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Doubled Shapiro steps in a topological Josephson junction
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We study the transport properties of a superconductor–quantum spin Hall insulator–superconductor hybrid
system in the presence of microwave radiation. Instead of adiabatic analysis or use of the resistively shunted
junction model, we start from the microscopic Hamiltonian and calculate the d.c. current directly with the help
of the nonequilibrium Green’s function method. The numerical results show that (i) the I-V curves of background
current due to multiple Andreev reflections exhibit a different structure from those in the conventional junctions,
and (ii) all Shapiro steps are visible and appear one by one at high frequencies, while at low frequencies, the
steps evolve exactly as the Bessel functions and the odd steps are completely suppressed, implying a fractional
Josephson effect.
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I. INTRODUCTION

The Majorana bound state (MBS), which harbors non-
Abelian statistics, has recently attracted extensive interest for
its potential applications in fault-tolerant topological quantum
computation [1–5]. The realization of these states was first
expected theoretically by Kitaev in a one-dimensional spinless
p-wave superconducting chain [6]. Unfortunately, despite that
p-wave pairing is scarce in nature due to spin degeneracy,
the inevitable “Majorana fermion doubling problem” [46]
made it impossible to realize in experiments [7–9]. Soon
afterward, many schemes for engineering Kitaev’s ideal model
in condensed material systems were put into practice [10–15].
A conceptual breakthrough came in 2009 when Fu and Kane
proved that topological junctions between superconductors
mediated by a quantum spin Hall insulator (QSHI) can stabilize
those MBSs at their interfaces [16]. In this system, effective
p-wave pairing can be achieved by superconducting proxim-
ity effects combined with time-reversal symmetry breaking.
Furthermore, the Majorana fermion doubling problem is au-
tomatically circumvented because there exists only one pair
of Fermi points as long as the Fermi level does not intersect
the bulk bands. In addition, MBSs are also proposed to exist
in other systems, for example, as quasiparticle excitations of
the quantum Hall state at filling factor ν = 5/2 [17,18], in the
vortices of the intrinsic p-wave superconductor Sr2RuO4 [19],
and in cold-atom systems [20,21].

Experimental probes of these MBSs can be achieved by
measurement of the fractional Josephson effect [22–24]. The
coupling of two MBSs γ1 and γ2 localized at the interfaces of
a topological Josephson junction allows the tunneling of half
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Fermion pairs and, in turn, yields a 4π periodic supercurrent
I4π sin (φ/2), namely, the fractional Josephson effect. As a
result, in the presence of a d.c. bias voltage V0, one would
expect an a.c. Josephson current at half Josephson frequency
ω0/2 = eV0/h̄ accompanied by radio-frequency radiation of
the same frequency [25–28]. Moreover, supplementing the
junction with a radio-frequency emission of frequency ω, a cur-
rent measurement will find plateaus of the voltage steps, also
known as Shapiro steps, emerging only when 2eV0/h̄ = 2nω

[26,27,29–31], where n is an integer, leading to an even-odd ef-
fect with all odd steps disappeared. A second type of fractional
Josephson effect, which exhibits 4π periodicity in both super-
conducting phases of the left and right leads, may arise if the
barrier material in the Josephson junction is also a supercon-
ductor [22,32]. Some recent experiments were performed to
explore this even-odd effect in superconductor–quantum spin
Hall insulator–superconductor S-QSHI-S Josephson junctions
[33,34] and several other systems [35,36] which are believed
may hold MBSs. Interestingly, the results show a strong
frequency dependence. Thus far, only the resistively shunted
junction model has been considered to understand this effect
[37]. Under this approach, the system is simplified as a circuit
with a Josephson junction shunted by a resistance R, which
can be described by an equation of motion: I0 + Ia.c. sin (ωt) =
V/R + I (φ). The 4π periodic term I (φ) = I4π sin (φ/2) in this
equation phenomenologically leads to an even-odd effect in
Shapiro steps. However, a microscopic mechanism of the direct
connection between the presence of MBSs and this even-odd
effect is lacking, and the underlying physics of this effect’s
being exhibited only at low frequencies in experiments need
to be understood.

