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Tuning topological phase transitions in hexagonal photonic lattices made of triangular rods
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In this paper we study topological phases in a two-dimensional photonic crystal with broken time (T ) and parity
(P) symmetries by performing calculations of band structures, Berry curvatures, Chern numbers, edge states,
and also numerical simulations of light propagation in the edge modes. Specifically, we consider a hexagonal
lattice consisting of triangular gyromagnetic rods. Here the gyromagnetic material breaks T symmetry while
the triangular rods break P symmetry. Interestingly, we find that the crystal could host quantum anomalous
Hall (QAH) phases with different gap Chern numbers (Cg) including |Cg| > 1 as well as quantum valley Hall
(QVH) phases with contrasting valley Chern numbers (Cv), depending on the orientation of the triangular rods.
Furthermore, phase transitions among these topological phases, such as from QAH to QVH and vice versa, can
be engineered by a simple rotation of the rods. Our band theoretical analyses reveal that the Dirac nodes at the
K and K ′ valleys in the momentum space are produced and protected by the mirror symmetry (my) instead
of the P symmetry, and they become gapped when either T or my symmetry is broken, resulting in a QAH
or QVH phase, respectively. Moreover, a high Chern number (Cg = −2) QAH phase is generated by gapping
triply degenerate nodal points rather than pairs of Dirac points by breaking T symmetry. Our proposed photonic
crystal thus provides a platform for investigating intriguing topological phenomena which may be challenging
to realize in electronic systems, and also has promising potentials for device applications in photonics such as
reflection-free one-way waveguides and topological photonic circuits.
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I. INTRODUCTION

In recent years, electronic and photonic topological insu-
lators [1,2] have attracted enormous attention because these
systems exhibit fascinating wave transport properties. In par-
ticular, the gapless edge states on the surface or at the interface
between these topological insulators are unidirectional and
robust against scattering from disorder due to topologically
nontrivial properties of their bulk band structures. The elec-
tronic quantum anomalous Hall (QAH) phase, first proposed
by Haldane [3], is a two-dimensional (2D) bulk ferrromagnetic
insulator (Chern insulator) with a nonzero topological invariant
called Chern number in the presence of spin-orbit coupling
(SOC) but in the absence of applied magnetic fields [4]. Its
associated chiral edge states carry dissipationless unidirec-
tional electric current. Excitingly, this remarkable QAH phase
was recently observed in ferromagnetic topological insulator
films [5]. Moreover, Haldane and Raghu recently proposed
the optical analogs of this intriguing QAH phase in photonic
crystals made of time-reversal (T ) symmetry broken materials
[6,7]. This photonic QAH phase has gapless edge states within
each topologically nontrivial bulk band gap, and the number
of the edge states is determined by the gap Chern number
[7]. Such topologically protected edge states are immune to
backscattering and are therefore robust against disorder [8,9].
Subsequently, the photonic topological phases in a number of
gyromagnetic photonic crystals with broken T symmetry were
proposed [8,10–12] and observed [9,13].
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When designing a photonic Chern insulator, one usually
starts with a lattice with both T symmetry and inversion
(P) symmetry where doubly degenerate Dirac points may
exist at some high symmetry points [7]. In particular, in a
2D lattice with both P and T symmetries, the stability of
the Dirac points is guaranteed by the Wigner–von Neumann
theorem. Furthermore, one can find the double degeneracies by
varying just one or two system parameters. When T symmetry
is broken, the Dirac points become gapped, resulting in a
QAH phase. Nevertheless, the topological phases in broken P
symmetry Chern insulators have received much less attention,
where different mechanisms would be needed [14,15].

Furthermore, the majority of the predicted or realized
photonic Chern insulators so far have been limited to the Chern
number |C| = 1 [8], although in principle the Chern number
can be any integer values. Consequently, having systems with
|C| > 1 is of fundamental interest in studying topological
phases. Systems with higher Chern numbers also have practical
values. For example, they are useful for designing novel
topological devices such as one-way photonic circuits [11,12].
Indeed, it has been recently proposed [10] and demonstrated
[13] that photonic Chern insulators of large Chern numbers
can be realized in 2D square and hexagonal lattices made of
cylindrical rods by tuning the radius of the rods. It would
be interesting to find other ways to realize photonic Chern
insulators with |C| > 1.

Interestingly, recent progress in understanding the novel
properties of electronic 2D materials such as graphene and
MoS2 monolayer has led to the discovery of a T invariant
topological phase called quantum valley Hall (QVH) state
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FIG. 1. (a) Schematic diagram of the hexagonal lattice of trian-
gular gyromagnetic rods in air considered in the present paper. Here a

is the lattice constant. (b) Enlarged unit cell containing one triangular
rod of ε = 13, μ = 1, κ = 0.4, r1 = 0.3075a, and r2 = 0.0615a. The
first Brillouin zone of the hexagonal lattice with high symmetry points
labeled.

in broken P symmetry materials [16–18]. In these QVH
materials, the energy extrema (or valleys) of the band structure
at the K and K ′ points in their hexagonal Brillouin zone have
contrasting properties such as nonzero Berry curvatures of
opposite signs due to the absence of P symmetry but presence
of T invariance, although they are energetically degenerate
[16–20]. This broken valley symmetry results in a number of in-
teresting valley-contrasting phenomena and also a totally new
concept of electronics known as valleytronics [17]. Recently,
this QVH effect has also been realized in all-dielectric photonic
crystals [19,20] and bianisotropic metamaterials [21], and the
valley-protected reflection-free propagation of light in the edge
modes of these materials has been demonstrated. This would
lead to the fascinating prospect of optical communication
devices based on the robust flow of light.

