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We propose a spin-selective coherent electron transfer in a silicon quantum dot array. Oscillating magnetic fields
and temporally controlled gate voltages are utilized to separate the electron wave function into different quantum
dots depending on the spin state. We introduce a nonadiabatic protocol based on π pulses and an adiabatic protocol
which offer fast electron transfer and robustness against the error in the control-field pulse area, respectively. We
also study a shortcut-to-adiabaticity protocol which compromises these two protocols. We show that this scheme
can be extended to multielectron systems straightforwardly and used for nonlocal manipulations of electrons.
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I. INTRODUCTION

Spins in silicon-based quantum dots offer a promising
platform for fault-tolerant quantum information processing
[1]. Fidelities of readout and single-qubit control above the
surface code threshold [2] have been demonstrated, courtesy of
exceptionally long lifetimes [3–5] and coherence times [6–9].
These are two figures of merit that are highly desirable for
a scalable quantum computing architecture. Various types of
qubit operations have been demonstrated [10–12], including
two-qubit logic gates using the exchange interaction between
single spins in isotopically enriched silicon [13]. On the
other hand, single-electron pumps [14–20] and the shuttling
of single electron [21,22] in quantum dots have also been
demonstrated at metrological accuracy. In fact, single-spin
shuttling in a GaAs system quantum dot array has recently
been demonstrated using this shuttling operation, and has
been shown to preserve the spin coherence up to macroscopic
distances [22].

In cold atom systems, the coherent transport of neutral
atoms [23] and the creation of highly entangled states of
neutral atoms have been demonstrated by utilizing the hyper-
fine spin-dependent optical lattice potentials [24]. Two-qubit
gate operations employing such state-dependent potentials
have been studied theoretically [25–27]. To the best of our
knowledge, however, no spin-selective electron transfer which
offers nonlocal qubit operations in a quantum dot array has
been demonstrated.

In this paper, we propose a scheme for spin-selective coher-
ent electron transfer in a quantum dot array achievable using
the proven experimental techniques in single-spin shuttling
[21,22] in a silicon qubit architecture [11–13]. The gradient
of oscillating magnetic fields and controlled gate voltages are
utilized to separate the electron wave function into different
quantum dots in a spin-selective manner. This method can
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be used for quantum nondemolition measurement of electron
spin [28–30] if it is followed by a measurement of the
electron position without dissipating the electron. We propose
nonadiabatic and adiabatic protocols. A simple nonadiabatic
transfer based on π pulses is fast but also relatively sensitive
to the error in timing and amplitude of the control field. Our
adiabatic protocol is based on stimulated Raman adiabatic
passage (STIRAP) which is a well-known, efficient protocol
for state-to-state population transfer [31–33]. We introduce
the spin-selective STIRAP (spin-STIRAP) which provides
robustness against the errors although the operation time
is longer than that of the nonadiabatic protocol. We also
examine a nonadiabatic electron transfer based on a shortcut-
to-adiabaticity protocol [34,35] which is referred to as the
invariant-based engineering protocol [36]. It is faster than the
spin-STIRAP and more robust against the error of the control
field than the π -pulse protocol. Furthermore, we show that this
scheme can be extended to multielectron systems to implement
two-qubit gates. We propose nonlocal phase manipulations of
electrons as an example.

II. SPIN-SELECTIVE ELECTRON TRANSFER

We first consider a four-dot system shown in Fig. 1(a),
where three quantum dots align along the z axis, and a wider
quantum dot is located parallel to the array in the yz plane.
The heights of the potential barriers between the dots and
the depths of the potential wells are tunable. There is a
stationary uniform magnetic field Bz = (0,0,Bz) parallel to
the two-dimensional electron gas. A conducting lead carries
the ac currents Ik (k = p, S), which induce the ac magnetic
fields Bk = (Bk,0,0), perpendicular to the two-dimensional
electron gas. The conducting lead is separated from the center
of dot 4 by distance r0, and is tilted with respect to the dot array
by angle θ0 to enhance the influence of the spatial dependence
of the magnetic field Bk on the electron in the quantum dots.
This spatial dependence of the magnetic field plays an essential
role in our scheme.
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FIG. 1. (a) Schematics of the proposed system. The blue line
represents the conducting lead for the ac control currents Ik (k =
p, S) producing the magnetic fields Bk = (Bk,0,0). The conducting
lead is tilted with respect to the dot array by angle θ0. Here, r0 is
the distance of the lead from the center of dot 4. (b) Schematics of
the spin-selective transfer of a single electron. The top black curves
represent the potential profile of dot 4, and the bottom black lines
represent the potentials of the dot array. The blue color represents
the square of the amplitude of the wave function of the spin-down
electron. (c) Energy diagram of the system in step II. Here, |i,↑(↓)〉 is
the ith instantaneous eigenstate trapped in dot 4 with spin up (down).
The ac magnetic field Bp (pump field) couples |1,↓〉 and |2,↑〉, and
BS (Stokes field) couples |2,↑〉 and |3,↓〉.

We consider spin-selective electron transfer from dot 1 to
dot 3, in which only a spin-down electron is transferred, while
a spin-up electron returns to dot 1 in the end of the control. We
assume that the electron is initially trapped in dot 1 and that
the state of the electron is a superposition of the lowest-energy
spin-up state and the lowest-energy spin-down state.

The electron transfer protocol is illustrated in Fig. 1(b). It
consists of four steps: (I) adiabatic transfer of the electron to dot
4, (II) nonadiabatic or adiabatic spin-selective level transfer,
(III) adiabatic transfer of the electron to the in-line dots (dots
1, 2, 3), (IV) loading of the spin-down electron to dot 3.

