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Andreev rectifier: A nonlocal conductance signature of topological phase transitions
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The proximity effect in hybrid superconductor-semiconductor structures, crucial for realizing Majorana edge
modes, is complicated to control due to its dependence on many unknown microscopic parameters. In addition,
defects can spoil the induced superconductivity locally in the proximitized system, which complicates measuring
global properties with a local probe. We show how to use the nonlocal conductance between two spatially separated
leads to probe three global properties of a proximitized system: the bulk superconducting gap, the induced gap,
and the induced coherence length. Unlike local conductance spectroscopy, nonlocal conductance measurements
distinguish between nontopological zero-energy modes localized around potential inhomogeneities, and true
Majorana edge modes that emerge in the topological phase. In addition, we find that the nonlocal conductance is
an odd function of bias at the topological phase transition, acting as a current rectifier in the low-bias limit. More
generally, we identify conditions for crossed Andreev reflection to dominate the nonlocal conductance and show
how to design a Cooper pair splitter in the open regime.
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I. INTRODUCTION

The superconducting proximity effect occurs when a normal
material (metal) is placed in contact with a superconductor.
The resulting transfer of superconducting properties to the
normal material [1,2] makes it possible to explore induced
superconductivity in a range of materials that are not intrinsi-
cally superconducting, for example, in ferromagnetic metals
[3–5] and in graphene [6–8]. Another recent application of the
proximity effect is the creation of the Majorana quasiparticle
[9–11], which is a candidate for the realization of topological
quantum computation [12], and a focus of research efforts in
recent years [13–15].

The proximity effect is due to the Andreev reflection
of quasiparticles at the interface with the superconductor
[2], which forms correlated electron-hole pairs that induce
superconductivity in the normal material. This makes the prox-
imity effect in real systems sensitive to microscopic interface
properties, such as coupling strength, charge accumulation,
and lattice mismatch [16,17]. Spatial inhomogeneities in the
proximitized system, such as charge defects, may furthermore
spoil the induced correlations locally. In a typical proximity
setup, the superconductor proximitizes an extended region of
a normal material, as shown in Fig. 1. A normal lead attached to
one of the ends of the proximitized region probes the response
to an applied voltage. When the coupling between the lead
and the proximitized region is weak, the lead functions as a
tunnel probe of the density of states in the latter. Since induced
superconductivity may be inhomogeneous, and Andreev re-
flection happens locally, such an experiment only probes the
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region in the direct vicinity of the normal lead, and not the
overall properties of the proximitized region. For example,
if the electrostatic potential is inhomogeneous, it may create
accidental low-energy modes that are nearly indistinguishable
from Majoranas [18–23].

We show how the nonlocal response between two spatially
separated normal leads (see Fig. 1) may be used to probe both
the bulk superconducting gap � and the induced gap �ind, as
well as the induced coherence length ξ . At subgap energies,
quasiparticles propagate as evanescent waves with the decay
length ξ in the proximitized system. This suppresses the non-
local response with increasing separation L between the two
normal leads [24–26]. Therefore, the length dependence of
the nonlocal conductance measures when two ends of a prox-
imitized system are effectively decoupled. When L/ξ � 1,
the nonlocal conductance is only possible in the energy window
between the bulk superconducting gap � and the induced
gap �ind. The sensitivity to an induced gap allows one to
use nonlocal conductance to distinguish between an induced
gap closing and an Andreev level crossing at zero energy. In
contrast, a local measurement may produce a similar result in
both cases.

Two processes constitute the nonlocal response: direct
electron transfer between the normal leads, and the crossed
Andreev reflection (CAR) of an electron from one lead into
a hole in the second lead [27,28]. Experimental [29–31] and
theoretical [32–37] studies of CAR-dominated signals aim at
producing a Cooper pair splitter [38–40], which has potential
applications in quantum information processing. We show that
applying a Zeeman field in the proximitized system creates
wide regions in parameter space where CAR dominates the
nonlocal response. Furthermore, we demonstrate how to obtain
a CAR-dominated signal in the absence of a Zeeman field in
the low-doping regime. Finally, we prove that at the topological
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FIG. 1. A superconductor (yellow) proximitizes a semiconduct-
ing region (transparent) from the side. Narrow gates control the
coupling of the proximitized scattering region with the leads, and
a wider gate controls the chemical potential. An incoming electron
from the left (red dot) undergoes either a local process, i.e., Andreev
reflection into a hole (blue outgoing dot to the left) or normal reflection
(not shown), or a nonlocal process (outgoing electron or hole to the
right).

phase transition and with L/ξ � 1, the nonlocal conductance
is an approximately odd function of bias. This phenomenon
only relies on particle-hole symmetry and hence manifests in
both clean and disordered junctions. Therefore, a proximitized
system coupled to normal leads acts as a rectifier of the applied
voltage bias universally at the topological phase transition.

Our method is based on probing the bulk topological
phase transition in Majorana devices, instead of the Majoranas
themselves. Several other works propose different methods to
probe the bulk instead of the edge states in one-dimensional
topological superconductors. Quantized thermal conductance
and electrical shot-noise measurements are predicted signa-
tures of a bulk topological phase transition [41], and here we
present a different route based on straightforward electrical
conduction measurements in already available experimental
systems. Further work predicts bulk signatures of a topological
phase transition in the difference between the local Andreev
conductances at each end of the proximitized region [42], or
in the spin projection of bulk bands along the magnetic field
direction [43]. In addition to probing the bulk topological phase
transition, our proposed method allows one to probe a number
of relevant physical parameters, and can be implemented in
ongoing experiments, providing a technique to use in the hunt
for Majoranas.