In this paper we explore possible topological phases in a 2D
photonic crystal with brokenT andP symmetries. We consider
a hexagonal lattice made of triangular gyromagnetic rods, as
illustrated in Fig. 1(a). Here the gyromagnetic material breaks
T symmetry while the triangular rods break P symmetry.
Interestingly, we find that the crystal hosts QAH phases with
different gap Chern numbers including |C| > 1 and QVH
phases with contrasting valley Chern numbers, depending on
the orientation [i.e., the rotation angle ϕ in Fig. 1(b)] of the
triangular rods. Furthermore, phase transitions among these

topological phases, such as from QAH to QVH and vice
versa, can be engineered by a simple rotation of angle ϕ. Our
band theoretical analyses reveal that the Dirac points at the
K and K ′ valleys are produced and protected by the mirror
symmetry (my) instead of the P symmetry, and they become
topologically gapped when eitherT or my symmetry is broken,
resulting in a QAH or QVH phase, respectively. Moreover,
the high Chern number (Cg = −2) QAH phase results from
gapping triply degenerate nodal points rather than pairs of
Dirac points [10] by breaking T symmetry. Thus, our proposed
photonic crystal offers a platform for investigating a number of
topological phenomena which may be challenging to realize in
electronic systems, and also has promising device applications
in photonics.

The rest of this paper is organized as follows. First, we
introduce the proposed structure and also describe the compu-
tational methods in the next section. Then the main results are
presented in Sec. III, including the rich topological gap map on
the frequency-rod angle plane in Sec. III A, the representative
bulk band structures in Sec. III B, the calculated Berry curva-
tures in Sec. III C, the gapless edge states in Sec. III D, and
reflection immune one-way waveguides in Sec. III E as well as
valley Hall edge states and light propagation in Z-shape bends
in Sec. III F. Finally, the conclusions drawn from this work are
given in Sec. IV.

II. STRUCTURE AND COMPUTATIONAL METHOD

Here we consider a 2D photonic crystal consisting of
triangular gyromagnetic rods arranged in a hexagonal lattice
filled with air, as shown in Fig. 1(a). The T symmetry is broken
by the gyromagnetic rods used. The permeability tensor of the
gyromagnetic material in SI units can be expressed as

μ = μ0

⎛
⎝ μr iκ 0

−iκ μr 0
0 0 1

⎞
⎠. (1)

Following Ref. [8] we neglect the small loss and dispersion,
and thus set the material parameters εr = 13, μr = 1, and κ =
0.4. Note that these parameter values are close to such real
gyromagnetic materials as yttrium-iron-garnet [9,13], which
has μr = 0.9 and κ = 0.4 at 13 GHz with 0.1 T static magnetic
field [22].

The triangular rods are determined by two geometric pa-
rameters r1 and r2, as indicated in Fig. 1(b). In our numerical
simulations, we set r1 = 0.3075a and r2 = 0.0615a where
a is the lattice constant. Nevertheless, our conclusions will
not be affected by this particular choice of the parameters.
The structure will be completely fixed only when the angle
(ϕ) between one of the arms and the x axis is specified [see
Fig. 1(b)], and this angle is the principal parameter that one
tunes to manipulate the properties of the structure, as will
be presented in the next section. The structure has the C3v

symmetry with three threefold C3 rotations and three mirror
(mv) reflections, for ϕ = n × 30◦ and n = 0,1,2,3,4,5. The
mirror symmetries contain my (reflection plane normal to ŷ)
if n = 0,2,4 but include mx (reflection plane normal to x̂)
if n = 1,3,5. The Brillouin zone (BZ) is also hexagonal, as
shown in Fig. 1(c). However, the irreducible BZ wedge (IBZW)
depends on angle ϕ. For example, when ϕ = 0◦, the IBZW
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FIG. 2. Topological band gap map on the plane of rotation angle
ϕ and frequency ω. Rotation angle ϕ is defined in Fig. 1(b). Each
band gap region is labeled with a color representing its gap Chern
number Cg and valley Chern number Cv . Note that in the third band
gap region, as ϕ increases, a series of topological phase transitions
occur from Cg = −2 (Cv = 0) to Cg = 0 (Cv = 1) at ϕ = ∼10◦, back
to Cg = −2 (Cv = 0) at ϕ = ∼50◦, then to Cg = 0 (Cv = −1) at
ϕ = ∼70◦, and finally back to Cg = −2 (Cv = 0) at ϕ = ∼110◦.

is �KM� since K and K ′ are equivalent. In contrast, when
ϕ = 30◦, the IBZW is �KMK ′� because K and K ′ are no
longer equivalent [see Fig. 1(c)].

To calculate the band structure of the proposed structure,
we solve the Maxwell’s wave equation

∇ × [μ−1(r)∇ × E(r)] = ε(r)ω2E, (2)

where μ(r) and ε(r) are the permeability and permittivity
tensors, respectively, and ω is the eigenfrequency. We use
the finite-element method implemented in the commercial
software COMSOL Multiphysics ® [23]. To examine the
topological nature of a band gap in the band structure, we also
calculate the band Chern number

Cn = 1

2π

∫

BZ

�n(k) · d2k, (3)

where the integral is over the BZ and �n(k) is the Berry
curvature of the nth band defined as [16]

�n(k) = ∇k × An(k), (4)

where An(k) = 〈Enk|i∇k|Enk〉 is the Berry connection and
Enk is the nth band energy. Here we adopt the efficient
numerical algorithm reported in Ref. [24] to calculate the band
Chern numbers. Note that the Berry curvature �n and the
Chern number Cn are invariant under gauge transformation,
while An is gauge dependent. Consequently, one advantage of
the algorithm is that we can obtain Cn via Eq. (3) without any
gauge-fixing process. Thanks to the efficiency of the algorithm
[24], we can obtain the accurate Cn even using a moderate
dense k-point mesh, and this enables us to perform massive
calculations for searching candidate structures or plotting
topological gap map such as Fig. 2 [13].