In step I, the gate voltages of the in-line dots are gradually
increased, and the potential well of dot 4 is deepened so that the
electron is transferred to dot 4 without energy excitations. In
step II, the lowest-energy state with spin down is transferred to
the second spin-down excited state, while the spin-up electron
remains in the spin-up ground state. We use dot 4 for the level
transfer instead of dot 1 nor the combined dot composed of
the in-line dots in order to enhance the influence of the ac
magnetic fields to the electron and also to reduce the influence
of the fluctuation of the gate voltage at the in-line dots. Three
different methods for step II are introduced later. In step III, the
barriers of the in-line dots are lowered and the potential depth of

dot 4 is reduced so that the electron is adiabatically transferred
to the combined dot. In step IV, the barriers of the in-line dots
are gradually increased and the depths of the potential wells
are tuned so that the dot 3 has the highest potential among the
in-line dots. In the end of step IV, the spin-down electron is
adiabatically carried into dot 3 because the wave function of
the second excited instantaneous eigenstate with spin down is
located in dot 3. On the other hand, the spin-up electron returns
to dot 1. Note that the state of the electron is the superposition
of these two states. This method followed by a measurement
to determine the dot where the electron is trapped [37] can be
used for quantum nondemolition measurement of the electron
spin because a position measurement projects the electron state
to spin up or spin down.

The adiabatic transfer of electrons between quantum dots
has been routinely used. Therefore, we mainly discuss step II
in the following. The duration of step II is much longer than
the other steps. Thus, step II dominates the execution time of
the transfer process. Details of step II are analyzed in Secs. III
and IV A. Details of step IV are shown in Sec. IV B, while
details of steps I and III are given in Appendix E.

Simpler spin-selective electron transfers using only the in-
line dots without dot 4 might be possible if the fluctuation of the
gate voltages of the dots and barriers is negligible. However,
the fluctuation causes unwanted fluctuation of the separation
of the energy levels and thus lowers the transfer efficiency. On
the other hand, in our scheme, the electron is prepared in a
single dot for adiabatic loading to a selected dot. Thus, we can
restrain the influence of the potential fluctuation.

III. NONADIABATIC AND ADIABATIC SPIN-SELECTIVE
LEVEL TRANSFERS

In step II, the electron is trapped in dot 4. To detail the
schemes of step II, we use the energy eigenstates in dot 4
for Bk = 0 (k = p, S) as a basis of the system. The energy
diagram of the system is illustrated in Fig. 1(c). Here, |i,↓(↑)〉,
for i = 1,2,3, denote the first three lowest-energy levels with
spin down (up) in the z direction. The energy separations
of the levels are nonuniform because the potential of dot 4
is anharmonic. The stationary magnetic field Bz causes the
Zeeman splitting with energy difference gμBBz/h̄ between
spin-up and spin-down states, where g is the electron g factor
and μB is the Bohr magneton.

We aim at a spin-selective transfer in which only spin-down
electron is transferred from |1,↓〉 to |3,↓〉, while spin-up
electron is unaffected. The frequencies ωk of Bk are tuned
to be ωp = (E2,↑ − E1,↓)/h̄ and ωS = (E3,↓ − E2,↑)/h̄, where
Ei,↑(↓) is the energy eigenvalue of |i,↑(↓)〉, so that the pump
field Bp couples |1,↓〉 and |2,↑〉, and the Stokes field BS

couples |2,↑〉 and |3,↓〉. Note that |1,↑〉 is not coupled to the
other states by Bk .

We represent the effective Hamiltonian of the system using,
as a basis, the subset of states {|1,↓〉,|2,↑〉,|3,↓〉} coupled by
the resonant magnetic fields. The pulsed magnetic fields used
in step II are represented as

Bk(t,r) = B
(e)
k (t)η(r) cos(ωkt) (1)

with the envelope function B
(e)
k (t), which is the envelope of

the pump and the Stokes fields at the center of dot 4. Here,
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η(r) is the ratio of the intensity of the field at r to B
(e)
k . Thus,

η(r) characterizes the spatial dependence of the magnetic field.
Using the rotating frame and the rotating wave approximation
(RWA), the Hamiltonian of the three-level system can be put
in the form

HRWA(t) = h̄

2

⎛⎝ 0 �p(t) 0
�p(t) 0 �S(t)

0 �S(t) 0

⎞⎠, (2)

with the Rabi frequencies given by

�k(t) = B
(e)
k (t)gμBμk

2h̄
, (3)

and the overlapping factors defined by

μp =
∫

d r φ∗
1 (r)η(r)φ2(r),

μS =
∫

d r φ∗
2 (r)η(r)φ3(r), (4)

where φi(r) = 〈r,↓(↑)|i,↓(↑)〉 (see Appendix A for details
of the derivation of HRWA). If the magnetic fields Bk were
spatially uniform, they could not couple the energy levels
because the energy eigenvectors are orthogonal to each other.
The spatial dependence of the magnetic fields realizes the
coupling between the energy levels.

It has been demonstrated that the valley separation can be
tuned via electrostatic gate control of quantum dots providing
the splittings spanning 0.3–0.8 meV [38]. Thus, we assume that
other valley states are located sufficiently above |i,↑(↓)〉, and
multivalley relaxation effects are negligible. We also assume
that the relaxation rate from the excited states |2,↑〉,|3,↓〉 to
the lower-energy states induced by the interaction with other
electrons is small enough compared to the duration of step II.

A. Nonadiabatic spin-selective electron transfer
based on simple π -pulse control

One of the nonadiabatic schemes of step II is composed of
a π -pulsed pump field followed by a π -pulsed Stokes field that
are separated from each other in the time domain as depicted
in Fig. 2(a). The envelope functions are given as

B
(e)
k (t) =

{
B0

k for |t − Tk| � τk/2,

0 for |t − Tk| > τk/2,
(5)

where B0
k is the amplitude of the rectangular pulse and τk is

the pulse width. When the pulse areas are π , that is,

B0
k = 2πh̄

gμBμkτk

, (6)

the state is transferred from |1,↓〉 to |2,↑〉 due to the pump
pulse, and then transferred from |2,↑〉 to |3,↓〉 due to the
Stokes pulse. However, this scheme is sensitive to the error
in the pulse area compared to the adiabatic scheme discussed
below. Inaccuracy of the pulse area causes the imperfection
of the population transfer. Another method of wave-function
splitting depending on electron spin based on π -pulse control
is discussed in Appendix B.
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FIG. 2. Envelope function of the magnetic fields B (e)
p and B

(e)
S

normalized by B0
p and B0

S , respectively, for T1(= 0) < t < T2 for
(a) π -pulse control, (b) spin-STIRAP, and (c) invariant-based engi-
neering protocol. B0

k is the maximum intensity of the pulses. The
parameters used are shown in Table I.