In this paper, we study the transport properties of an S-
QSHI-S Josephson junction. Using the nonequilibrium Green’s
function method, we calculate the tunneling current based
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FIG. 1. (a) Schematic for the S-QSHI-S device with voltage
V (t) = V0 + V1 sin (ωt). (b, c) Schematics for three-order MAR
mediated by absorbing or emitting k photons, respectively.

on a tight-binding Hamiltonian. Our numerical results show
that the I-V curves of the background currents exhibit an
interesting subharmonic gap structure, which is caused by
the multiple Andreev reflections (MARs). Differently from
the conventional Josephson junctions, the presence of MBSs
reduces the gap from 2� to �, and therefore, the I-V curves
have singularities at voltages eV0 = (� ∓ kh̄ω)/n rather than
eV0 = (2� ∓ kh̄ω)/n, with n, k being integer numbers. On the
other hand, we find that the Shapiro steps appear one by one
and have complicated oscillation patterns at higher frequencies
due to the nonadiabatic process. However, at low frequencies,
the steps evolve exactly as the Bessel functions but with the
odd steps suppressed strongly, in agreement with the recent
experimental results in Ref. [34].

The rest of this paper is organized as follows. In Sec. II,
we introduce our model Hamiltonian and deduce the equation
of the supercurrent by virtue of the nonequilibrium Green’s
function method. In Sec. III, we focus our results on the d.c.
current and study the background current and the Shapiro steps
in detail. Finally, a brief summary is presented in Sec. IV.

II. MODEL AND FORMALISM

We consider a voltage biased S-QSHI-S Josephson junction
in the presence of microwave radiation as shown in Fig. 1(a). To
proceed, this external field is simulated with a time-dependent
voltage V (t) = V0 + V1 sin (ωt). Then after a unitary trans-
formation [38], the system can be described by the following
Hamiltonian:

H =
∑

α=L,R

Hα(t) + HC + HT . (1)

Here, Hα(α = L,R) = ∑
k,σ εαka

†
αkσ aαkσ + �(aαk↓aα−k↑

+ H.c.) are the BCS Hamiltonians of both the left and the
right s-wave superconducting leads, where a

†
αkσ (aαkσ ) are

the creation (annihilation) operators of electrons in the α

lead with momentum k and spin σ , εαk is the kinetic energy,
and � is the common superconducting energy gap shared
by both leads. As the transport properties are dominated

by the helical edge states of the central QSHI [39,40],
this part can be described by an effective one-dimensional
Hamiltonian [41], which in the Nambu representation is
HC = −iVF

2a
�

†
i σzτz�i+δx − μ�

†
i τz�i + M�

†
i σx�i . a is the

lattice constant, �T
i = [ψi↑,ψi↓,ψ

†
i↓, − ψ

†
i↑] are the edge

states, VF and μ are the velocity and the chemical potential
of the edge states, M is the Zeeman energy caused by
an external magnetic field, and σj and τj are the Pauli
matrices acting in the spin and Nambu spaces, respectively.
The last term in Eq. (1), representing the time-dependent
coupling between the superconducting leads and the central
part, has the form HT = ∑

α (a†
αk↑,aαk↓)tαC�i + H.c.

The coupling matrix tαC(t) = (t̃α t̃α 0 0
0 0 −t̃∗α −t̃∗α

), where
t̃α = tc exp {i[φα/2 + zαt + pα cos (ωt)]}, with tc the coupling
strength, φL,R the initial superconducting phases of the
left and right leads, zα = eV α