The integer Chern number Cn is the topological invariant
of the nth energy band. The sum of the Chern numbers of all
the bands below a band gap is called the gap Chern number
Cg [10,25]. According to the bulk-edge correspondence [25],
the number of gapless edge states between two topologically
distinct materials equals the gap Chern number difference
across the interface.

III. RESULTS AND DISCUSSION

A. Topological gap map

To have an overall picture of the topological phases and
phase transitions in the proposed triangular photonic crystal,
we construct a topological gap map in the plane of rotation
angle ϕ and frequency ω, as displayed in Fig. 2. Since we find
that the period of the rotation angle is 120◦, we calculate the
band gaps as a function of the rotation angle from ϕ = 0◦ to
ϕ = 120◦ with the angle step 	ϕ = 1◦.

Figure 2 shows that there are three band gap regions in the
frequency range from 0 to 1 2πc/a. The topological nature of a
band gap in a broken T symmetry system can be characterized
by the gap Chern number (Cg), which is the sum of the Chern
numbers of all the bands below the band gap, as mentioned
above in Sec. II. Therefore, the first band gap near 0.5 2πc/a

is topologically trivial because its gap Chern number Cg = 0.
The second band gap just below 0.8 2πc/a is topologically
nontrivial and its gap Chern number Cg = −1. Moreover, the
band gap is rather large, being around 7% (0.056 2πc/a).
Interestingly, when rotational angle ϕ varies from 0◦ to 120◦,
the third band gap experiences a series of topology changes
(see Fig. 2). For example, as ϕ increases, the topological
phase changes from Cg = −2 (Cv = 0) to Cg = 0 (Cv = 1) at
ϕ = ∼10◦, and from Cg = −2 (Cv = 0) to Cg = 0 (Cv = −1)
at ϕ = ∼70◦. Here Cv is the valley Chern number [16] of the
gap (see Sec. III D below). The gap and valley Chern numbers
in the vicinity of ϕ = 0◦,60◦,120◦ are Cg = −2 and Cv = 0,
while they are Cg = 0 and Cv = 1 (Cv = −1) in the region
centered at ϕ = 30◦ (ϕ = 90◦). Figure 2 thus shows that the
angle period is 120◦ rather than 60◦. Although the system has
the same Chern number of 0 forϕ = 30◦ andϕ = 90◦, its valley
Chern numbers at these ϕ values have opposite signs. Clearly,
such a topological gap map provides us useful information
for, e.g., designing photonic topological insulators and hence
reflection-free one-way waveguides as well as for engineering
topological phase transitions. Characteristics of the band gaps
for the ϕ = 0◦ and ϕ = 30◦ cases are listed in Table I.

B. Bulk band structures

To understand the formation mechanisms of the topological
gaps and also other interesting properties of the triangular
photonic crystal, we present the calculated band structures
for the ϕ = 0◦ and ϕ = 30◦ cases in Figs. 3(a) and 3(b),
respectively. The T M mode (i.e., E = Ezẑ) is considered
here. To see how the band structure evolves when dielectric
triangular rods are replaced by gyromagnetic rods, both band
structures of κ = 0.4 and κ = 0 are presented. Adding a
nonzero off-diagonal element (κ) to the permeability tensor
[Eq. (1)] breaks T symmetry.
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TABLE I. Calculated band gap (	ωg), relative band gap
(	ωg/ωm), gap Chern number (Cg), valley Chern number (Cv), and
number of one-way edge states (Ng) for the ϕ = 0◦ and ϕ = 30◦ cases.
Here 	ωg = ω2 − ω1, gap center ωm = (ω1 + ω2)/2, where ω1 (ω2)
is the highest (lowest) frequency of the lower (upper) band of the
gap. As a measure of unidirectionality, the edge state intensity ratio
(I−/I+) of wave propagation along the interface between the crystal
and the metal wall (see Sec. III E) is also listed. Here I− and I+ are
the averaged intensities at x = −20a and x = 6a, respectively.

Structure ϕ = 0◦ ϕ = 30◦

Gap number 1st 2nd 3rd 1st 2nd 3rd

	ωg (2πc/a) 0.16 0.056 0.021 0.16 0.041 0.018
	ωg/ωm (%) 36 7.3 2.3 35 5.2 2.0
Cg 0 −1 −2 0 −1 0
Cv 0 0 0 0 0 1
Ng 0 1 2 0 1 0
I−/I+ (103) – 1400 6 – 23 –

Several observations can be drawn from an examination
of Fig. 3. First, when κ = 0 and hence the system has the
T symmetry, the energy bands (red dotted lines) along the
�KM� and �K ′M� lines are identical [see Figs. 3(a) and
3(b)]. This is because the T symmetry ensures ω(−k) =
ω(k) [26]. Second, when ϕ = 0◦ and κ = 0, there are doubly
degenerate points (i.e., the Dirac points) at the K and K ′
points [see red dotted lines near ω = 0.6 2πc/a in Fig. 3(a)].
In contrast, the ϕ = 30◦ case has no such degenerate points
[see red dotted lines in Fig. 3(b)]. This results from the fact
that the ϕ = 0◦ geometry has three mirror my reflections (i.e.,
three vertical reflection planes along KK ′ direction) while the
ϕ = 30◦ structure lacks such mirror my symmetry. In other
words, the Dirac points at K and K ′ points in the ϕ = 0◦
structure occur because of the presence of both T and my

symmetries. Third, Fig. 3 shows that when κ = 0, there are
doubly degenerate points (i.e., massive Dirac nodes) (see red
dotted lines close to ω = 0.75 2πc/a) at the center of the