This paper is organized as follows. In Sec. II, we give an
overview of our model and discuss the relevant energy and
length scales. In Sec. III, we study how nonlocal conductance
measures superconductor characteristics. We investigate the
effects of a Zeeman field in homogeneous and inhomogeneous
systems in Sec. IV. In Sec. V we consider the possible
application of the proximitized system as a Cooper pair splitter.
We finish with a summary and discussion of our results in
Sec. VI.

II. MODEL AND PHYSICAL PICTURE

We consider a three-terminal device sketched in Fig. 2,
with a normal central region of lateral length L and width W

FIG. 2. Top: Schematic drawing of the device. A central region
of length L and width W is connected from the sides to two normal
leads N1 (left) and N2 (right) of width WL, and from the top to one
superconducting lead (SC) of width L. Superimposed is an example
of the central region charge density, which oscillates between positive
(red) and negative (blue). Bottom: Illustrations of possible scattering
processes in energy space in the limit L � ξ . A quasiparticle, with
energy below the induced gap, |E| < �ind, is reflected back into the
source lead. A quasiparticle at �ind < |E| < � is transmitted to the
right lead, either as an electron (normal transmission) or as a hole
(crossed Andreev reflection). At energies exceeding the bulk gap,
|E| > �, the superconducting lead absorbs incoming quasiparticles.

separating two normal leads of width WL. The device has a
grounded superconducting lead of width L attached to the
central region perpendicularly to the other two leads. This
geometry models the proximity effect of a lateral supercon-
ductor on a slab of normal material, with normal leads probing
the transport properties, and is therefore relevant both for
heterostructures based on nanowires and quantum wells.

We model the hybrid system using the Bogoliubov–de
Gennes Hamiltonian. For a semiconductor electron band with
effective mass m∗ and Rashba spin-orbit interaction (SOI) with
strength α, it reads

H =
(

p2
x + p2

y

2m∗ − μ

)
τz + �(y)τx

+α

h̄
(pyσx − pxσy)τz + EZ(y)σx, (1)

with px,y = −ih̄∂x,y , μ the equilibrium chemical potential,
and EZ the Zeeman energy due to an in-plane magnetic field
parallel to the interface between the central region and the
superconductor. We assume a constant s-wave pairing potential
that is nonzero only in the superconductor, �(y) = �θ (y −
W ) with θ (y) a step function, and choose � to be real since
only one superconductor is present. We neglect the g factor in
the superconductor since it is much smaller than in the adjacent
semiconductor, such that EZ(y) = EZθ (W − y), and our con-
clusions are not affected by this choice. The Pauli matrices σi

045421-2



ANDREEV RECTIFIER: A NONLOCAL CONDUCTANCE … PHYSICAL REVIEW B 97, 045421 (2018)

and τi act in spin and particle-hole space, respectively. The
Hamiltonian acts on the spinor 	 = (ψe↑,ψe↓,ψh↓,−ψh↑),
which represents the electron (e) or hole (h) components of
spin up (↑) or down (↓).

The superconductor induces an energy gap �ind in the
heterostructure. If L � W , the larger of two energy scales,
namely, the bulk gap � and the Thouless energy ETh, deter-
mines the magnitude of �ind, with ETh at low μ given by

ETh = γ δ, δ = h̄2π2

2m∗(2W )2
, (2)

where γ is the transparency of the interface with the su-
perconductor and δ the level spacing. Our emphasis is on
short and intermediate junctions, for which ETh � � and
ETh � �, respectively, such that �ind � �. A brief review
of normal-superconductor junctions in different limits and the
relevant length and energy scales is given in the Appendix.
We keep μ constant in the entire system but assume an
anisotropic mass [44] in the superconductor with a component
parallel to the interface, m‖ → ∞. This approximation results
in a transparent interface γ = 1 at normal incidence and at
EZ = 0, and is motivated by recent advances in the fabrication
of proximitized systems with a high-quality superconductor-
semiconductor interface [45,46].

We compute differential conductance using the scattering
formalism. The scattering matrix relating all incident and
outgoing modes in the normal leads of Fig. 2 is

S =
[
S11 S12

S21 S22

]
, Sij =

[
See

ij Seh
ij

She
ij Shh

ij

]
. (3)

Here, the S
αβ

ij is the block of scattering amplitudes of incident
particles of type β in lead j to particles of type α in lead i.
Since quasiparticles may enter the superconducting lead for
|E| > �, the scattering matrix (3) is unitary only if |E| < �.
The zero-temperature differential conductance matrix equals
[2,47]

Gij (E) ≡ ∂Ii

∂Vj

= e2

h

(
T ee

ij − T he
ij − δijN

e
i

)
, (4)

with Ii the current entering terminal i from the scattering region
and Vj the voltage applied to the terminal j , and Ne

j the number
of electron modes at energy E in terminal j . Finally the energy-
dependent transmissions are

T
αβ

ij = Tr
([

S
αβ

ij

]†
S

αβ

ij

)
. (5)

