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Fluctuational electrodynamics for nonlinear materials in and out of thermal equilibrium
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We develop fluctuational electrodynamics for media with nonlinear optical response in and out of thermal
equilibrium. Starting from the stochastic nonlinear Helmholtz equation and using the fluctuation dissipation
theorem, we obtain perturbatively a deterministic nonlinear Helmholtz equation for the average field, the physical
linear response, as well as the fluctuations and Rytov currents. We show that the effects of nonlinear optics, in or
out of thermal equilibrium, can be taken into account with an effective dielectric function. We discuss the heat
radiation of a planar, nonlinear surface, showing that Kirchhoff’s law must be applied carefully. We find that the
spectral emissivity of a nonlinear nanosphere can in principle be negative, implying the possibility of heat-flow
reversal for specific frequencies.
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I. INTRODUCTION

Fluctuational electrodynamics (FE) has been instrumental
in describing physical phenomena that involve electromagnetic
noise, such as the Casimir effect and heat transfer [1–6]. By
using the fluctuation dissipation theorem (FDT), FE connects
the properties of the involved objects (such as reflection
coefficients) with the fluctuations of charges and fields in or
out of equilibrium. This has led to a wealth of theoretical
results that have been tested extensively in experiments [7–
15]. The FE theory has historically focused on systems that
respond purely linearly to the electric field. This simplifies
the already formidable problem, because fluctuations can be
treated separately from other parts of the field due to the
superposition principle. As a result, however, many interesting
phenomena classified under nonlinear optics have not been
taken into account. These include, for example, frequency
mixing, the optical Kerr effect, as well as Raman and Brillouin
effects [16,17].

The concept of fluctuations in systems with a nonlinear
response has been investigated for more than 50 years [18,19].
However, research regarding fluctuation phenomena for opti-
cally nonlinear systems appears limited. The noise polarization
has been discussed in the context of nonlinear macroscopic
quantum electrodynamics [20,21]. Equilibrium Casimir forces
have been studied from a field-theoretical perspective [22],
focusing on the situation of a nonlinear material immersed
between two bodies, while van der Waals forces for objects
with nonlinear polarizability were analyzed in Refs. [23–25].
A generalization of the framework of FE to nonlinear materials
was performed in Ref. [26], where it was found that proximity
between nonlinear objects can change their effective linear
properties and gives rise to a qualitatively different Casimir
force. Also, nonequilibrium cases have been studied, such
as heat radiation of a single nonlinear optical cavity using
classical Langevin equations [27,28]. However, there seems
to be no literature available on theoretical approaches to

out-of-equilibrium phenomena in nonlinear optics, which are
based on the vector Helmholtz equation.

In this paper, we extend the framework of Ref. [26], first
providing a more extensive discussion and derivation of the
theory for equilibrium processes. We then develop a framework
for out-of-equilibrium scenarios. Starting from the nonlinear
stochastic Helmholtz equation, we derive the fluctuations of
the electromagnetic field and the corresponding Rytov source
fluctuations, which are in agreement with the FDT. Based on a
local equilibrium assumption, we then derive the fluctuations
for bodies at different temperatures and the corresponding heat
radiation and transfer formulas.

We find that Casimir forces as well as heat radiation and
transfer can be rationalized in terms of an effective dielectric
function (i.e., an effective linear-response function), which is
to replace the dielectric function in well-known formulas for
linear materials. We determine the properties of the effective
dielectric function and demonstrate that it depends on the
shape of an object and the position of other objects. For
nonequilibrium scenarios, the dielectric function also depends
on the temperatures of objects. We carefully discuss in which
scenarios the effective dielectric function can be computed
and in which cases it contains a divergence from the Green’s
function at coinciding points.

Regarding the heat radiation of a body with nonlinear
dielectric properties, we discuss the applicability of Kirchoff’s
law of radiation as well as the (im)possibility to exceed the
blackbody limit of a planar surface. Regarding the radiation
of a nonlinear nanosphere, we show that, in principle, the heat
can flow from the colder sphere to a warmer environment in
some frequency range.

The paper is organized as follows. In Sec. II we introduce
the stochastic nonlinear Helmholtz equation. We determine
the equilibrium fluctuations as well as the effective dielectric
function and calculate it numerically for single and parallel
plate geometries. In Sec. III we allow objects to have differ-
ent temperatures and derive formulas for heat radiation and
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transfer, which are exemplified for the case of a plate and a
nanosphere.