B. Spin-selective STIRAP

Stimulated Raman adiabatic passage (STIRAP) has been
widely studied for population transfer of molecules [39–46],
transport of single atoms [47–52], electrons [53,54], and BECs
[55–58]. The remarkable properties of this protocol have
already been demonstrated in diverse areas such as chemical
reaction dynamics [59], laser-induced cooling of atomic gases
[60], light beams propagating in three evanescently coupled op-
tical waveguides [61–64], sound propagation in sonic crystals
[65], and control of a superconducting qubit [66]. In spin-based
quantum computing architecture, this protocol can be utilized
to transfer qubits coherently across large distances [67].
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Here, we introduce the spin-STIRAP of an electron in dot
4. The envelope functions of the pump and the Stokes fields
are represented as

B
(e)
k (t) = B0

k exp

[
− (t − Tk)2

2σ 2

]
, (7)

where σ is defined by

σ = FWHM

2
√

2 ln 2
(8)

with the full width at half-maximum (FWHM) and the maxi-
mum intensity B0

k of the peak centered at Tk . The separation
of the peaks is chosen as

Tp − TS = 3FWHM

4
√

ln 2
. (9)

Note that the pump pulse follows the Stokes pulse, Tp > TS,
as shown in Fig. 2(b).

A time-dependent, field-dressed eigenstate of the system,
which is a linear combination of the field-free states, is
represented as

|φ0(t)〉 = cos 
(t)|1,↓〉 − sin 
(t)|3,↓〉, (10)

where 
(t) is given by

tan 
(t) = �p(t)

�S(t)
. (11)

Because the Stokes pulse precedes the pump pulse, �p � �S

and |φ0〉 = |1,↓〉 at the initial time T1 of step II; �p 	 �S and
|φ0〉 = |3,↓〉 at the final time T2 of step II. The STIRAP control
is robust against the change in the profile of the B

(e)
k .

C. Shortcuts to adiabaticity

Assisted adiabatic transformation or shortcut-to-adiabati-
city (STA) protocols have been developed to generate the
same target state as reference adiabatic dynamics, with over-
all weaker driving fields and/or in a shorter time [34,35].
The STA protocols have been utilized for manipulations
of, e.g., isolated atoms and molecules [36,68–71], spin sys-
tems [72–75], Bose-Einstein condensates [76–83], and elec-
tron spin of a single nitrogen-vacancy center in diamond
[84,85]. Several STA protocols have been applied to STIRAP
systems, for example, Loop STIRAP [86], counterdiabatic
[36,68], fast-forward [87], and invariant-based engineering
protocols [36,88].

We show that the STA protocol can be used for the spin-
selective transfer faster than the STIRAP control and more
robust than the π -pulse control using the invariant-based
engineering protocol [88]. Using the result in Sec. III of
Ref. [88] and Eq. (3) of this paper, we can derive the magnetic
fields as

B (e)
p (t) = 4h̄(β̇ cot γ sin β + γ̇ cos β)

gμBμp
,

B
(e)
S (t) = 4h̄(β̇ cot γ cos β − γ̇ sin β)

gμBμS
, (12)

TABLE I. Parameters of the pulse fields for the spin-selective,
interlevel population transfer in step II. Other parameters are given as
B0

p = 0.1 mT, B0
S = 0.064 mT, fp = 47 GHz, and fS = 32 GHz. The

interval between the pump and Stokes pulses in the π -pulse control
was set to be 1.42 μs to avoid unwanted overlap of the pulses.

(a) π pulse control
T2 − T1 TS − Tp τp,S

15.68 μs 8.55 μs 7.13 μs

(b) Spin-STIRAP
T2 − T1 Tp − TS FWHM

396 μs 80 μs 88 μs

(c) Invariant-based engineering protocol
T2 − T1 δ ε

62 μs π/8 0.02

where

γ =
4∑

j=0

aj t
j ,

β =
3∑

j=0

bj t
j , (13)

with a0 = ε, a1 = 0, a2 = 16(δ − ε)/T 2
f , a3 = −32(δ −

ε)/T 3
f , a4 = 16(δ − ε)/T 4

f , b0 = b1 = 0, b2 = 3π/(2T 2
f ), and

b3 = −π/(T 3
f ). Here, Tf = T2 − T1 is the duration of the

control; we have γ (0) = γ (Tf ) = ε, β(0) = 0, and β(Tf ) =
π/2. Figure 2(c) shows the time dependence of B(e)

p and B
(e)
S

for the parameters in Table I(c).
A relevant dynamics of the system governed by HRWA in

Eq. (2) with B(e)
p and B

(e)
S in Eq. (12) is explicitly writen as

|ϕ0(t)〉 =
⎛⎝ cos γ (t) cos β(t)

−i sin γ (t)
− cos γ (t) sin β(t)

⎞⎠, (14)

which is an instantaneous eigenstate of the invariant

I (t) = h̄

2
�0

⎛⎝ 0 cos γ sin β −i sin γ

cos γ sin β 0 cos γ cos β

i sin γ cos γ cos β 0

⎞⎠,

(15)

which satisfies dI/dt = 0. �0 is an arbitrary constant with
unit of frequency. Importantly, if ε is sufficiently small, we
have |ϕ0(0)〉 
 |1,↓〉 and |ϕ0(Tf )〉 
 −|3,↓〉. Therefore, the
magnetic field in Eq. (12) can approximately drive the initial
state |1,↓〉 to target state |3,↓〉 up to overall phase. Because
|1,↓〉 and |3,↓〉 are not exactly |ϕ0(0)〉 and −|ϕ0(Tf )〉, the
fidelity of this control is slightly less than unity.

As shown in Sec. IV, Tf , ε, and δ determine the profile
of B

(e)
k ; ε also determines the fidelity when there is no noise;

δ determines the population of intermediate state during the
control and the fidelity of the control.
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FIG. 3. Potential of dot 4 normalized by V4. The colors show the
square of the amplitude of the wave functions of the three lowest levels
with either spin up or down. The vertical arrows depict the fluctuation
of V4 on the order of kBT .