The blocks of the conductance matrix involving the super-
conducting terminal are fixed by the condition that the sum
of each row and column of the conductance matrix has to
vanish. The finite-temperature conductance is a convolution of
zero-temperature conductance with a derivative of the Fermi
distribution function f (E) = (1 + exp (E/kBT ))−1:

Gij (eVj ,T ) = −
∫ ∞

−∞
dE

df (E − eVj ,T )

dE
Gij (E). (6)

We discretize Hamiltonian (1) on a square lattice, and use
KWANT [48] to numerically obtain the scattering matrix of
Eq. (3) (see the Supplemental Material for the source code
[49]). The resulting data are available in Ref. [50]. We obtain

ξ numerically by performing an eigendecomposition of the
translation operator in the x direction for a translationally
invariant system and computing the decay length of the
slowest decaying mode at E = 0 [44,51]. We use the material
parameters [52] m∗ = 0.023me, α = 28 meV nm, and unless
otherwise specified � = 0.2 meV, typical for an InAs two-
dimensional electron gas with an epitaxial Al layer [45]. All
transport calculations are done using T = 30 mK unless stated
otherwise.

III. NONLOCAL CONDUCTANCE AS A MEASURE
OF SUPERCONDUCTOR PROPERTIES

In the tunneling regime, the local conductance in a normal
lead probes the density of states in the proximitized region,
which is commonly used to measure the induced gap in
experiment. However, such a measurement only probes the
region near the tunnel probe and fails to give information
about the density of states in the bulk of the proximitized
region. The tunneling conductance is thus not a reliable probe
of the entire proximitized region if the density of states
varies spatially over the proximitized region, for example,
due to an inhomogeneous geometry. As an illustration, Fig. 3
compares the local conductance G11 in the tunneling limit
to the nonlocal conductance G21 in the open regime for a
proximitized system that is inhomogeneous and in a magnetic
field. Inhomogeneous systems are further treated in Sec. IV.
The combination of an inhomogeneous system and broken
time-reversal symmetry creates low-energy states localized
near the junctions with the normal leads, which appear as
peaks in the tunneling conductance. However, away from
the junctions with the normal leads, the proximitized system
remains close to fully gapped, the induced gap matching the
energies at which the nonlocal conductance becomes finite in
Fig. 3(b). Therefore, the nonlocal conductance is better than
the local tunneling conductance as a probe for the induced gap
in the bulk of the proximitized region. In the following, we

0 0.1 0.2 0.3
G11 [e2/h]

−1

0

1

E
/Δ

(a)

local

−0.1 0 0.1 0.2
G21 [e2/h]

(b)

nonlocal

FIG. 3. Examples of (a) the local conductance in the tunneling
regime and (b) the nonlocal conductance in the open regime of
an inhomogeneous proximitized system with broken time-reversal
symmetry. Localized low-energy states are present near the junctions
with the normal leads. These manifest as peaks in the tunneling
conductance, indicating �ind 
 �. However, �ind ≈ � still in the
bulk of the proximitized system, with �ind matching the energy at
which the nonlocal conductance peaks.
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FIG. 4. Suppression of the nonlocal conductance G21 at zero
bias E = 0 as a function of length for different ratios ETh/�. For
decreasing ratio ETh/�, the induced coherence length ξ increases.
This is reflected in the larger absolute length over which the nonlocal
conductance is suppressed. Data points are taken from the E = 0
values of the nonlocal conductance presented in Fig. 5.

describe three ways in which the nonlocal conductance probes
induced superconductivity.

First of all, the nonlocal conductance measures the induced
decay length ξ in the bulk of the proximitized region between
the two normal leads. To understand this, consider a nonlocal
process at a subgap energy |E| < �ind. An electron injected
from a normal lead must propagate as an evanescent wave
∝ e−x/ξ+ikx through the gapped central region to the second
normal lead, with ξ the decay length. Accordingly, as shown
in Fig. 4, increasing L suppresses the nonlocal conductance
at E = 0 exponentially [28,38]. Therefore, the suppression of
the nonlocal conductance with increasing length L at E = 0 is
a measure of the induced decay length ξ .

Furthermore, the nonlocal conductance measures the bulk
gap � of the superconductor. Increasing L also suppresses
the nonlocal conductance G21 for |E| > �, as the right-hand
column of Fig. 5 shows. For energies above the bulk super-
conducting gap �, the superconductor increasingly absorbs
quasiparticles when the length is increased, and suppresses
the nonlocal conductance to zero when L � ξ . Hence, the
energy above which nonlocal conductance is suppressed at
large lengths is a measure of �.

In addition, the nonlocal conductance measures the induced
superconducting gap �ind. When L � ξ , the nonlocal conduc-
tance is suppressed at E = 0 but grows in a convex shape with
E and peaks around |E| ≈ �ind, as shown in the right-hand
column of Fig. 5. This is due to a divergence in ξ , since the
system is no longer gapped. To illustrate the correspondence
between the nonlocal conductance and �ind, the left-hand
column of Fig. 5 shows the dispersions of the corresponding
proximitized systems that have the normal leads removed and
are translationally invariant along the x direction, such that
k = px/h̄ is conserved. Because the system is not gapped for
|E| > �ind, G21 is generally nonzero at these energies. Note
that aside from occasional dips to negative G21, direct electron
transfer dominates the nonlocal response (we investigate this
in more detail in Sec. V).