BZ (the � point). When the κ becomes nonzero and hence T
symmetry is broken, the double degeneracies are lifted and the
Dirac nodes become gapped. When these Dirac nodes become
gapped due to broken T symmetry, the two bands would
exchange 2π Berry phase (see Fig. 4), giving rise to a nontrivial
gap. Finally, Fig. 3(a) shows that there are triply degenerate
nodal points at the K and K ′ points near ω = 0.92 2πc/a.
These rare triply degenerate nodal points are caused by the
accidental degeneracy of a doubly degenerate Dirac point and a
nondegenerate band. Fascinatingly, it was shown that photonic
crystals with a triply degenerate nodal point at the � point may
be used to realize zero-refractive-index metamaterials [27].
These interesting threefold nodal points were recently found
in topological phonic crystals [28]. More recently, they were
also predicted in several electronic topological metals [29,30]
and subsequently observed in topological semimetal MoP
[31]. All these indicate that the triply degenerate nodal points
are attracting increasing attention in the field of electronic,
phononic, and photonic topological materials.

The topological nature of a band gap in a broken T -
symmetry structure can be characterized by the gap Chern
number (Cg), as mentioned before in Sec. II. The calculated
band Chern numbers displayed in Fig. 3 indicate that the first
band gap with Cg = 0 is topologically trivial in both ϕ = 0◦
and ϕ = 30◦ cases. In contrast, the second band gap is a QAH
phase with Cg = −1 [see Figs. 3(a) and 3(b)]. Note that this
band gap results from the lifting of the doubly degenerate Dirac
nodes at the � point by breaking the T symmetry, which exist
in both ϕ = 0◦ and ϕ = 30◦ cases. Remarkably, in the ϕ = 0◦
case the third band gap is a high Chern number QAH phase with
Cg = −2 [Fig. 3(a)]. This interesting band gap results from
gapping the rare triply degenerate nodal points at the K and K ′
points by broken T symmetry (κ = 0.4). Thus, the gap Chern
number (|Cg|) is larger than 1. Interestingly, this large Chern
number gap would allow us to create multimode one-way edge
states and hence waveguides [10]. In the ϕ = 30◦ case, on
the other hand, the band gap is a QVH phase with valley
Chern number Cv = 1 [Fig. 3(b)], which will be discussed
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FIG. 3. Band structures of the photonic crystal with (a) ϕ = 0◦ and (b) ϕ = 30◦. Both T -invariant (κ = 0, red dotted lines) and T -symmetry
broken (κ = 0.4, blue solid lines) band structures are displayed. In the κ = 0.4 case, the band Chern numbers are labeled by integers. The black
arrows and numbers illustrate how Chern number exchange between two adjacent bands. Note that the second band gap (blue region) is a QAH
phase with the gap Chern number Cg = −1. Interestingly, the third band gap in (a) is a QAH phase with Cg = −2 (yellow region), while in
(b) is a QVH phase with the valley Chern number Cv = 1 (pink region).
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FIG. 4. Gap Berry curvatures �g [(a) and (b)] and band Berry curvatures �n [(c) and (d)], respectively, for the photonic crystal with
ϕ = 0◦ [(a) and (c)] and ϕ = 30◦ [(b) and (d)]. For clarity, sgn(�g)|�g|1/2 for the third gap in (a) and (b) has been shifted upwards by 5a, and
sgn(�n)|�n|1/2 in (c) and (d) has been shifted upwards by 5a, 10a, and 15a for bands n = 2, 3, and 4, respectively. The black dotted lines
indicate the zero value positions.

in the next subsection. Note that the third gap already occurs
when κ = 0 and thus is not caused by broken T symmetry
[Fig. 3(b)]. Instead, it results from broken my mirror symmetry.
Nonetheless, when κ becomes nonzero (e.g., κ = 0.4), this gap
at the K point becomes larger. Interestingly, in contrast, this
gap at the K ′ point becomes smaller when κ becomes nonzero.

Lastly, Fig. 3 shows that when κ becomes nonzero, there
is no direct overlap between bands 2 and 3 in the entire BZ.
Note that there is a small gap between bands 2 and 3 at K ′ in
Fig. 3(b). In other words, there is a continuous gap separating
bands 2 and 3 throughout the BZ and hence bands 2 and 3
have a well-defined band Chern number. Furthermore, this gap
is topologically nontrivial since it has a nonzero gap Chern
number of +1. Nonetheless, this gap is not marked on the gap
map in Fig. 2 simply because it is not a complete gap due to
the indirect overlap between bands 2 and 3.