II. NONLINEAR FLUCTUATIONAL ELECTRODYNAMICS
IN EQUILIBRIUM

A. Stochastic nonlinear Helmholtz equation

The macroscopic Maxwell’s equations describe the dynam-
ics of the electric (E) and magnetic (B) fields in matter via
the polarization (P) and magnetization (M) fields. In this arti-
cle, we consider nonmagnetic materials (M = 0). Maxwell’s
equations can then be cast in the form of the well-known
Helmholtz equation (also known as the wave equation), which
in frequency space is given as

∇ × ∇ × E − (1 + iζ )
ω2

c2
E − 1

ε0

ω2

c2
P = iμ0ωJ. (1)

E = E(r; ω) is the Fourier component of the electric field at
position r and frequency ω, with c the speed of light and ε0 the
vacuum permittivity (we use SI units). An infinitesimal absorp-
tion iζ is added to take into account vacuum fluctuations. On
the right-hand side of Eq. (1) are the external sources (currents
and static charges) J [29], which in our case will include the
stochastic source for thermal and quantum noise, but also a
perturbing source to measure the response of the system. In the
following, we will consider systems without external charges
or currents.

The polarization field P is a functional of the electric field E,
known as a constitutive relation. Since most materials respond
dominantly linearly (unless the electric field is very high),
the polarization is conventionally given in powers of E. We
will consider here materials with a spatially local response, in
which case the polarization at a particular point depends on the
electric field at that same point. A generalization to nonlocal
materials is in principle possible. The polarization vector field
is thus

P = ε0
c2

ω2
(VE + M[E ⊗ E] + N [E ⊗ E ⊗ E] + · · · ), (2)

where the dots represent higher-order terms in E. In this paper,
we will neglect terms beyond third order.

Using summation over repeated tensor indices (as used
throughout this paper), the linear term in Eq. (2) is given by

(VE)i = ω2

c2
χ

(1)
ij (−ω,ω)Ej (ω). (3)

In this paper, we refer to V as the (electromagnetic) potential
operator [30,31]. It is also common to use the dielectric
function (permittivity) tensor ε or the linear susceptibility
χ (1) = ε − 1, which is very useful for a consistent notation of
higher orders, as we see below. For the same reason, we have
also kept two frequency arguments (for outgoing and incoming
waves, which is a standard notation in nonlinear optics), the
first of which is typically omitted in the linear case because
only waves of the same frequency interact. The susceptibility
depends on a spatial coordinate, being zero in vacuum and
typically finite and homogeneous inside objects.

The second-order term in Eq. (2) reads

M[E ⊗ E]i(ω) = ω2

c2

∫
dω1dω2δ(ω − ωσ )

(4)×χ
(2)
ijk(−ωσ ,ω1,ω2)Ej (ω1)Ek(ω2).

The second-order susceptibility χ (2) carries formally three
frequency arguments. The δ function with ωσ = ω1 + ω2

reflects the fact that the time-domain response depends only
on time differences, i.e., that the susceptibilities are constant in
time. The assumption of spatial locality implies that it depends
on a single spatial coordinate, so that the two fields in Eq. (4) are
evaluated at the same position in space. We also introduced the
dyadic product “⊗,” so that the argument ofM is a second-rank
spatial tensor. The third-order term is then a natural extension,

N [E ⊗ E ⊗ E]i(ω)

= ω2

c2

∫
dω1dω2dω3δ(ω − ωσ )

×χ
(3)
ijkl(−ωσ ,ω1,ω2,ω3)Ej (ω1)Ek(ω2)El(ω3). (5)

Note that we have here ωσ = ω1 + ω2 + ω3. Due to in-
trinsic symmetries in χ (2) and χ (3) [17], the operators M
and N are commutative in their operands. This means
M[A ⊗ B] = M[B ⊗ A] and the same applies for permuta-
tions in N [A ⊗ B ⊗ C].

Introducing the free Helmholtz operator H0 = ∇ × ∇ ×
−(1 + iζ )ω2

c2 I and using Eq. (2), the stochastic nonlinear
Helmholtz equation can be written as

(H0 − V)E − M[E ⊗ E] − N [E ⊗ E ⊗ E]

= F + H0Ein, (6)

where we replaced the generic source term by iμ0ωJ = F +
H0Ein. F is the stochastic source of thermal and quantum noise,
whereas Ein denotes a deterministic probing field. Since we
consider a system without external charges or currents, we
must have 〈F〉 = 0.

We mark a few crucial differences between nonlinear and
linear Helmholtz equations. First, the different frequency
components of E are coupled through Eqs. (4) and (5). This
means fluctuations of all frequencies influence the scattering
of the electric field of any particular frequency. This is a
manifestation of the absence of the superposition principle.
As a consequence, different frequency components cannot
be simply added, and in general Eq. (6) needs to be solved
self-consistently. Our approach is to notice that the nonlinear
terms are small for most realistic materials and therefore
approach the problem perturbatively, giving results to leading
order in χ (2) and χ (3).

It is useful to separate the electric field into a mean part
and fluctuations as E = E + δE, where E = 〈E〉 is a shorthand
notation for the average field. In the linear case (M = N = 0)
one obtains two independent equations for δE and E,

(H0 − V)δE = F, (7)

(H0 − V)E = H0Ein. (8)

In the next two subsections, we will derive equations for the
average field and for the fluctuations in the nonlinear case. We
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will show that the behavior of the average field will depend on
the strength of the fluctuations.