The presence of finite nonlocal conductance in the energy
range �ind < |E| < � depends only on density of states of the
proximitized system and therefore still holds in the presence
of disorder. In Fig. 6, we show the effects of disorder on the
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0

1

E
/Δ ETh/Δ ≈ 2

(a) (b)

L = ξ/2 L = ξ L = 2ξ L = 3ξ

−1

0

1

E
/Δ ETh/Δ ≈ 0.4

(c) (d)

0 0.03 0.06

k [nm−1]

−1

0

1

E
/Δ

ETh/Δ ≈ 0.04

(e)

−0.5 0 0.5 1 1.5
G21 [e2/h]

(f)

FIG. 5. (a, c, e) Dispersions of proximitized systems that are
translationally invariant along x, and (b, d, f) nonlocal conductance
G21(E) of corresponding junctions of finite length. The latter is shown
as the separation L between the two normal leads is varied, with
brightening colors from black to orange denoting L = ξ/2, ξ , 2ξ ,
and 3ξ , respectively. The ratio ETh/� becomes smaller from top to
bottom, such that �ind shrinks (dash-dotted lines). For L � ξ , the
nonlocal conductance is suppressed if |E| < �ind and finite only for
�ind < |E| < � (colored region). The solid lines in the dispersion
relations show the dispersion of the normal-superconductor system,
while the dotted lines show the electron and hole dispersion of the
normal channel only, with the superconductor removed. We have
W = 100 nm in (a) and (b), W = 200 nm in (c)–(f), and WL =
100 nm always in the right column; μ = 3 meV, � = 0.2 meV, and
T = 30 mK in the top and middle rows, but μ = 4.2 meV, � = 2 meV,
and T = 100 mK in the bottom row. Dispersions are even in k.

transport signatures of � and �ind for short and intermediate
junctions when L � ξ . We include on-site disorder in the
central region and vary the elastic mean free path le from
le = L to le = 0.1L [53]. Even in the presence of disorder, all of
the aforementioned qualities are still apparent in the nonlocal
conductance [Figs. 6(a) and 6(b)], namely, suppression for
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FIG. 6. (a, b) Nonlocal and (c, d) local conductance G21 and G11

of short (left-hand column) and intermediate (right-hand column)
junctions with L � ξ , to decouple the two normal leads at |E| < �ind.
The mean free path varies between curves, with brightening colors
from black to light orange denoting le = L, L/2, L/5, and L/10,
respectively. Even in the presence of disorder, signatures of �ind and
� are visible in the nonlocal conductance. The local conductance is
Andreev enhanced at subgap energies, but normal reflection becomes
more prominent with increasing disorder. We have W = 100 nm and
L = 8ξ in (a) and (c), W = 200 nm and L = 2ξ in (b) and (d), and
WL = 100 nm always, with μ = 3 meV.

|E| < �ind, a finite signal for �ind < |E| < �, and vanishing
conductance for |E| > �. Therefore, the nonlocal conductance
remains a reliable probe of induced superconductivity even in
the presence of disorder.

Lastly, in the absence of extended potential inhomo-
geneities, � and �ind may also be inferred from the local
conductance G11 in the open regime. As Figs. 6(c) and 6(d)
show, G11 � 4e2/h in the ballistic case le = L for |E| <

�ind, which indicates that Andreev reflection is the dominant
local process. This is the expected behavior for a normal-
superconductor junction with high interface transparency
[2,45] and is consistent with our results. Reducing the mean
free path makes normal reflection more likely and hence lowers
G11, similar to an ideal normal-superconductor junction with
a reduced interface transparency. Here, comparing G11 and
G21 shows that �ind and � may also be inferred from the
local conductance, because it changes smoothly with bias only
outside the interval �ind < |E| < �. However, the signatures
are clearer in G21, where it is a transition between finite and
vanishing conductance that indicates the gaps. Furthermore,
the induced gap observed in the local and nonlocal conduc-
tances coincide here only due to the absence of extended
potential inhomogeneities. For the case of an inhomogeneous
geometry as in Fig. 3, only the nonlocal conductance correctly
measures �ind in the bulk of the proximitized system.

IV. ANDREEV RECTIFIER AT THE TOPOLOGICAL
PHASE TRANSITION

A. Andreev rectification as a measure of the topological phase

In order to study nonlocal conductance at the topological
phase transition, we apply an in-plane Zeeman field along
the x direction of the proximitized system. Figure 7 shows
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FIG. 7. Nonlocal conductance G21 in the single-mode regime as a
function of E and EZ in the absence of disorder (a) W = 100 nm and
(b) W = 200 nm. The Zeeman field closes the induced gap and the
system undergoes a topological phase transition. At the transition, G21

vanishes and changes sign as a function of bias. There are prominent
regions where the nonlocal conductance is negative, i.e., where CAR
dominates. The color scale is saturated for clarity. (c) Line cuts of G21

as a function of bias at the topological phase transition, taken at EZ ≈
2.9δ for W = 100 nm and EZ ≈ 5.4δ for W = 200 nm, showing that
the nonlocal conductance is an approximately odd function of bias.

the nonlocal conductance G21 as a function of bias E and
Zeeman energy EZ, for short and intermediate junctions in
Figs. 7(a) and 7(b) with L = 10ξ and L = 3ξ , respectively,
such that the two normal leads are well decoupled, and the
nonlocal conductance is exponentially suppressed at subgap
energies. Increasing the magnetic field closes the induced gap
and the system is driven into a topological phase. The line
cuts of Fig. 7(c), taken at the critical magnetic field EZ = Ec

Z,
show that at the topological phase transition the nonlocal
conductance is a linear function of energy, G21(E) ∝ E around
E = 0. At the topological phase transition, the current I ∝ V 2

with V the voltage bias, and the system functions as a current
rectifier due to crossed Andreev reflection.