C. Berry curvatures

In order to unravel how the Cn numbers exchange between
neighboring bands as well as the resultant Cg arises, we
calculate the band Berry curvatures �n(k) for all the four bands
below the third band gap (see Fig. 3) and plot these Berry
curvatures for ϕ = 0◦ and ϕ = 30◦ in Fig. 4. Note that in Fig. 4
we plot sgn(�n,g)|�n,g|1/2 in order to better reveal the variation
of the Berry curvature with k. Here we follow Ref. [32] where
the band-decomposed spin Berry curvatures helped to reveal
the origin of the gigantic spin Hall conductivity in platinum
metal. It turns out that gapping the degenerate points at K and
� cause quite different Berry curvatures. We also evaluate the
gap Berry curvatures �g(k) given by

�g(k) =
∑

n

�n(k), (5)

where the summation is over all the band Berry curvature�n(k)
below the gap. An integration of �g(k) over the BZ gives rise
to the gap Chern number Cg [10]. The calculated �g(k) for the
second and third gaps for ϕ = 0◦ and ϕ = 30◦ are displayed
as a function of k in Fig. 4. The contour plots of �g(k) on

the kz = 0 plane for the third gap for ϕ = 0◦ and ϕ = 30◦ are
given in Fig. 5.

Figure 4(a) shows that for bands 2–4, all the band Berry
curvatures �n peak at K and K ′. Furthermore, the signs of the
peaks for bands 2 and 3 are opposite. As mentioned before,
with the T symmetry, the second and third bands touch at K

and K ′ and thus form the massless Dirac points [Fig. 3(a)].
However, when the T symmetry is broken, these Dirac points
become gapped and the second and third bands exchange ±2π

Berry phase [Berry phase φn = 2πCn given by Eq. (3)] and
hence Cn = ±1. This gives rise to the peaks with opposite
signs in �n at these Dirac points. Interestingly, if both bands
are below the gap of interest, their contributions to the gap
Chern number cancel each other and thus become diminished.
Therefore, in the present case, the main contribution to the
gap Berry curvature and hence the gap Chern number of the
third gap comes mainly from the fourth band which has the
pronounced peaks at K and K ′ [Fig. 4(a)]. Interestingly, in the
case of ϕ = 30◦, bands 2 and 3 have a large peak at K ′ but a
small peak at K . Nevertheless, these two peaks with opposite
signs cancel each other and hence the dominant contribution
to the gap Berry curvature comes predominantly from band 4.
However, the band Berry curvatures of band 4 in the regions
centered at K and K ′ have opposite signs [see Figs. 4(b) and
5(b)] and consequently, the gap Chern number of the third gap
is zero. In contrast, Fig. 4 shows that the �g of the second gap
(Cg = −1) varies more smoothly over the BZ, and this could
be attributed to the much larger gap opened at the massive
Dirac point on the � point. Finally, this �g has a small peak at
M instead (Fig. 4).

Figures 3 and 4 can also help us to better understand how
Cn exchange at the degenerate points when the T symmetry is
broken. For instance, Fig. 4(c) shows that both �2 and �3 have
a peak at the K and K ′, but with opposite signs. This suggests
that band 2 and band 3 exchange ±1/2 Chern number at K ′ and
K , as illustrated by the black arrows at K ′ and K in Fig. 3(a).
Likewise, �3 and �4 have similar behaviors near the �. Here
the exchanged Chern numbers have opposite signs and this
is because gapping the Dirac point at � would result in an
exchange of ±1 Chern numbers. Indeed, C3 = −1 − 1 = −2
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FIG. 5. Contour plots of the third gap Berry curvature �g(k) of
the triangular photonic crystal with (a) ϕ = 0◦ and κ = 0.4 (Cg =
−2), (b) ϕ = 30◦ and κ = 0.4 (Cg = 0), and (c) ϕ = 30◦ and κ = 0
(Cg = 0). The values on the color bars are in units of a2, where a is
the lattice constant.

in which band 3 receives −1 from both band 2 and band 4.
Interestingly, we find that after gapping the triple degeneracy,
the fourth band receives −1 Chern number from the fifth and
sixth bands at both K ′ and K [see Fig. 3(a)] such that C4 =
1 − 1 − 1 = −1 where +1 Chern number comes from band 3,
being consistent with the negative peaks seen at the K and K ′
in Fig. 4(a).

Finally, let us examine the calculated gap Berry curvature
�g(k) over the entire 2D BZ. Figure 5(a) shows clearly
that in the ϕ = 0◦ case, the �g(k) of the third gap has six
pronounced negative peaks, respectively, at six K and K ′

points, although it is rather flat with a small negative value
of |�g(k)| < 0.5a2 over the rest of the BZ. As mentioned
above, these six peaks are caused by the lifting of the triply
degenerate nodal points at both K and K ′ points [see Fig. 3(a)]
due to the replacement of the dielectric rods (κ = 0) by the
gyromagnetic rods (κ = 0.4) which breaks the T symmetry.
These six peaks are identical because the �g(k) distribution
has the C6v symmetry. Therefore, the integration of the �g(k)
gives rise to a nonzero gap Chern number Cg of −2. Thus, the
third gap is a high Chern number QAH phase.

Interestingly, Figs. 5(b) and 5(c) reveal that the three
negative peaks at the three K points in the ϕ = 0◦ case become
three large positive peaks in the ϕ = 30◦ case, caused by a
simple rotation of angle ϕ from 0◦ to 30◦. The �g(k) in the
rest of the BZ is almost zero. The �g(k) distribution now has
the C3v symmetry. Consequently, the contribution from the
three positive peaks at the three K points to the Cg cancels
that from the three negative peaks at the K ′ points, resulting
in Cg = 0. Interestingly, this unique �g(k) pattern is identical
to that in the electronic band structure of MoS2 monolayer
[18,33], and thus is the signature of the QVH phase with
nonzero valley Chern number of Cv = +1 [19,20]. Here Cv

