
between TIs and ordinary dielectrics become noticeable only
for larger magnetoelectric couplings. The torque for TI slabs
with ᾱ of the same magnitude but opposite signs is weaker than
that for TI slabs with ᾱ of the same magnitude and sign. The
enhanced weakening of the torque for the case where ᾱ1 = −ᾱ3

compared to the case where ᾱ1 = ᾱ3 appears to be associated
with the emergence of a repulsive vdW force in the former
case (compared to an attractive vdW force which arises in
the latter case). Physically, if the forces were attractive, the
slabs would experience a stronger moment of force that seeks
to restore them to the state of mechanical equilibrium. From
Eq. (5.3) we can also deduce that an increase in the strength
of the magnetoelectric coupling ᾱ has the effect of decreasing
the magnitude of the vdW torque.

VI. DISCUSSION AND CONCLUSION

In this paper we have investigated the high-temperature
limit of the van der Waals interaction between a pair of flat,
coplanar topological insulator slabs with uniaxial dielectric
anisotropy and separated by a vacuum gap, in particular
looking into the character of the vdW force and torque, and how
they vary as functions of the magnetoelectric coupling strength
and the misalignment angle between the optic axes of the
slabs. In addition to confirming that the vdW force can become
repulsive for sufficiently large magnetoelectric coupling, we
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have also found that anisotropy can influence the sign of the
vdW force. A repulsive vdW force can become attractive if
the anisotropy is increased sufficiently. Furthermore, we have
found that the force oscillates as a function of the misalignment
angle between the optic axes of the TI slabs, being most
repulsive/least attractive (least repulsive/most attractive) for
angular differences that are integer (half-integer) multiples of
π . For certain values of the permittivity and magnetoelectric
coupling, it is also possible to tune the vdW force from
attractive to repulsive as one varies the angular difference
between the optic axes. We have also found that the vdW torque
is generally weaker for the case of TI slabs than for the case
of ordinary dielectric ones. For the purpose of experimentally
detecting and measuring the vdW torque, this would indicate
that using ordinary dielectric microdisks is more suitable than
TI microdisks [31,32].

In the high-temperature regime, it is known that the dielec-
tric permittivities of the TI slabs have to be smaller than a
threshold value (of approximately 2) to make vdW repulsion
possible, while repulsion can occur for larger values of the
dielectric permittivity in the low-temperature regime [26].
Current topological materials appear to possess static dielectric
permittivities larger than 2. As permittivity depends on dipole
density, it could be possible to make the permittivities smaller
by increasing the porosity of the materials. Our calculation in
the high-temperature limit also functions as a proof of principle
calculation. In order to obtain more realistic predictions, it
would have to be amended by taking into account the full
frequency dependence of both the dielectric function and the
magnetoelectric response.

To address the low-temperature behavior, one can no longer
neglect the finite-frequency Matsubara terms, and the mag-
netoelectric response at finite frequencies would have to be
included. This requires a finite-temperature generalization of
the magnetoelectric response derived in Refs. [52,53], which
was calculated for the case of zero temperature. To probe
the behavior at larger distances and/or the zero-temperature
limit, one would also need to account for retardation effects.
Retardation effects can be studied, for example, along the lines
of Ref. [33]. However, we expect the calculation to be more
complicated, as one would have to consider contributions from
both ordinary and extraordinary waves which emerge from the
crystal anisotropy [36,37].
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APPENDIX: PROOF OF THE EQUIVALENCE WITH THE
NONRETARDED LIMIT OF THE RESULT OF REF. [26]

In Ref. [26] the nonretarded limit of the vdW free energy
for isotropic TIs (ε⊥ = εz ≡ ε) can be deduced from Eqs. (12)
and (21) of the paper. In our notation, their result takes the form

Gg(�)

A
= kBT

∞∑
n=0

′∫
d2q

(2π )2
ln det(I − R1 · R3 e−2q�), (A1)

where the reflection coefficient matrices are defined by
(i = 1,3)

Ri = 1

ᾱ2
i + 2ε + 2

(−ᾱ2
i 2ᾱi

2ᾱi ᾱ2
i + 2ε − 2

)
. (A2)

Evaluating the determinant, we obtain

Gg(�)

A
= kBT

∞∑
n=0

′∫
d2q

(2π )2

× ln

(
1 − u1u3 + 8ᾱ1ᾱ3 + ᾱ2

1 ᾱ
2
3

v1v3
e−2q�

+ ᾱ2
1 ᾱ

2
3

v2
1v

2
3

[u1u3 + 4(u1 + u3) + 16] e−4q�

)
. (A3)

Here ε is the value of the dielectric permittivity of each slab, and
ui = ᾱ2

i + 2ε − 2 and vi = ᾱ2
i + 2ε + 2 for a pair of isotropic

TI slabs separated by a vacuum gap. It is easy to prove the
algebraic identity

v1v3 = u1u3 + 4(u1 + u3) + 16. (A4)

Equation (A3) then becomes

Gg(�)

A
= kBT

∞∑
n=0

′∫
d2q

(2π )2

× ln

(
1 − u1u3 + 8ᾱ1ᾱ3 + ᾱ2

1 ᾱ
2
3

v1v3
e−2q�

+ ᾱ2
1 ᾱ

2
3

v1v3
e−4q�

)
. (A5)

We can check that this is the same result as that of Eq. (4.4)
for isotropic topological insulators separated by a vacuum gap
[i.e., gi = 1 (i = 1,2,3), ε1z = ε3z = ε, and ε2z = 1].
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