0 /h̄ the d.c. voltage, and
pα = eV α

1 /h̄ω the radiation power. In fact, by making a

unitary transformation with ã
†
αk↑/↓ =

√
2

2 (a†
αk↑/↓ ± a

†
αk↓/↑),

HT can reduce to HT = √
2t̃αã

†
αkσ ψiσ + H.c., the same as for

the normal barriers.
The total current from the left superconducting lead can be

calculated from the evolution of the electron number operator
NL = ∑

kσ a
†
Lkσ aLkσ in that lead,

IL(t) = −e

〈
dNL

dt

〉
= ie

h̄

〈[∑
k,σ

a
†
Lkσ aLkσ ,H

]〉

= e

h̄
Tr[�zG<

CL(t,t)tLC + H.c.], (2)

where �z = σz

⊗
I2, with I2 the 2 × 2 identity

matrix, and G<
CL(t,t) is the distribution Green’s

function, which satisfies the relation G<
CL(t,t) =∫

dt1[Gr (t,t1)t†LCg<
L (t1,t) + G<(t,t1)t†LCga

L(t1,t)]. g<,a
L (t1,t2)

are the surface Green’s functions of the uncoupled
superconducting lead, and Gr,<(t1,t2) are the retarded
and distribution Green’s functions of the central QSHI part.
For convenience, we take the left superconducting lead as the
potential ground. Thus the current can be rewritten as

IL(t) = 2e

h̄
Im

∫ t

−∞
dt1

∫
dε

2π
eiε(t−t1)Tr

× {
�z

[
Gr (t,t1) × �<

L (ε) + G<(t,t1)�a
L(ε)

]}
, (3)

where �
<,a
L (ε) = t†LCg<,a

L (ε)tLC are the distribution
and retarded self-energies due to coupling to the left
superconducting lead. The exact retarded Green’s
functions of the uncoupled superconducting lead read
gr

L,R(ε) = 2πρβ(ε)[I2 + �/εσx], where the corresponding

BCS density of states β(ε) is defined as β(ε) = ε/(i
√

�2 − ε2)
for � > |ε| and β(ε) = |ε|/√ε2 − �2 for � < |ε|. In
addition, the normal density of states ρ is assumed to
be independent of the energy ε. The advanced Green’s
functions ga

L,R are the complex conjugates of the retarded
Green’s function and g<

L,R = f (ε)(ga
L,R − gr

L,R), where
f (ε) = 1/(1 + eε/kBT ) is the Fermi distribution function.

In order to obtain the Green’s function, following the
method in Ref. [42], we perform a Fourier transform
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with respect to the temporal arguments, G(t1,t2) =
1/2π

∫
dε1

∫
dε2e

−iε1t1eiε2t2 G(ε1,ε2). Because the phase
difference of the junction is a time-dependent periodic function
with two periods, T1 = 2π/ω0 and T2 = 2π/ω, where ω0 =
2e|V0|, G(ε1,ε2) satisfies the following relation: G(ε1,ε2) =∑

m,n G(ε1,ε1 + mω0 + nω)δ(ε2 − ε1 − mω0 − nω), where
m, n are integer numbers. To simplify the mathematical
expression of the supercurrent, we introduce the
quantities Gkl

mn ≡ G(ε + mω0 + kh̄ω,ε + nω0 + lh̄ω).
Finally, the current can now be expanded as I (t) =∑

n,m Im
n exp [i(nω0t + mωt)], where the current amplitudes

Im
n can be expressed as

Im
n = 2e

h̄
Im

∫
dε

2π
Tr

{
�z

[
Gr;−m0

−n0 (ε)�<
L (ε)

+ G<;−m0
−n0 (ε)�a

L(ε)
]}

. (4)

At this point, the calculation of the supercurrent has been
reduced to the calculation of the Fourier components of the
retarded and distribution Green’s functions, which can be
determined by numerically solving the Dyson equation and
the Keldysh equation,

Gr;kl
mn = gr;k

m δmnδkl +
∑
i,j

Gr;kj
mi �

r;j l

in gr;l
n , (5a)

G<;kl
mn =

∑
i1,i2,j1,j2

Gr;kj1
mi1

�
<;j1j2
i1i2

Ga;j2l

i2n
, (5b)

where gr;k
m = gr (ε + mω0 + kω) and �r,<;kl

mn = �
r,<;kl
L;mn +

�
r,<;kl
R;mn . The Fourier components of the self-energies �

r,<;kl
L,R;mn

adopt the forms

�
r;kl
L;nm = −iπt2

c βk
n�L

(
εk
n

)
δnmδkl, (6a)