is defined as the difference between two valley indices CK and
CK ′

, i.e., Cv = CK − CK ′
[19,20]. The valley index CK (CK ′

)
can be obtained by integrating the gap Berry curvature �g(k)
over half of the IBZW in the vicinity of the K (K ′) point. In
the ϕ = 0◦ case, clearly this would give rise to CK = +1/2
and CK ′ = −1/2 [see Fig. 5(c)], thus leading to Cv = +1. A
further rotation of ϕ by another 30◦ would make the system
return to the case of ϕ = 0◦, i.e., the cases of ϕ = 60◦ and
ϕ = 0◦ have the same �g(k) distribution. [Thus, the �g(k) of
ϕ = 60◦ is not shown here.] Another rotation of ϕ by 30◦ to
ϕ = 90◦ would lead to a �g(k) pattern that is identical to that
of the ϕ = 30◦ case except a swap of K and K ′ points. [Thus,
the �g(k) of ϕ = 90◦ is not shown here.] However, the two
valley indices would swap signs, thereby resulting in a valley
Chern number of Cv = −1. This shows that the properties of
the system as a function of ϕ has a period of 120◦.

D. Chiral edge states

The principle of bulk-edge correspondence guarantees that
gapless one-way (chiral) edge states occur at the interface
between two topologically different bulk insulators and the
number of these edge states equals to the difference in the
gap Chern numbers of the two insulators (see, e.g., [2]). To
further study these fascinating edge states, we calculate the
edge band diagram, i.e., frequency dispersions ω(k‖) for the
wave vector k‖ along the edge of the photonic crystal for
both ϕ = 0◦ and ϕ = 30◦, as displayed in Figs. 6(a) and 6(b),
respectively. In this calculation, a supercell consisting of one
unit cell along the interfacial x direction [also the propagation
direction (k‖ = x̂kx)] and 20 unit cells of ϕ = 0◦ [Fig. 6(a)] and
ϕ = 30◦ [Fig. 6(a)] photonic crystals along KK ′ direction with
both ends terminated by a perfect electric conductor (PEC).
Here the PEC is adopted to mimic a metal in the microwave
region [8,10].

Figure 6 shows that apart from bulk projected bands (blue
curves), there are one gapless edge band (red lines) in the
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FIG. 6. Edge band diagram of the gyromagnetic photonic crystal
ribbon of (a) ϕ = 0◦ and (b) ϕ = 30◦ with both edges terminated
by a perfect electric conductor. The red (green) lines represent upper
(lower) edge bands, while the blue curves denote bulk projected bands.
The brown lines at the top of bulk band 1 denote doubly degenerate
upper and lower edge bands. The field profiles of the edge states at the
cross points of the dotted horizontal lines and edge bands and marked
as A,B,C,D, are shown in Fig. 7. The slopes of gapless edge bands
(i.e., their group velocities ∂ω/∂k) indicate the wave propagation
directions. One one-way edge band for each edge is observed in the
second gap while (a) two and (b) zero one-way edge band at each edge
exist in the third gap. These agree well with the calculated Cg shown in
Fig. 3.

second gap region, which agree well with calculated Cg = −1
shown in Fig. 3. Similarly, in Fig. 6(a) we can see two edge
bands in the third gap (Cg = −2). Note that the slopes of the
edge bands indicate the direction of propagation (i.e., their
group velocities ∂ω/∂k). In Fig. 6 the negative slopes of
edge bands suggest that the waves would propagate towards
the −x̂ direction. On the other hand, as shown in Fig. 6(b),
no gapless one-way edge band is observed in the third gap,
being consistent with Cg = 0 in Fig. 3. All these observations
show that bulk-edge correspondence is satisfied. Moreover, the
|(Ez)| field profiles of the edge states labeled as A, B, C, and D

are shown in Fig. 7. Clearly the electric fields of edge states C

and D from the second band gap are more confined to the edge
than that of the A and B states in the third gap (Fig. 7), simply
because the second band gap is wider (Table I). Finally, we
can also see one chiral edge band in the incomplete gap near
0.62 πc/a in Fig. 6, as can be expected from its nonzero gap
Chern number of +1 shown in Fig. 3.

FIG. 7. Electric field profiles (|Ez|) of the edge states labeled A,
B, C, and D in Fig. 6. The color bar is in units of V/m. In each panel,
the orange line on the top represents the metallic wall at the edge of
the metastructure.

E. Reflection immune one-way waveguides

In this subsection we should demonstrate that topologically
protected one-way edge modes propagate at the interface of
a Chern photonic crystal with another topologically different
material by performing numerical simulations of electromag-
netic (EM) wave propagations along the interface. We will also
access their application potentials such as reflection-free one-
way waveguides. Both the second and third topological gaps of
the ϕ = 0◦ photonic crystal [see Fig. 3(a)] will be considered.
Let us first study the interface between two topological distinct
photonic crystals, namely, ϕ = 0◦ (Cg = −2) and ϕ = 30◦
(Cg = 0), with the source frequency in the third band gap.
As illustrated in Fig. 8(a), the simulation system used consists
of the ϕ = 0◦ crystal (lower region) and the ϕ = 30◦ crystal
(Cg = 0) (upper region). A point source, which radiates in all
directions with frequency ω = 0.92 2πc/a in the third gap, is
placed at the origin (green star) in the interface. Moreover, as an
obstacle to the EM wave propagation, a metallic plate (orange
line) of thickness 0.1a and width 4a is inserted at−11a with the
plate surface tilted ϕ = 30◦ away from y axis [Fig. 8(a)]. The
Re(Ez) field distribution displayed in Fig. 8(a) demonstrates
first that the EM wave cannot enter the upper and lower regions
because the operating frequency is in the band gap, and second
that it cannot go right (the x̂ direction) because it is forbidden
by the topological nature of the edge state. For example, the
ratio (I−/I+) of the light intensity at −17a to that at 6a is
∼3.8 × 103. Such a significant difference is the signature of
unidirectionality. Therefore, the EM wave effectively can only
propagate toward the −x̂ direction. Furthermore, as expected,
the EM wave can circumvent the metallic plate and continue
traveling towards the −x̂ without loss [see the calculated
intensity as a function of the distance from the source in
Fig. 8(b)]. In particular, the ratio of the transmitted intensities
at −17a to that at −7a is ∼0.990, indicating that the scattering
due to the obstacle (the metal plate) is minimal.