IV. NUMERICAL RESULTS

The duration of step II is much longer than those of other
steps. Thus, it dominates the total duration of the process. We
first study the efficiency of step II, then show the numerical
results for step IV. The numerical results for steps I and III are
shown in Appendix E.

A. Step II

We examine the efficiency of the level transfer in step II
using a one-dimensional model for dot 4 illustrated in Fig. 3
with the Hamiltonian

H = p2

2m∗ + V (z) + gμB

h̄
B · S, (16)

where m∗ is the effective electron mass and S is the electron
spin. We assume that the confinement of the electron in the y

direction is at least twice stronger than the confinement in the z

direction. Then, the one-dimensional model can approximate a
few of the lowest-energy eigenstates of the dot that we utilize.
We take the potential of dot 4 as

V (z) =
{
V4 sin2 (πz/L4) for |z| � L4/2,

V4 for |z| > L4/2.
(17)

Here, L4 is the width of the dot, and the depth of the potential
well is V4. The squares of the amplitude of the wave functions
of the three lowest levels with either spin up or down are shown
in Fig. 3.

The dynamics of the system in step II is simulated using
the three-level model expanded by |1,↓〉,|2,↑〉,|3,↓〉 for T1 �
t � T2 without RWA. In the numerical simulation, we solve
the time-dependent Schrödinger equation with a fourth-order
Runge-Kutta integrator with the time step of approximately
1 ps. The frequencies of the ac magnetic fields are fp =
ωp/(2π ) 
 47 GHz and fS = ωS/(2π ) 
 32 GHz for g = 2,
L4 = 335 nm, V4 = 0.72 meV, Bz = 0.2 T, and m∗ = 0.28me,
where me is the electron mass. The overlapping factors are
μp = −0.05 and μS = −0.078 corresponding to r0 = 1.4L4
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FIG. 4. Time dependence of the populations in (a) π -pulse con-
trol, (b) spin-STIRAP, (c) invariant-based engineering protocol. The
parameters used are shown in Table I.

and θ0 
 π/3. The same value of B0
k is used for the three

protocols, where k = p,S. The eigenenergies are calculated
by using the Hamiltonian (16). Figure 4(a) shows the time
dependence of the populations in |1,↓〉, |2,↑〉, and |3,↓〉 in
the nonadiabatic spin-selective electron transfer with π -pulse
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fields, where the state is driven to |2,↑〉 and subsequently to
|3,↓〉. The parameters used are shown in Table I(a). The pulse
width τk is chosen so that the pulse area �kτk becomes π .
Figure 4(b) shows the populations under the spin-STIRAP for
the parameters in Table I(b). The population is almost directly
transferred to |3,↓〉. The finite population of |2,↑〉 around
t = (Tp + TS)/2 is due to the finite pulse area. The duration
of the control T2 − T1 for nonadiabatic transfer is 25 times
shorter than that of the spin-STIRAP. Here, the FWHMs of the
pulse fields were chosen so that the population of the target
state at the final time of step II is greater than 0.998. It was

shown that AST ≡ (Tp − TS)
√

(�(peak)
p )2 + (�(peak)

S )2 should be
sufficiently larger than 1 to satisfy the adiabatic condition
and should typically exceed 10 to provide efficient population
transfer [32,33], where �

(peak)
p and �

(peak)
S are the maximum

values of �p and �S, respectively. With our parameters, AST

is approximately 25. Figure 4(c) shows the populations in
the invariant-based engineering protocol. The population of
|2,↑〉 vanishes at the final time. The time dependence of the
populations, the envelope, and duration of the pulse fields
depend on δ. The duration of the control, T2 − T1, is six times
shorter than that of the spin-STIRAP for the parameters used
here. In Sec. IV the results for different values of δ are also
examined to show that the invariant-based engineering protocol
interpolates between the feature of the other two controls.

Nonadiabatic transfer schemes take shorter time than the
STIRAP transfer scheme. However, the STIRAP transfer is
much more robust against the error of the pulse envelope [32].
To examine the robustness of the controls against the error of
the pulse profile, we multiply the pump field and the Stokes
field by λp and λS, respectively. Figures 5(a)–5(c) show the
dependence of the fidelity defined by the population of |3,↓〉
at t = T2 on λk for the π -pulse control, the spin-STIRAP,
and the invariant-based engineering protocol, respectively. It is
seen that the spin-STIRAP and the invariant-based engineering
protocols are more robust against the error of the pulse area
compared to the π -pulse control. The spin-STIRAP shows its
robustness even when the pulse area is considerably large as
shown in Fig. 5(b). The invariant-based engineering protocol
is more robust than the π -pulse control, especially for the
case of λp 
 λS as shown in Fig. 5(c). Figure 5(d) shows
the dependence of the fidelity of the π -pulse control and
the invariant-based engineering protocol for λp = λS. The
robustness of the invariant-based engineering protocol depends
on the parameter δ. Note that the fidelity for λp = λS = 1 is
slightly less than unity in Figs. 5(c) and 5(d). This imperfection
of the fidelity is attributed to the fact mentioned in the last
paragraph of Sec. III C. Interestingly, the peak of fidelity
appears at slightly away from λp = λS = 1, and the value of
λp/S corresponding to the peak depends on δ as seen in Fig. 5(d),
although the detailed study of this dependence is beyond the
scope of this paper.

Now, we show the results of the invariant-based engineer-
ing protocol with shorter and longer duration than the ones
shown in Figs. 2(c) and 4(c) to show that the invariant-based
engineering protocol interpolates between the feature of other
two controls. We refer the invariant-based engineering protocol
with the duration of 31, 186, and 62 μs, as short STA, long
STA, and medium STA for ease of expression. The medium
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FIG. 5. Dependence of the fidelity defined by the population of
|3,↓〉 at t = T2 on λk for (a) π -pulse control, (b) spin-STIRAP,
(c) invariant-based engineering protocol. In panels (a)–(c), contours
are shown for the values of fidelity, 0.9995 (solid curve), 0.999 (dashed
curve), 0.9985 (dashed-dotted curve), while the contour for fidelity
0.9995 is out of the range of panel (b). (d) The λp dependence of
the fidelity of the π -pulse control and the invariant-based engineering
protocol (STA), where λp = λS. The parameters used are shown in
Table I. The green dotted curve and the red solid curve correspond to
the STA with δ = π/4 and π/8, respectively. The blue dashed curve
corresponds to the π -pulse control.