�
r;kl
R;nm = −iπt2

c

∑
j

Jk−j (p)Jj−l(p)

⎛
⎝ (−1)j i−k−lβ

j

n+1/2δnm −ik−lβ
j

n+1/2
�

ε
j

n+1/2

e−iφR δn,m−1

il−kβ
j

n−1/2
�

ε
j

n−1/2

eiφR δn,m+1 (−1)j ik+lβ
j

n−1/2δnm

⎞
⎠⊗

M, (6b)

�
<;kl
L;nm = 2iπt2

c γ k
n �L

(
εk
n

)
δnmδkl, (7a)

�
<;kl
R;nm = 2iπt2

c

∑
j

Jk−j (p)Jj−l(p)

⎛
⎝ (−1)j i−k−lγ

j

n+1/2δnm −ik−lγ
j

n+1/2
�

ε
j

n+1/2

e−iφR δn,m−1

il−kγ
j

n−1/2
�

ε
j

n−1/2

eiφR δn,m+1 (−1)j ik+lγ
j

n−1/2δnm

⎞
⎠ ⊗

M, (7b)

where εk
n = ε + nω0 + kω, β

j

i = β(ε + iω0 + jω), γ
j

i =
f

j

i β
j

i , M = σ0 + σx , and Jn(p) is the first kind of Bessel
function of order n, with p = pR − pL denoting the radia-
tion power. Finally, the time-dependent supercurrent can be
calculated without further complications.

III. RESULTS AND DISCUSSION

In this paper, we focus on the d.c. current, which consists
of two parts: the background current I 0

0 and the Shapiro
steps Im

n . Note that the Shapiro steps depend on the average
value of the initial phase difference φ0 = φR − φL. In the
following, we take the superconducting energy gap � as the
energy unit. The parameters of the central Hamiltonian are
a = 5 nm, L = 100 nm, h̄VF = 200�, M = 1.5�, and μ = 0
so all energies are measured from the chemical potential.
The coupling strength between the central QSHI part and the
superconducting leads takes tc = 1.8� and the temperature
is set as 0 in our detailed calculations. Here, the transmission
probability is defined as D = 1/[1 + sinh2 (ML)] [16]. We fix
the system parameters unless otherwise specified.

Let us start by analyzing the background current. The key
feature of the background current is that its I-V curves have
some singularities at discrete voltages eV0 = (2� ∓ kh̄ω)/n,
which originates from an n-order MAR mediated by absorbing
[Fig. 1(b)] or emitting [Fig. 1(c)] k photons with their prob-
abilities proportional to Jk(p) [42]. After this photoassisted
MAR process, a quasiparticle acquires the energy neV ± kh̄ω,
and singularities appear simultaneously when this energy can
overcome the energy gap 2� between the occupied and the

empty states. However, in topological Josephson junctions,
because of the presence of the MBSs, the energy gap reduces to
�, and thus singularities should appear at eV0 = (� ∓ kh̄ω)/n

instead [26,43].
In Fig. 2, we plot the I -V curves of the background current

with different radiation power p and frequency ω. It can
be clearly seen that when p = 0 (red line), which means
in the absence of microwave radiations, the curve exhibits
gap structures at voltages eV0 = �/n, while with microwave
radiation added, the curves show rich subgap structures with
more singularities appearing at eV = (� ∓ kh̄ω)/n (see the
sign eV0 = 0.75 of the lime-green line with p = 1.0, ω =
0.25). This distinct structure strongly indicates the presence

FIG. 2. Background current I 0
0 as a function of the d.c. voltage V0

with different parameters. Colorful curves are displayed to make the
figure clear. Red curve, the case p = 0; black curve, M = 0,p = 0.
Here, φL = φR = 0.
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FIG. 3. Bar plots of the heights of the Shapiro steps Sn from n =
−4 to n = 4 at frequency ω = 0.02�. Here, the radiation power is
p = �.

of MBSs. Note that the black curve in Fig. 2 corresponds to
the case of M = 0 and p = 0, in which the junction is like a
conventional one due to the lack of localized MBSs. Naturally,
because of the conducting helical edge, this junction is totally
transparent with the transmission probability D = 1, leading
to a sharply increasing I-V curve as plotted in the figure [44].