045422-7



HSUN-CHI CHAN AND GUANG-YU GUO PHYSICAL REVIEW B 97, 045422 (2018)

FIG. 8. Numerical simulation of wave propagation in an inter-
facial state between two topologically distinct photonic crystals of
ϕ = 0◦ (Cg = −2) and ϕ = 30◦ (Cg = 0) with a point source of
frequency ω = 0.92 2πc/a within the third topological gap (see
Fig. 3). (a) Calculated Re(Ez) distribution. The values on the color
bar are in units of V/m. The upper region is the ϕ = 30◦ photonic
crystal and the lower region is the ϕ = 0◦ photonic crystal. The green
star denotes the point source. The orange line at −11a represents a
metallic plate of thickness 0.1a and width 4a with the plate surface
tilted ϕ = 30◦ away from y axis. (b) Intensity (I ) as a function of
the distance from the point source. Here I is defined as the integrated
intensity over the cross section divided by the area of the cross section.

For the application as a waveguide, the surface of a photonic
topological insulator is usually covered with a metal (e.g.,
copper) wall. Therefore, we also perform similar simulations
for the interface between the ϕ = 0◦ photonic crystal and
a metallic wall which is topologically trivial. In principle,
the larger the topological gap, the better the localization of
the EM wave in the interfacial region. As a result, from the
viewpoint of the application of the edge modes as one-way
waveguides, it would be advantageous to use a larger band gap.
Therefore, we consider the ϕ = 0◦ photonic crystal with the
source frequency being ω = 0.92 2πc/a within the third gap
(Cg = −2, Eg = 2.3 %) and also ω = 0.78 2πc/a within the
second gap (Cg = −1, Eg = 7.3 %). The calculated Re(Ez)
field and also the transmission intensity are displayed in Figs. 9
and 10, respectively. Indeed, Fig. 10(a) shows that the Re(Ez)
field is more confined to the interfacial region compared to
that shown in Fig. 9. Moreover, the unidirectionality of the
edge mode in the second gap is much better than that of the
third gap. This is reflected in the fact that the ratio (I−/I+) of
the wave intensity at −17a to that at 6a in Fig. 10 is nearly
three orders of magnitude higher than in Fig. 9 (see Table I).
Interestingly, Fig. 2 shows that the topological nature of the
second gap does not depend on the rotation angle ϕ. As a
result, the reflection-free one-way waveguiding would be very
robust against the disorders such as the imperfect alignments
of the triangular rods in the photonic crystal introduced during
the waveguide fabrication processes.

The main properties of the band gaps such as the gap sizes,
the gap Chern numbers (Cg), the numbers of edge states (Ng),
and on-and-off edge intensity ratio (I−/I+) are listed in Table I.

FIG. 9. Numerical simulation of wave propagation in an inter-
facial state between the photonic crystal of ϕ = 0◦ (Cg = −2) and a
metallic wall with a point source of frequency ω = 0.92 2πc/a within
the third gap [see Fig. 3(a)]. (a) Calculated Re(Ez) distribution. The
values on the color bar are in units of V/m. The lower region is the
ϕ = 0◦ photonic crystal and the metallic wall (orange line) is on the
top of the photonic crystal. The green star denotes the point source.
The orange line at −11a represents a metallic plate of thickness 0.1a

and width 2a with the plate surface tilted ϕ = 30◦ away from y axis.
(b) Intensity (I ) as a function of the distance from the point source.
Here I is defined as the integrated intensity over the cross section
divided by the area of the cross section.

First, Table I shows that the second gap sizes (Cg = −1) in both
ϕ = 0◦ and ϕ = 30◦ cases are large, being comparable to some
well-known designs using circular rods [8,10]. Second, that
|Cg| = Ng confirms the bulk-edge correspondence, as men-
tioned before. Lastly, the large magnitudes of I−/I+ especially
of ∼106 for the second gap indicates that the waveguides made
of the proposed photonic crystals would have a very high
unidirectionality. This unidirectionality also manifests itself
as a sharp drop in the intensity at the right-hand side of the
point source towards the +x̂ direction in Figs. 8–10(b).