This Andreev rectifier manifests due to the topology and
symmetry of the proximitized system. The system only has
particle-hole symmetry and is therefore in class D [54,55]. Ex-
panding G21(E,EZ) = c0(EZ) + c1(EZ)E + O(E2) around
E = 0, the exponential suppression of G21 at subgap energies
means that the coefficients c0 and c1 are exponentially sup-
pressed at magnetic fields before the topological phase tran-
sition. In class D systems, if G21 is exponentially suppressed
at subgap energies, it is guaranteed to remain exponentially
suppressed across the topological phase transition [41,56]. At
the critical magnetic fieldEZ = Ec

Z,G21(E = 0,Ec
Z) = c0(Ec

Z)
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FIG. 8. The nonlocal conductance G21 as a function of E and
EZ for a proximitized system that is quasiballistic [(a), (c) with μ =
3 meV] and diffusive [(b), (d) with μ = 16 meV]. For the diffusive
junction, the leads are gated into the single-mode regime using
quantum point contacts at the junctions with the channel. Top and
bottom rows present results for W = 100 and 200 nm, respectively.
For the quasiballistic junction, L/ξ = 8 and 2 for W = 100 and
200 nm, respectively, and the mean free path is le = 0.2L in each
case. In the diffusive system, we have le = 0.2W and L/ξ̃ = 5 and
2 for the widths, respectively, where ξ̃ = √

leξ . The color scale is
saturated in both cases for clarity.

is therefore also exponentially suppressed. However, the sys-
tem is gapless at the topological phase transition, such that
G21 is generally finite at any nonzero E, and c1(Ec

Z) thus
is not exponentially suppressed. At the topological phase
transition, we therefore have G21 ∝ E in the limit E → 0,
where higher-order contributions are negligible. Consequently,
rectifying behavior in the nonlocal conductance is an indication
of a topological phase transition. This makes the nonlocal
conductance not only a probe of the bulk properties of induced
superconductivity as discussed in Sec. III, but also makes it
selectively sensitive to topological phase transitions.

The rectifying behavior G21 ∝ E at the topological phase
transition in Fig. 7 is grounded in the symmetry classification
of the channel. As a result, we expect it to be robust to the
presence of on-site disorder, so long as it does not alter the
symmetry class. Figure 8 shows G21 as a function of E and
EZ for systems with the same widths as in Fig. 7. In the
left-hand column, parameters are chosen identical to those
in Fig. 7, with the addition of on-site disorder to give an
elastic mean free path le = 0.2L [53], bringing the systems
well into the quasiballistic regime. In the right-hand column
of Fig. 8, we investigate G21 when the central region is in
the diffusive limit, with le = 0.2W . The widths are the same
as in the quasiballistic (and clean) case, but μ is increased
such that several modes are active. We gate the leads into
the single-mode regime using quantum point contacts at the
junctions with the scattering region. In each case we pick
L � ξ̃ , since in the diffusive limit ξ̃ = √

ξ le governs the range

of the coupling between the two normal terminals at subgap
energies [57]. In both quasiballistic and diffusive cases, G21

remains an approximately odd function of E around the gap
closing, and the proximitized system therefore acts as a rectifier
even in the presence of disorder.

B. Distinguishing the topological phase transition in spatially
inhomogeneous devices

Several works [18–23] discuss the emergence of zero-
energy modes in the trivial phase of a hybrid semiconductor-
superconductor device with an extended, spatially inhomo-
geneous potential. Local conductance measurements do not
distinguish between these modes and well-separated Majorana
modes at the end points of the proximitized region in the
topological phase, since both give rise to zero-bias conductance
features.

To study this problem, we include an extended inhomoge-
neous potential,

φ(x,y) = V0exp

[
−1

2

(
x − x0

dx

)2
]

exp

[
−1

2

(
y − y0

dy

)2
]
,

(7)

in the setup shown in Fig. 2, with V0 the potential amplitude,
x0 and y0 the coordinates of the potential center, and dx and dy

parameters to control the smoothness in the x and y directions,
respectively. We compare conductance for an amplitude V0 =
−4.5 mV to conductance in a homogeneous system V0 = 0 V.
We calculate the local conductance in the tunneling regime,
with tunnel barriers at both wire ends x = 0 and x = L,
and the nonlocal conductance in the open regime, with the
system length fixed to L = 8ξ and the width to W = 100
nm. To confirm that such a spatially inhomogeneous system
can indeed exhibit trivial zero-energy modes, we calculate
the low-energy spectrum of our system when decoupled from
the leads, forming a closed superconductor-semiconductor
system. The phase transition is computed from the absolute
value of the determinant of the reflection matrix in the open
system at E = 0, with |det(r)| = 1 everywhere for L � ξ ,
except at the phase transition, where it drops to zero [58].
Figure 9(a) shows the spectrum as a function of EZ in the
homogeneous case (V0 = 0), Fig. 9(b) for the inhomogeneous
case (V0 = −4.5 mV). While in the first case the closing of the
induced superconducting gap coincides with the topological
phase transition, in the second case an extended topologically
trivial region exists with states around zero energy (yellow
region).