Now we move on to the Shapiro steps. These steps,
arising from the phase locking between the harmonics of
the a.c. Josephson frequency ω0 and the microwave radiation
frequency ω, have been reported extensively in conventional
Josephson junctions. Within an adiabatic approximation [45],
these steps can be understood as a consequence of the non-
sinusoidal current-phase relation. As stated above, the phase
difference across the junction is φ(t) = φ0 + zt + p sin (ωt).
Substituting this into Josephson’s first equation and using the
standard mathematical expansion of a sine in terms of the
Bessel functions, one would expect the Shapiro steps to evolve
exactly asJn(2p) and to appear at z = nω, wheren is an integer.
In principle, the situations are different between conventional
and topological Josephson junctions. In a conventional one,
because the only carriers that are permitted to transmit through
the central insulator part are Cooper pairs, Shapiro steps appear
at V0 = nh̄ω/2e with z = 2eV0. However, in a topological one,
two MBSs, γ1 and γ2, are localized separately at the interfaces
of the superconducting leads and the central QSHI region [16].
Their strong coupling forms a 4π fractional Josephson effect
and allows the tunneling of single electrons, therefore Shapiro
steps can appear at double the voltage of the former one and
exhibit an even-odd effect when z = eV0 as plotted in Fig. 3.
Here, the heights of the Shapiro steps are defined as Sn ≡ |I 1

n |.
It should be pointed out that the fractional Shapiro steps Im

n

with m > 1 are so small in our calculations that we have omit-
ted them from the figure. Interestingly, the absence of the odd
steps here is not calculated by simply adding a 4π supercurrent
in the RSJ model but the direct result of the nonequilibrium
Green’s function method based on the intrinsic Hamiltonian.
Besides, this fundamental method can help us to further
understand the frequency dependence of the even-odd effect.

In Fig. 4, we display the heights of the first five Shapiro
steps Sn as the increase in the radiation powers at three
frequencies: ω = 0.02, ω = 0.05, and ω = 0.5. As illustrated
in Fig. 4(a), the Shapiro steps coincide well with the Bessel
functions except that the odd ones are strongly suppressed at

FIG. 4. Heights of the first five Shapiro steps Sn versus the
radiation power p at three frequencies: (a) ω = 0.02, (b) ω = 0.05,
and (c) ω = 0.5. Here, some steps are vertical shifted for clarity. Inset:
S1 (red line) and S2 (blue line) as the increase in the frequency with
radiation power p = �.

frequency ω = 0.02, leading to an even-odd effect as predicted
and reported in some recent works [26,27,33,34]. With the
frequency increased to ω = 0.05, Fig. 4(b) shows that although
the first step is still heavily suppressed, higher order steps
begin to appear. As a comparison, we plot the heights Sn at
a high frequency, ω = 0.5, in Fig. 4(c). Though the shapes
deviate seriously from Bessel functions, all steps are visible
and appear one by one as the increase in the radiation power.
In general, the deviation results from a nonadiabatic process
at high frequencies. The inset shows the heights S1 and S2 as
the increase in the frequency ω. We can clearly see that S1 is
suppressed heavily when ω < 0.3�, which indicates that the
even-odd effect can only be seen at low frequencies. The reason
is that the Andreev bound state may couple the continuum
after absorbing a large frequency radiation, restoring a 2π

periodicity. For superconducting leads made of Al electrodes,
our results are in general agreement with the experiment data
in Ref. [34] if the time-reversal symmetry is implicitly broken
since the frequencies here are about ω = 0.5 GHz [Fig. 4(a)],
ω = 1.2 GHz [Fig. 4(b)], and ω = 12 GHz [Fig. 4(c)]. The
exact mechanism for the seemingly perfect transmission in
that work remains to be understood.