STA corresponds to B
(e)
p,S in Fig. 2(c). We chose δ for short

and long STAs such that the maximum value of the envelope
functions is the same as Fig. 2(c), while ε is the same as
Fig. 2(c). Figure 6(a) shows the envelope functions of the
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FIG. 6. Envelope functions of the magnetic fields B (e)
p and B

(e)
S

normalized by B0
p and B0

S , respectively, for invariant-based engi-
neering protocol for (a) T2 − T1 = 31 μs, δ = 0.5π , ε = 0.02, and
(b) T2 − T1 = 186 μs, δ = 0.02π , and ε = 0.02. The other parame-
ters used are shown in the caption of Table I.

magnetic fields B(e)
p and B

(e)
S for short STA. The amplitude

of the pump (Stokes) field increases in the first (second) half
of step II, respectively, compared to those in Fig. 2(c). Note
that the order of these major peaks of B(e)

p and B
(e)
S is the same

as π -pulse control. Figure 6(b) shows the envelope functions
of the magnetic fields for long STA than Fig. 2(c). The profiles
of the envelope functions are similar to those of the STIRAP
control rather than the π -pulse control.

Figures 7(a) and 7(b) show the time dependence of popula-
tions corresponding to B

(e)
p,S in Figs. 6(a) and 6(b), respectively.

The feature of the populations in short STA is similar to that
in the π -pulse control in Fig. 4(a). On the other hand, in long
STA in Fig. 7(b), the population of state is directly transferred
from |1,↓〉 to |3,↓〉 as it is in the STIRAP control in Fig. 4(b).

To show the tradeoff between speed and robustness of the
invariant-based engineering protocol, we show the fidelity of
short, long, and medium STAs as function of λp,S in Fig. 8.
The robustness of short STA is similar to the π -pulse control,
while the robustness of long STA is considerably high as the
STIRAP control. It is even slightly higher than that of the

 0

 0.2

 0.4

 0.6

 0.8

 1

po
pu

la
tio

n

 0

 0.2

 0.4

 0.6

 0.8

 1

po
pu

la
tio

n

(a)

(b)
t [μs] 

t [μs] 

 0 31

 0  186

FIG. 7. Time dependence of the populations in the invariant-based
engineering protocol for (a) T2 − T1 = 31 μs, δ = 0.5π , and ε =
0.02 and (b) T2 − T1 = 186 μs, δ = 0.02π , and ε = 0.02. The other
parameters used are shown in the caption of Table I.
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FIG. 8. The λp dependence of the fidelity of the invariant-based
engineering protocol for the durations indicated in the panel, where
λp = λS. The fidelities of the π -pulse control and the STIRAP control
corresponding to Figs. 2(a) and 2(b), respectively, are also shown as
functions of λp for comparison.
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STIRAP control because the effective duration of the STIRAP
with the used parameters, when the population transfer actually
occurs, is shorter than that of long STA. The fidelity of medium
STA is between short and long STA. Thus, the invariant-based
engineering protocol interpolates the feature of the π -pulse
and the STIRAP controls.

The fluctuation of the potential of dot 4 can degrade the
control efficiency of step II. We consider the fluctuation of
V4 in Eq. (17). The change in the energy-level intervals due
to the change in V4 is about one magnitude smaller than the
change in V4 (see Appendix C). To examine the influence of
the potential fluctuation, we introduce the fluctuation of the
energy levels δEi , where δEi is the modulation of the energy
from the value without potential fluctuation. We model the
fluctuation δEi as a noise with a Gaussian distribution with
the standard deviation σ = kBT/10 and time autocorrelation
function α. The fluctuations of the energy levels are assumed to
be independent of each other for simplicity. The time evolution
of the populations is calculated by solving the time-dependent
Schrödinger equation with a fourth-order Runge-Kutta inte-
grator with the time step of approximately 1 fs. The other
parameters used are shown in Table I. In the case with the
level fluctuations, the total population of the states decreases
to approximately 0.99 because of numerical error. The fidelity
is defined by the renormalized population of |3,↓〉. It is seen
that the fidelity of the three protocols is higher than 0.995 for
T = 100 mK and α = 1 ps.

B. Step IV

To simulate step IV, we consider the one-dimensional model
of the in-line dots with the rectangular potential illustrated in
Fig. 9(a). Here, Vbi , for i = 1,2,3,4, are the barrier heights,
and Vdj , for j = 1,2,3, are the potential depth of the dots. The
width of the dots Ld and the width of the barriers Lb are all
taken to be 30 nm. Here, we use rectangular potentials for the
dots for simplicity. Note that the details of the form of the
potential do not influence the result because this step is based
on adiabatic dynamics. At the initial time of step IV, t = T3, we
takeVb2,b3 = Vdj (=1,2,3) = 0 < Vb1 = Vb4 so that the three dots
are combined to form a single larger dot. The middle barrier
heights Vbi and dot potentials Vdi , for i = 2,3, are adiabatically
increased from 0 to V

(0)
bi and V

(0)
di , respectively, as

Vbi,di = V
(0)

bi,di[R(t − T3)], T3 � t � T4 (18)

with R(t) = [t − sin(ω4t)/ω4]/(T4 − T3) and ω4 = 2π/(T4 −
T3), while the other parameters are kept constant, Vb1,b4 =
V

(0)
b1,b4 and Vd1 = 0, where T4 is the final time of step IV.

R interpolates between 0 to 1 smoothly with R(T3) = 0,
R(T4) = 1, and R′(T3) = R′(T4) = 0, where a prime denotes
time derivative. Figure 9(b) shows the time evolution of the
square of the amplitude of the wave function for the initial
state |3,↓〉, which is the second excited state with spin down
in the combined in-line dots. It is seen that the wave function
is mostly localized at dot 3 at t = T4. The fidelity of step IV
defined by the overlap between the state at t = T4 and the target
energy eigenstate is higher than 0.9999 for T4 − T3 > 0.26 ns,
thus, unwanted nonadiabatic transitions are negligible.