Comparing the local conductance with and without an
inhomogeneous potential, we find that zero-energy modes
appear regardless of whether they are topological or trivial.
Figures 9(c) and 9(d) show the local response as a function
of bias and Zeeman energy when leads are connected to the
central region via tunnel barriers. Since the system is ballistic
and long (L � ξ ), the local conductance agrees well with the
spectra presented in Figs. 9(a) and 9(b). Accordingly, the local
conductance in Fig. 9(d) for V0 = −4.5 mV shows zero-energy
modes in the topologically trivial regime. Therefore, a gap
closing and the emergence of zero-energy modes in the local
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FIG. 9. (a, b) Spectrum, (c, d) local conductance G11, and
(e, f) nonlocal conductance G21 of a system without potential varia-
tions (left-hand column) and a system with a long-range Gaussian
potential of amplitude V0 = −4.5 mV (right-hand column). The
orange region in (a) and (b) denotes the topological phase, and yellow
the trivial phase with a state around zero energy. G11 is calculated
in the presence of two tunnel barriers at both wire ends, G21 in
the single-mode regime. The color scale is saturated for clarity.
For the potential inhomogeneity, we set V0 = −4.5 meV, x0 = L/2,
y0 = W/2, dx = L/5, and dy = 2W/3.

conductance is not a sufficient sign of a topological phase
transition.

On the other hand, nonlocal conductance has a much
clearer signature of the topological transition than the local
conductance. To demonstrate this, in Figs. 9(e) and 9(f) we
show the nonlocal conductance as a function of bias and
Zeeman energy. For both the homogeneous case and the
inhomogeneous case, the appearance of nonlocal conductance
around E = 0 coincides with the change of the topological
invariant. In other words, the appearance of finite nonlocal
conductance around E = 0 implies a global closing of the
induced gap. Additionally, the nonlocal conductance shows
rectifying behavior around E = 0 at the gap closing. These two
features of the nonlocal conductance are strong evidence of a
topological phase transition. Therefore, due to its insensitivity
to spatial inhomogeneities in the potential and the additional
feature of Andreev rectification, nonlocal conductance is a
more reliable measure of a topological phase transition.

V. COOPER PAIR SPLITTER

A negative nonlocal conductance, dominated by CAR, is
of fundamental interest, since the proximitized system then
functions as a Cooper pair splitter [38–40,59,60]. In Sec. III,
we observed that the nonlocal conductance in clean systems
at zero magnetic field is generally positive, and a CAR-
dominated signal (G21 < 0) is rare. The reason for this is shown

FIG. 10. Schematic of the quasiparticle transport properties from
the normal lead N1 to the lead N2 through the proximitized region.
Quasiparticles transferring to a neighboring region (solid black
arrows) predominantly preserve the quasiparticle type: electronlike
(red dots) or holelike (blue dots). Andreev reflection (green vertical
arrows) changes the quasiparticle type and the direction of propaga-
tion (grey arrows). Disorder scattering (black dotted arrow) changes
the propagation direction. Finally, if no quasiparticles of the same type
are available, quasiparticle transmission between regions may also
result in the change of the quasiparticle type (black dashed arrow).

schematically in Fig. 10: an electron entering the proximitized
region usually converts into an electronlike quasiparticle.
Andreev reflection changes both the quasiparticle charge and
velocity, so that the resulting holelike quasiparticle returns to
the source. Therefore, under normal circumstances Andreev
reflection alone is insufficient to generate a negative nonlocal
current.

Despite that G21 stays predominantly positive in clean
systems, in Sec. IV we found that a magnetic field can make the
nonlocal conductance negative in large regions of parameter
space. We identify these regions with the presence of only
holelike bands in the proximitized region at the relevant energy,
as shown in Fig. 10. If only holelike states are present in the
proximitized region, the incoming electron may only convert
into a right-moving holelike quasiparticle, which in turn con-
verts predominantly into a hole when exiting the proximitized
region. To confirm this argument, we compare the energy
ranges where only holelike quasiparticles are present with the
regions of negative G21. Our results are shown in Fig. 11, and
they exhibit a very good agreement. Since the only required
property to get a negative nonlocal conductance is a holelike
dispersion relation, this phenomenon does not require SOI, or
even a Zeeman field. Indeed, our calculations (not shown here)
reveal that it is possible to extend the energy ranges over which
CAR dominates by filtering the nonlocal conductance by spin,
e.g., by using magnetically polarized contacts [27].