F. Valley Hall edge states and light propagation in
a Z-shape bend

The above examination of the �g(k) of the third gap over
the BZ in Sec. III C reveals the interesting QVH phase in both
ϕ = 30◦ (valley Chern number Cv = +1) and ϕ = 90◦ (valley
Chern number Cv = −1) cases. The occurrence of this QVH
phase is caused by a rotation of the triangular rods by 30◦
from ϕ = 0◦ to ϕ = 30◦. In the ϕ = 0◦ case where both the
T symmetry and the mirror symmetry my exist, there are six
Dirac cones of bands 4–6 [Fig. 3(a), red curves] at six K and
K ′ points, respectively. When the system is transformed to
the ϕ = 30◦ case, the mirror symmetry my is broken and the
Dirac points become gapped [Fig. 3(b), red curves], leading
to nonzero Berry curvature with the odd symmetry [16], i.e.,
�g(−k) = −�g(k) [see also Fig. 5(c)]. An integration of
�g(k) over the BZ is zero, as required by the T symmetry.
As mentioned before, the ϕ = 90◦ case has the same �g(k)
pattern as that of the ϕ = 30◦ case except a swap of K and K ′
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FIG. 10. Numerical simulation of wave propagation in an inter-
facial state between the photonic crystal of ϕ = 0◦ (Cg = −1) and a
metallic wall with a point source of frequency ω = 0.78 2πc/a within
the second gap [see Fig. 3(a)]. (a) Calculated Re(Ez) distribution. The
values on the color bar are in units of V/m. The lower region is the
ϕ = 0◦ photonic crystal and the metallic wall (orange line) is on the
top of the photonic crystal. The green star denotes the point source.
The orange line at −11a represents a metallic plate of thickness 0.1a

and width 2a with the plate surface tilted ϕ = 30◦ away from y axis.
(b) Intensity (I ) as a function of the distance from the point source.
Here I is defined as the integrated intensity over the cross section
divided by the area of the cross section.

points, i.e., the third band gap of the ϕ = 90◦ case is also a
QVH phase but with Cv = −1.

Surprisingly, when T symmetry is broken (i.e., κ = 0.4),
the gap Berry phase of the third gap remains zero. The topology
of bands 4–6 remains unaltered and this can also be seen by
comparing bands 4–6 in the vicinity of the K and K ′ points
in Fig. 3(b) before (red curves) and after (blue curves) the
introduction of the gyromagnetic material. Therefore, the third
gap in the κ = 0.4 and ϕ = 30◦ case is also a QVH phase
with Cv = +1. Since T symmetry is now broken, the QVH
phase should be called the pseudo-QVH phase, as for the
pseudoquantum spin Hall phases [34,35]. Nonetheless, the
profiles of the Berry curvatures at K and K ′ valleys now
become different, as shown in Fig. 5(b).

It is known that the edge states in a QVH photonic topo-
logical insulator is valley dependent and thus the intervalley
scattering along the zigzag boundary [20,36] is suppressed.
This would lead to valley-protected robust wave propagation
in a Z-shape bend between two QVH photonic crystals with
different valley Chern numbers. Therefore, to explicitly verify
the QVH phases in the ϕ = 30◦ and ϕ = 90◦ crystals, we
performed numerical simulations of light propagation along
a Z-shape interface between these two topologically distinct
crystals, as shown in Fig. 11. Figure 11(a) shows that in
the κ = 0.0 case, the wave can turn around the two sharp
corners, thus proving the existence of the QVH edge states at
the interface. The same situation also occurs in the κ = 0.4
case [Fig. 11(b)], thereby suggesting that the QVH edge
states also exist in the interface between the κ = 0.4 photonic
crystals. Therefore, the results of these numerical simulations

FIG. 11. Numerical simulation of wave propagation in a valley
interfacial state along a Z-shape bend between two valley-contrasting
photonic crystals of ϕ = 30◦ and ϕ = 90◦. (a) κ = 0.0 and (b) κ =
0.4. The green star denotes the point source operating at (a) ω = 0.9
and (b) 0.91 2πc/a. The values on the color bar denote the Re(Ez) in
units of V/m.

indicate that the QVH photonic crystal waveguides presented
here are not the ordinary photonic crystal waveguides and
could have promising applications for, e.g., designing photonic
valleytronic devices [19].

IV. CONCLUSIONS

In conclusion, we have carried a comprehensive theoretical
study on the topological phases in 2D photonic crystals without
T and P symmetries. As an example, we consider a hexagonal

045422-9



HSUN-CHI CHAN AND GUANG-YU GUO PHYSICAL REVIEW B 97, 045422 (2018)

lattice consisting of triangular gyromagnetic rods. Here the
gyromagnetic material breaksT invariance while the triangular
rods break P symmetry. Remarkably, we discover that the
photonic crystal houses QAH phases with different gap Chern
numbers (Cg) including |Cg| = 2 as well as QVH phases
with contrasting valley Chern numbers (Cv). Moreover, phase
transitions among these topological phases, such as from QAH
to QVH and vice versa, can be realized by a simple rotation of
the orientation of the rods. Our band theoretical analyses reveal
that the Dirac nodes at the K and K ′ valleys in the momentum
space are produced and protected by the mirror symmetry
(my) instead of the P symmetry in the P-invariant crystals,
and they become gapped when either T or my symmetry
is broken, leading to a QAH or QVH phase, respectively.
Furthermore, the high Chern number (Cg = −2) QAH phase
arises when the rare triply degenerate nodal points [28,37]
rather than pairs of Dirac nodes [10] are gapped by breaking
T symmetry. Therefore, our proposed photonic crystal would
provide a platform for exploring transitions among intriguing
topological phases which may be very difficult to realize in
electronic systems.

Our electromagnetic simulations of wave propagation either
along the edges of our crystal capped with a metal wall or
in the interfaces between two variants of our crystal with
different rod orientations, demonstrate reflection-immune one-
way light transports in both straight interfaces and Z-shape
bends. Furthermore, we find that the second topologically
nontrivial gap is not only large but also independent of the
orientation of the triangular rods, and thus the topologically
protected one-way wave propagation would be very robust
against disorders such as misalignments of the triangular
rods in the photonic crystal introduced during the fabrication
processes. Therefore, our proposed crystal would also have
promising potentials for device applications in photonics such
as reflection-free waveguides and topological one-way circuits.
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