IV. SUMMARY

To summarize, we have studied the transport properties of
an S-QSHI-S Josephson junction in the presence of microwave
radiation. Using nonequilibrium Green’s functions, we calcu-
late the d.c. supercurrent at an arbitrary frequency starting from
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the initial tight-binding Hamiltonian. The distinct singularities
of the background current prove that the presence of MBSs
reduces the gap from 2� to �. Furthermore, the even-odd
effect of the Shapiro steps can only be seen at low frequencies.
Our theory provides a good explanation of the connection
between the even-odd effect and the MBSs.
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APPENDIX A

In this Appendix, we present a numerical method for solving
the Dyson equation [Eq. (5a)] in Sec. II above. In general,
this equation can be solved literally. However, the process is
very time-consuming. Inspired by the solution of the linear
polynomial, we find that this equation can be solved similarly.
Because the index in that equation can be any infinite large
integer, cutoffs are necessary before we solve it. We assume
that the lower index −L � m,n � L and the upper index
−U � k,l � U . Then the Dyson equation can be rewritten as

Gr
ij = gr

ij δij +
∑

i ′
Gr

ii ′�
r
i ′j gr

jj , (A1)

where i = mU + k, j = nU + l, and i ′ denotes the summation
from −LU to LU . For a certain i, we replace the matrices
above as Xi ′ = Gr

ii ′ , Ai ′j = δi ′j − �r
i ′j gr

jj , and Bi ′j = gr
i ′j δi ′j .

Equation (A1) can be equally written as

X̂T Â = B̂, (A2)

where a hat denotes an array. Noting that every element in the
array in Eq. (A2) is also a matrix, X̂ can finally be obtained
by block diagonalizing the array Â.

APPENDIX B

In this Appendix, we show the transmission probability
dependence of the even-odd effect. As stated above, the trans-
mission probability is defined as D = 1/[1 + sinh2 (ML)],
where M is the Zeeman energy and L is the length of the
central QSHI region. Since we fix the system length as L =
100 nm, different Zeeman energies can be used to represent
different transmission probabilities. In general, the fractional
Josephson effect can be seen easily with a low transmission
probability or, equally, a high Zeeman energy. In Fig. 5, we
display the background current I 0

0 versus the d.c. voltage V0

at different Zeeman energies with p = 0. All currents exhibit
gap structures at voltages eV0 = �/n, with n an integer.
Moreover, the structure can be seen more clearly as the increase
in the Zeeman energy, which corresponds to the decrease in
the transmission probability. This distinct structure strongly
indicates that the superconducting gap is reduced from 2� to
�, which is in very good agreement with the result in the text.

In the experiment reported in [34], the transmission prob-
ability seems to be D = 1 since the time-reversal symmetry

FIG. 5. Background current I 0
0 as a function of the d.c. voltage V0

at different Zeeman energies which correspond to different transmis-
sion probabilities without any radio-frequency radiation. Here, the
other parameters are the same as in Fig. 2.

is not explicitly broken. Theoretically, the supercurrent will
restore a 2π periodicity due to a perfect transmission. Nev-
ertheless, the experimental data contradict the existing theo-
retical proposals. In order to study this paradox, we show the
heights of the first five Shapiro steps Sn versus the increase
in the radiation power p at two transmission probabilities,
M = 0 [Fig. 6(a)] and M = 1.2� [Fig. 6(b)]. As is clearly
shown, the odd steps are only suppressed at Mz = 1.2�,
which corresponds to a fractional transmission probability but
different from that in the text, while at Mz = 0, or equally
D = 1, all Shapiro steps are visible. This result generally
agrees with the theoretical works but also contradicts the
experiment data. The reason may be that the time-reversal
symmetry in the experiment is implicitly broken by some other
effects such as puddles [28]. However, the exact mechanism
still needs to be studied further.

FIG. 6. Heights of the first five Shapiro steps Sn versus the
radiation power p at two transmission probabilities, (a) Mz = 0 and
(b) Mz = 1.2�. Here, the frequency is taken as ω = 0.02, and the
other parameters are the same as in Fig. 4.
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