Similarly to step IV, we estimated the duration of steps I
and III. The fidelity of steps I and III is higher than 0.9999 if
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FIG. 9. (a) Schematics of the one-dimensional model of the in-
line dots. The height of the potential barriers and the depth of the
potential wells are denoted by Vbi and Vdj , for i = 1,2,3,4 and j =
1,2,3, respectively. In this panel, the difference in Vdj is exaggerated
for ease of explanation. The inset schematically shows the square of
the amplitude of the wave function of the instantaneous eigenstates.
The purple, green, and blue colors correspond to φ1, φ2, and φ3,
respectively. (b) The time evolution of the square of the amplitude of
the wave function for the parameter set: Ld = Lb = 30 nm, V (0)

d1 = 0,
V

(0)
d2 = 179 μeV, V

(0)
d3 = 299 μeV, and V

(0)
bi = 3.6 meV. The initial

state is |3,↓〉.

the duration is longer than 2 ns (see Appendix E for details).
Thus, the duration of steps I, III, and IV is much shorter than
that for step II.

V. TWO-ELECTRON TRANSPORT AND NONLOCAL
OPERATION

We consider two-electron spin-selective transfer in the
system depicted in Fig. 10(a) to show that our protocol may be
applicable to implement two-qubit gates. We assume that an
electron is trapped in dot 1 and another electron is trapped in
dot 1′ at the initial time. The barrier potential between dots 3
and 3′ is sufficiently high so that the two electrons cannot pass
each other. We aim to transfer the right electron to dot 3′ only
when both electron spins are initially down.

The schematics of the spin-selective electron transfer is
shown in Fig. 10(b). We first transfer the left electron to
dot 3. We can use the method of the single-electron transfer
introduced above by taking into account the modulations of
the overlapping factors and the resonance frequencies of the
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Dot1 Dot2 Dot3

Dot4

t =T2

t =T1

t =T0

(a)

(b)

Dot3 Dot2 Dot1

Dot4

FIG. 10. (a) Schematics of the system. The conducting lead for
the ac current is not depicted here. Dots 4 and 4′ are used for transport
of the left electron and the right electron, respectively. (b) Schematics
of the two-qubit gate operation. The black lines represent the potential
of dots i and i ′ for i = 1,2,3. The blue and red colors represent the
square of the amplitude of the wave function of the spin-down and
-up electrons, respectively at the initial time t = T ′

0 , the end of the
transfer of the left electron t = T ′

1 , and the end of the transfer of the
right electron t = T ′

2 . The electrons take a superposition of spin-up
and -down states. The right electron is transferred to dot 3′ only if the
both electron spins are down initially. The arrows at dot 3′ represent
the modulation of the dot potential by pulsing the gate voltage.

pump and the Stokes fields caused by the interaction between
the electrons. The left electron is transferred only if the electron
spin is down.

Now, we consider the right electron transfer. First, the
right electron is adiabatically transferred to dot 4′. When the
left electron is trapped in dot 3 or equivalently if the left
electron spin is initially down, the effective potential for the
right electron is deformed due to the interaction with the
left electron in dot 3 more than the case in which the left
electron is trapped in dot 1 or equivalently its spin is initially
up. Thus, the resonance frequencies of the pump and the
Stokes fields depend on the initial spin of the left electron.
The resonance frequencies for population transfer of the right
electron in dot 4′ depend on the occupancy of the left electron
in dot 3. The resonance frequencies fp and fS for the right
electron in dot 4′ are modulated approximately by 900 and 700
MHz, respectively, for r0 = 1.4L4 and θ0 
 π/3 when dot 3
is 317 nm distant from the center of dot 4′. (See Appendix
D for this estimation.) The change of the overlapping factors
is approximately 3% compared to the case when the Coulomb
interaction is negligible. This property allows us to transfer the
right electron depending on the initial set of the spins. Again,
we can use either of the nonadiabatic and the adiabatic schemes
to transfer the right electron to dot 3′.

This multielectron transfer scheme can be used for nonlocal
operations of qubits. In the end of the control discussed above,
the right electron is trapped in dot 3′ only if both of the initial
electron spins are down. For example, pulsing the gate voltage

of dot 3′ can realize the nonlocal control of the phase of the
qubits’ state. The phase is tuned by the pulse intensity and the
duration. The electrons are brought back to the original dots
(dots 1 and 1′) by the inverse electron transfer process.

The spin-dependent phase in our scheme can be employed
to implement important two-qubit gates, including the CNOT
(controlled-NOT) gate and the CZ (controlled-phase) gate, for
quantum circuit design [89,90]. Let us denote |↑〉 and |↓〉 as
|0〉 and |1〉, respectively. The above protocol implements the
gate

Uϕ =

⎛⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiϕ

⎞⎟⎠ (19)

up to an overall phase that we can safely ignore. Here, ϕ is the
phase acquired when both electrons are in the spin state |1〉,
and the basis vectors are arranged in the order of |00〉, |01〉,
|10〉, and |11〉. The phase is controlled by manipulating the
gate voltage of dot 3′. Suppose that we adjust the parameters
so that ϕ = ±π . Then, we obtain the CZ gate

UCZ = |0〉〈0| ⊗ I + |1〉〈1| ⊗ σz. (20)

The CNOT gate is obtained by applying the Hadamard gate
before and after the operation of the CZ gate,

UCNOT = (I ⊗ HHad)UCZ(I ⊗ HHad)

= |0〉〈0| ⊗ I + |1〉〈1| ⊗ σx, (21)

where

HHad = 1√
2

(
1 1
1 −1

)
(22)

is the Hadamard gate. We have demonstrated that our scheme
implements the universal set of gates.