It is possible to systematically obtain a negative nonlocal
conductance in the low-doping regime without using a Zeeman
field if � > �ind. This is shown in Figs. 11(c) and 11(d),
where we have also neglected SOI for simplicity. By choosing
μ comparable to the band offset of the lowest mode in the
proximitized channel, at negative energies we obtain an energy
range in which the band structure is only holelike [Fig. 11(c)].
However, the small μ implies that no electron modes are
active in the normal leads in this energy range. To observe
negative nonlocal conductance here, it is therefore necessary
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FIG. 11. Dispersions (left-hand column) and nonlocal conduc-
tance with L � ξ (right-hand column) of proximitized channels of
width (a, b) W = 100 nm and (c, d) W = 200 nm. Dotted lines
show the electron and hole dispersions of the channels with the
superconductor removed. In both cases, the induced gap is smaller
than �, due to a Zeeman field in (a) and due to ETh � � in (c).
There are energy ranges in which only holelike bands are present,
and these correspond to regions of negative G21. Here, (c) is in a
low-doping regime μ = 0.5 meV, such that electron modes are absent
for E/� � −0.5, producing the holelike dispersion. As a result, a
larger chemical potential μ = 0.8 meV is needed in the normal leads
to observe G21 < 0 at the corresponding energies in (d). In (a) and
(b), we have μ = 3 meV.

to have a larger chemical potential in the normal leads than
in the proximitized region, which ensures the presence of
propagating electron modes at the relevant energies. Doing
so, we indeed observe a negative nonlocal conductance in the
expected energy range of Fig. 11(d).

Disorder provides an alternative mechanism to obtain neg-
ative nonlocal conductance. Unlike direct electron transfer,
which generally conserves the sign of quasiparticle momen-
tum, CAR often requires a sign change of the quasiparticle
momentum. Since disorder breaks momentum conservation,
the probabilities of CAR and direct electron transfer become
comparable once the system length exceeds the mean free
path, and CAR is thus more prominent than in a clean system.
Indeed, as shown in Fig. 8, in disordered systems the nonlocal
conductance becomes positive or negative with approximately
equal probability.

VI. SUMMARY AND OUTLOOK

The standard experimental tool for probing induced super-
conductivity in a Majorana device is a tunneling conductance
measurement using an attached normal lead. While this ap-
proach detects the density of states, its usefulness is limited
because it cannot distinguish the properties in close vicinity
of the lead from the properties of the bulk system. We studied
how the nonlocal conductance between two spatially separated

normal leads attached to the proximitized region overcomes
this limitation. We find that the nonlocal conductance is
selectively sensitive to the bulk properties of a proximity
superconductor, which allows to directly measure the induced
and the bulk superconducting gaps as well as the induced
coherence length of the proximitized region. While we focused
on the quasi-one-dimensional systems suitable for the creation
of Majorana states, our conclusions are applicable to general
proximity superconductors, including two-dimensional mate-
rials like graphene covered by a bulk superconductor.

When the probability of CAR is larger than that of electron
transmission, the nonlocal conductance turns negative. While
this does not happen normally, we identified conditions that
allow CAR to dominate. This may happen due to disorder,
which breaks the relation between quasiparticle charge, veloc-
ity, and momentum and makes the nonlocal conductance zero
on average. We identified another, systematic way of obtaining
dominant CAR by ensuring that the only available states in
the proximitized region are holelike. A special case of this
behavior is the vicinity of the topological phase transition,
where the nonlocal conductance becomes proportional to
voltage, resulting in a linear relation between the differential
conductance and voltage or, in other words, a positive nonlocal
current regardless of the sign of the voltage. This behavior
is specific to topological phase transitions, and we showed
how it can be used to distinguish accidental low-energy states
from Majorana states, resolving a potential shortcoming of
Majorana tunneling experiments identified in Refs. [19–23].

Our setup can be used with trivial adjustments to probe
the properties of Josephson junctions, proposed as a promis-
ing alternative platform for the creation of Majorana states
[54,55]. Further work could investigate interaction effects on
the nonlocal response [61]. An alternative promising avenue of
follow-up work is to consider a multiterminal generalization of
a nonlocal setup in order to combine local and global sensitivity
within the same device. In Fig. 12 we show a possible
experimental realization of such a multiterminal device, where
the effective length can be adjusted with gates. Finally, our
results regarding control of the CAR dominance can be used to
design devices with a large electron-hole conversion efficiency.
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APPENDIX: SHORT, INTERMEDIATE, AND LONG
JUNCTION LIMITS FOR HYBRID STRUCTURES

In this Appendix, we briefly discuss the subgap spec-
tral characteristics of normal-superconductor junctions in
different limits, using heuristic arguments to highlight the
essential physics. For a more rigorous study, we refer the
interested reader to, e.g., Refs. [62–66]. Consider a quasi-
one-dimensional channel of length L → ∞ that consists of
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FIG. 12. A possible experimental realization of a multitermi-
nal proximitized device suited for nonlocal conductance measure-
ments. Electrostatic gates gi , i ∈ {1,2,3,4}, pattern out a quasi-
one-dimensional region in a two-dimensional electron gas, which
is proximitized from the side by a superconductor. Gates gT create
tunnel barriers at the end points of the proximitized region. Changing
the potentials applied to the gates allows for changing the effective
device length.

a junction between a normal part of width W and a supercon-
ductor of width Wsc � W . The Hamiltonian is the same as in
Eq. (1), but with px → h̄k and as before � �= 0 only in the
superconductor. Furthermore, we consider only EZ = 0 and
neglect SOI (α = 0) and disorder for simplicity.