VI. CONCLUSION

We have proposed the spin-selective, coherent electron
transfer in quantum dot array. The gradient of the oscillating
magnetic field and the gate voltage control are utilized to
separate the electron wave function into different quantum
dots depending on the electron spin. We have examined three
different protocols: the nonadiabatic π -pulse control, the spin-
STIRAP, and the invariant-based engineering protocol. The
π -pulse control offers fast transport, and the spin-STIRAP
offers a robust control against the error of the pulse area of
the control field although the manipulation time is longer than
the π -pulse control. The invariant-based engineering protocol
interpolates the other two protocols in the sense that it is faster
than the spin-STIRAP and is more robust than the π -pulse
control. We also studied the robustness of the controls to the
potential fluctuation. This spin-selective electron transfer can
be used for quantum nondemolition measurement of electron
spin if it is followed by a measurement of its position which
does not require absorption of the electron. This scheme can
be extended to multielectron systems offering the selectivity
of the transport with respect to the set of spins, and can be used
for nonlocal phase manipulation of the electrons including the
CZ gate and the CNOT gate.
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APPENDIX A: DERIVATION OF HRWA

Here, we show the derivation of HRWA in Eq. (2). We
consider an electron in dot 4 governed by the Hamiltonian

H = p2

2m∗ + V (r) + gμB

h̄
B(t,r) · S, (A1)

where m∗ is the effective electron mass, S is the electron spin,
V is the potential of dot 4, and the magnetic field is given by

B(t,r) = Bz + Bp(t,r) + BS(t,r). (A2)

We consider the subset of states {|1,↓〉,|2,↑〉,|3,↓〉} consisting
of the energy eigenstates for Bk = 0, where k = p,S. As
mentioned in Sec. III, Bk is space dependent, and their
frequency is tuned so that Bp couples |1,↓〉 and |2,↑〉, and
BS couples |2,↑〉 and |3,↓〉. The Hamiltonian of the reduced
system spanned by the subset of states is represented as

H ′ =
∑
s1,s2

|s1〉〈s1|H |s2〉〈s2|, (A3)

where s1 and s2 run over {(1,↓),(2,↑),(3,↓)}. Matrix elements
of H ′ are represented as

[H ′]s1,s2 = 〈s1|H ′|s2〉. (A4)

Now, we use a rotating frame by transforming the state as

|�R〉 = UR|�〉, (A5)

with UR defined by

UR =
⎛⎝eiE1,↓t/h̄ 0 0

0 eiE2,↑t/h̄ 0
0 0 eiE3,↓t/h̄

⎞⎠, (A6)

where |�〉 is the state evolving under H ′. The Schrödinger
equation of |�R〉 is represented as

ih̄
∂

∂t
|�R〉 = HR|�R〉, (A7)

with

HR = ih̄(∂tUR)U †
R + URH ′U †

R, (A8)

where ∂t denotes time derivative. Note that the diagonal
elements of HR cancel out due to ih̄(∂tUR)U †

R , and also that

〈s1|
[

p2

2m∗ + V (r) + gμB

h̄
Bz · S

]
|s2〉 = 0 (A9)

for s1 �= s2 because |s1〉 and |s2〉 are energy eigenstates for
Bk = 0. Thus, only Bk can contribute to HR . Using Eqs. (1),
(A4), (A8), and (A9), we can obtain an off-diagonal element

of HR as

[HR]1↓,2↑ = [H ′]1↓,2↑ei(E1,↓−E2,↑)t/h̄

=
∑

k

〈1,↓|gμB

h̄
Bk · S|2,↑〉ei(E1,↓−E2,↑)t/h̄

=
∑

k

gμBB
(e)
k (t)

2
cos(ωkt)e

i(E1,↓−E2,↑)t/h̄

×
∫

d r〈1,↓|r,↓〉η(r)〈r,↑|2,↑〉, (A10)

where the integral in the last line is μp defined in Eq. (4). Noting
that ωp = (E1,↓ − E2,↑)/h̄, we can approximate [HR]1↓,2↑
with the RWA to obtain a matrix element of HRWA as

[HR]1↓,2,↑ 
 B(e)
p (t)gμBμp

4
=: [HRWA]1↓,2,↑. (A11)

In the RWA, we neglected terms rapidly oscillating compared
to slowly changing elements due to the time-dependent enve-
lope function B

(e)
k assuming that the state is almost unchanged

during a single period of such fast oscillation of Hamiltonian
matrix elements, and the influence of the oscillations is can-
celed out. The other matrix elements of HRWA are obtained in
the same manner. Finally, we obtain the effective Hamiltonian
in Eq. (2).

The RWA is applicable when the ac magnetic fields are
sufficiently small, that is, the Rabi frequencies are much
smaller than δE/h̄ as in our case, where δE is the energy
interval between relevant levels (a few lowest levels in our
case). On the other hand, if external oscillating fields are too
strong, the above assumption is no longer valid. Degradation
of the control efficiency due to too strong fields was studied,
e.g, in Ref. [46].

APPENDIX B: ANOTHER METHOD OF
WAVE-FUNCTION SPLITTING

We briefly discuss a simpler method of wave-function
splitting using a single π pulse which couples |1,↓〉 and |2,↑〉,
in contrast with our protocol which uses two π pulses in order
to compare with the STIRAP and the shortcut to adiabaticity
protocols. Steps I, III, and IV are the same as those in the main
text. In step II, |1↓〉 is transffered to |2,↑〉 by a single pulse. In
step IV, the |2,↑〉 state is adiabatically carried to dot 2, while
|1,↑〉 is trapped in dot 1 in the end of the control. Thus, the
wave function is split into different dots depending on the initial
electron spin. Dot 3 is not used in this scheme. This method
can be also utilized for the two-qubit gates in the same manner
as discussed in the main text. Although this scheme is simple,
it does not enjoy robustness against error, which spin-STIRAP
and STA protocols offer.

APPENDIX C: INFLUENCE OF POTENTIAL
MODULATION TO ENERGY-LEVEL INTERVAL

We consider the modulation of V (z) from the original form
in Eq. (17). The modulated potential V ′ is represented as

V ′(z) =
{

V (z) for z < 0,(
1 + kBT

V4

)
V (z) for z � 0.

(C1)
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FIG. 11. Schematics of the profile of V ′/V4 defined in Eq. (C1).
The temperature dependence of the change of energy level intervals
normalized by kBT for a few of the lowest levels.

The potential wall of V ′ is kBT higher for positive z than the
other side as schematically depicted in Fig. 11(a). The interval
between energy levels change from the original one due to
the potential modulation. Now, we consider the change of an
energy interval from the original one defined by

�Ẽji = (E′
j − E′

i) − (Ej − Ei)

kBT
, (C2)

where E′
i and Ei are eigenenergies corresponding to V ′ and V ,

respectively. The change of an energy interval is normalized by
kBT . Figure 11(b) shows �Ẽji for a few of the lowest levels.
It is seen that �Ẽji < 0.1 for 10 mK < T < 200 mK. The
change of a level interval due to the change in V4 is about one
order of magnitude smaller than that of V4.

APPENDIX D: RESONANCE FREQUENCY MODULATION
DUE TO COULOMB INTERACTION

The resonance frequencies for population transfer of the
right electron in dot 4′ depend on the position of the left
electron (see Fig. 10). We consider the modulation of the
resonance frequencies due to the Coulomb interaction between
the electrons. We estimate the frequency modulation with a
simple one-dimensional model although the actual modulation
depends on the detail of device design such as the geometry
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4

FIG. 12. The effective potentials normalized byV4 for the electron
in dot 4′. The solid curve and the dashed curve are for the case in
which the left electron is located at z = −lz and for the case in which
Coulomb interaction is negligible, respectively.

of electromagnetic components constituting the quantum dots.
We assume that the center of dot 3 is separated from the center
of dot 4′ by lz. The influence of the Coulomb interaction is
approximated by the modulation of the potential of dot 4′. Note
that the exchange interaction can be neglected because there is
no exchange of electrons across the center barrier which is set
to be sufficiently high. When the left electron is located at dot
3, the right electron is subjected by the additional potential

�V (z) = 1

4πεeff

e2

|z − lz| , (D1)

where εeff = 11.68ε0 and we take the center of dot 4′ as the
origin. We ignore the spatial distribution of the wave function
of the left electron for simplicity. On the other hand, the
additional potential can be set to zero when the left electron
is located in dot 1 because it is sufficiently far or it can be
carried to other dots which are sufficiently far from dot 4′ if
necessary. The effective potential V (z) + �V (z) is shown in
Fig. 12. When the left electron is in dot 3 and lz = 317 nm, the
resonance frequencies fp and fS for dot 4′, are approximately
900 and 700 MHz higher, respectively, compared to the case
when the Coulomb interaction is negligible. The parameters
for the dot and r0 and θ0 are the same as those used in
Fig. 4. When the left electron is in dot 3, the overlapping
factors μp and μS are approximately 3% larger and 3%
smaller, respectively, compared to the case when the Coulomb
interaction is negligible.

APPENDIX E: STEPS I AND III

In step I, we adiabatically transfer an electron to dot 4
from dot 1. Here, we show that the duration of step I can be
much shorter than that of step II. For ease of estimation of the
duration, we first make a combined dot composed of dots 1–3
by lowering the barriers between them. (The required duration
of this process is less than 1 ns as shown in Sec. IV B for the
opposite process.)
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Dot 4

combined dot
z

y

FIG. 13. Schematics of dot 4 (upper green square) and combined
dot (lower green square) in step I. The gray square represents potential
barrier between the dots. Ṽbi, for i = 1,2,3, is barrier potential, and Ṽd4

and Ṽc are the potentials of dot 4 and the combined dot, respectively.
L̃b and L̃d are the width of the center barrier and the dots in the
y direction. The potential profile along the dashed line is shown in
Fig. 14(a).

The electron is trapped in the combined dot now. Then, we
adiabatically transfer the electron to dot 4. We assume, for ease
of analysis, that the combined dot and dot 4 are rectangular
in the yz plane and of the same size as depicted in Fig. 13.
The barrier potential outside the colored region in Fig. 13 is
so high that the wave function is almost vanishing there. For
the transfer of the electron, we gradually change the potential
Ṽc of the combined dot, the potential Ṽd4 of dot 4 and the
barrier height Ṽb2 between them. The time dependence of the
potentials are assumed as

Ṽc(t) = Ṽ

2

[
1 − cos

(πt

T1

)]
,

Ṽd4(t) = Ṽ

2

[
1 + cos

(πt

T1

)]
,

Ṽb2(t) = Ṽ

2

[
1 + cos

(2πt

T1

)]
(E1)

with constant Ṽ for 0 � t � T1, where we redefined t = 0 as
the time when the combined dot is formed for ease of notation.

To simulate the dynamics of the electron for 0 � t � T1 we
use the one-dimensional model depicted in Fig. 14(a) because
this system is separable with respect to y and z directions, and
the z dependence of the system is unchanged. The potential
profile in Fig. 14(a) corresponds to the potential on the dashed
line in Fig. 13. Here, Ṽb1 = Ṽb3 are constant barrier height.
Figure 14(b) shows the time dependence of Ṽb2, Ṽc, and
Ṽd4. Figure 14(c) shows the time evolution of the square of
the amplitude of the wave function which distributes in the
combined dot initially. The initial state is the ground state of
the system. The wave function is gradually moved to the center
region as Ṽb2 is lowered and Ṽc is raised, then it is gradually
moved to dot 4 as Ṽb2 is raised and Ṽd4 is lowered. The fidelity
of step I, which is defined by the overlap between the state at
t = T1 (final time of step I) and the target energy eigenstate, is
higher than 0.9999 for T1 > 0.52 ns for parameters shown in
the caption of Fig. 14.
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FIG. 14. (a) Schematics of potential profile of the one-
dimensional model for dot 4 and the combined dot, where L̃b and
L̃d are the width of the center barrier and the dots in the y direction.
The thick solid and dashed lines are for the initial and final potential
profiles of step I, respectively, while the thin solid line indicates
the zero of potential. (b) Time dependence of Ṽb2, Ṽc, and Ṽd4

for 0 < t < T1 for the parameter set: Ṽb1 = Ṽb3 = Ṽ = 3.6 meV,
T1 = 0.52 ns, L̃b = 90 nm, and L̃d = 30 nm. (c) The time evolution
of the square of the amplitude of the wave function for the same
parameter set as (b).

Because step III is the opposite control to step I, the required
duration is the same as step I. The required duration for steps
I and III is more than three orders of magnitude shorter than
step II although the required duration depends on the detail
of the profile and the time dependence of the potential more
or less. Therefore, step II dominates the execution time of the
total process.
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