The hybrid structure generally has an energy gap �ind,
the size of which is determined by two competing energy
scales, namely, the bulk gap � and the Thouless energy
ETh ≈ h̄/τ , with τ the quasiparticle dwell time in the normal
part of the junction. A short junction has � 
 ETh and a
long junction � � ETh, while � � ETh for an intermediate
junction. Alternatively, these conditions are expressed in terms
of W and the BCS coherence length ξ0 = h̄vF/�, where
vF is the Fermi velocity. For a quasiparticle incident per-
pendicularly from the normal part to the interface with the
superconductor and assuming perfect interface transparency,
we have τ ∝ W/vF and thus ETh ∝ h̄vF/W . The conditions for
short, intermediate, and long junctions then become W 
 ξ0,
W � ξ0, and W � ξ0, respectively. In the short-junction limit,
we have �ind ≈ �, while for long and intermediate junctions
�ind ∝ ETh.

We now derive a lower bound for ETh in terms of the
level spacing δ in the normal part of the junction. A quasi-
particle exiting the superconductor has the dwell time τ ∝
2W/γv⊥(k) in the normal part. Here, v⊥(k) = h̄k⊥(k)/m∗

and k⊥ =
√

kF − k2 are respectively the velocity and mo-
mentum projections perpendicular to the interface with the
superconductor at the parallel momentum k, with kF the Fermi
momentum, and 2W is the distance the quasiparticle travels
before colliding with the superconductor again. The dwell
time scales inversely with the transparency γ of the interface
between the normal part and the superconductor. In practice,
the transparency is determined by interface properties, such
as the presence of a barrier or velocity mismatch, which we
parametrize with 0 � γ � 1 for simplicity. We thus obtain

FIG. 13. Dispersion (left-hand column) and density of states
(right-hand column) of a quasi-one-dimensional normal-super-
conductor junction in different regimes: a short junction (top), an
intermediate junction (middle), and a long junction (bottom). In the
left-hand column, the dotted curves show the electron and hole disper-
sions of the corresponding normal channel with the superconductor
removed. In all cases, a small broadening � 
 � has been added to
the density of states. For the intermediate junction (d), the density
of states with larger broadening is also shown (dashed curve). The
curves are symmetric under (k,E) → (±k,±E).

ETh(k) ∝ γ h̄2
√

k2
F − k2/2m∗W . Observe that ETh decreases

with k and tends to vanish as k → kF since then v⊥ → 0.
However, v⊥ is bounded from below in a finite geometry by the
momentum uncertainty associated with the band offset, which
corresponds to the velocity dv⊥ ≈ h̄π/m∗W in a square-well
approximation. Using v⊥ = dv⊥ gives the lower bound for
the Thouless energy ETh ∝ γ h̄2π/2m∗W 2. The preceding
discussion implies that in the absence of magnetic fields,
the gap in the spectrum of such a junction decreases with
momentum to a minimum ∝ 1/m∗W 2 at k = kF (see left-hand
column of Fig. 13). Since �ind is the energy of the lowest
Andreev bound state in the junction, we define

ETh = γ δ, δ = h̄2π2

2m∗(2W )2
, (A1)

as the Thouless energy of the junction. Observe that we use
2W in the denominator, since that is the distance normal to the
interface a quasiparticle travels between successive Andreev
reflections [44].

The spectral characteristics of a proximitized system
strongly depend on which regime the system is in. Figure 13
shows the dispersion εn(k) and density of states ρ per unit
length for junctions in the short, intermediate, and long
regimes. The density of states is given by

ρ(E) = 1

2πh̄

∑
n

∫
δ[E − εn(k)]

dE

|v(E)|

= 1

2πh̄

∑
n

∣∣∣∣dεn(k)

dk

∣∣∣∣
−1

. (A2)
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Here, n is the subband index including spin and we have used
h̄v = dE/dk for the velocity v. In the left-hand column, the
solid lines give the dispersion of the hybrid structure, while
the dotted lines show the electron and hole dispersions of the
normal channel only (with Wsc = 0 or γ = 0). In all cases,
μ � �, and ρ has been broadened by convolution with a
Lorentzian of full width at half maximum � 
 �. For the
short junction, we indeed have �ind ≈ �, which manifests as
an essentially hard superconducting gap for |E| < �ind. We
have verified that ρ vanishes identically in this regime with
� → 0. In the intermediate and long regimes, subgap states
exist at energies smaller than �, which manifests as a nonzero
subgap ρ (soft gap). The difference between the two regimes
is the number of these states: in an intermediate junction they
are few, but they are multiple in the long-junction limit, as
the conditions � � ETh and � � ETh indicate. Observe that
in both cases the subgap bands are flat around k = 0 and

drop towards a minimum in energy as k increases before
rising sharply again [67]. Superimposed on this are intraband
oscillations that happen on a smaller energy scale. In principle,
oscillations thus manifest in ρ on two energy scales: the larger
energy scale is the interband spacing around k = 0 (∝ 1/W 2),
and the smaller the scale of intraband oscillations. Overall, the
former has a larger contribution to ρ due to the small curvature
in the dispersion. Oscillations on both scales are clearly visible
for the intermediate junction. However, increasing � further
(dashed curve) washes out the fine structure due to intraband
oscillations. As a result, ρ gradually increases towards a
maximum, when E aligns with the energy of the subgap state
around k = 0. On the other hand, in the long junction there are
multiple states at subgap energies, and the most prominent
feature in ρ is the peaks associated with the flat parts of
those bands. The fine structure due to intraband oscillations
is superimposed, but masked by the broadening.
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