B. Average field, effective potential, and linear response

A linear or nonlinear scattering experiment typically detects
the noise-averaged field E, and its equation of motion shall
be derived here. As mentioned, due to the absence of the
superposition principle, the noise in Eq. (6) has nontrivial
consequences for the average field. This may be seen explicitly
by substituting E = E + δE into Eq. (6) and taking the average.
Using the commutative properties of M and N together with
the fact that by definition 〈δE〉 = 0, we obtain a nonlinear
Helmholtz equation for the mean electric field,

(H0 − V)E − 3N [〈δE ⊗ δE〉E]

−M[E ⊗ E] − N [E ⊗ E ⊗ E]

= H0Ein + M[〈δE ⊗ δE〉] + N [〈δE ⊗ δE ⊗ δE〉]. (9)

In stationary systems, the time-domain correlators can
only depend on time differences [32]. This means that
in frequency space the fluctuations are δ-correlated with
〈δE(ω) ⊗ δE(ω′)〉 = δ(ω + ω′)〈δE ⊗ δE〉ω. Therefore, we
can consider the second term of the first line to be a linear and
local operator N [〈δE ⊗ δE〉 · ](r,ω) acting on E(r,ω). This
operator can be written explicitly,

N [〈δE ⊗ δE〉 · ]ij (r; ω)

= ω2

c2

∫
dω′χ (3)

ijkl(r; −ω,ω,ω′, − ω′)〈δEk(r)δEl(r)〉ω′ ,

(10)

where we give the spatial argument to emphasize spatial
locality. Since it is linear and local, like V in Eq. (3), we may
interpret it as an additional potential, resulting in the effective,
fluctuation-dependent potential

Ṽ = V + 3N [〈δE ⊗ δE〉 · ]. (11)

Equivalently, we can define an effective dielectric function
corresponding to the effective potential Ṽ as

ε̃ij (r; ω) = εij (r; ω) +
∫

dω′Nij (r; ω,ω′), (12)

Nij (r; ω,ω′) = 3χ
(3)
ijkl(r; −ω,ω,ω′, − ω′)

× 〈δEk(r)δEl(r)〉ω′ . (13)

Moving on to the last line of Eq. (9), we see that in addition
to the probing source, two fluctuation-induced source terms
appear. The source from M can be written explicitly as

M[〈δE ⊗ δE〉]i(r; ω)

= δ(ω)
ω2

c2

∫
dω′χ (2)

ijk(r; 0,ω′, − ω′)〈δEj (r)δEk(r)〉ω′ = 0.

(14)

This term vanishes because δ(ω)ω2 = 0, and the integral
over ω′ is independent of ω. This term is thus not present
in the Helmholtz equation. The third-order source term,
N [〈δE ⊗ δE ⊗ δE〉], cannot be eliminated generally for any
ω. Since the dynamics follows a nonlinear equation, the

fluctuations δE are generally non-Gaussian. It is therefore not
obvious how to evaluate the three-point correlator.

Starting from here, we will only keep the leading-order
terms in χ (2) and χ (3), neglecting terms of order O([χ (2)]2),
O(χ (2)χ (3)), O([χ (3)]2), and beyond. This simplification is
justified from the observation that χ (3) (and χ (2)) are typically
small in reality and we aim to calculate their leading influence
on effects such as the Casimir force and heat transfer. This
implies that the fields inside the M and the N operator in
Eq. (9) can be found from linear theory. Most importantly,
the fluctuations δE in this linear system (with χ (2) = χ (3) = 0)
are Gaussian. Three-point (or any odd number) correlations
vanish, so that the last term of Eq. (9) is zero.

With these considerations, we finally arrive at the nonlinear
Helmholtz equation for the average field E (valid for ω �= 0),

(H0 − Ṽ)E − M[E ⊗ E] − N [E ⊗ E ⊗ E] = H0Ein.

(15)

We recover the same structure as in Eq. (6), only without the
noise term (making it deterministic) and a modified, renor-
malized, linear term. This equation determines the result of
both linear and nonlinear scattering experiments. Furthermore,
we note that χ (2) and χ (3) (entering M and N ) are not
renormalized by the noise in this order. That would appear
by inclusion of χ (5) and so on.

To make even clearer the meaning of the effective potential
(and the effective dielectric function), we explicitly compute
the result of a linear-response scattering experiment. To that
end, we interpret Ein as the incident field in such an experiment
and find the scattered one linear in it, thereby defining the
linear-response function G̃,

G̃ = δE
δ(H0Ein)

∣∣∣∣∣
Ein→0

= δE
δEin

∣∣∣∣∣
Ein→0

G0, (16)

with the free Green’s function G0 = H−1
0 [29]. G̃ follows

directly from Eq. (15) as [26]

G̃ = (H0 − Ṽ)−1. (17)

The linear response is indeed given by the effective potential
Ṽ or, equivalently, by the effective dielectric function ε̃, which
depends on the fluctuations through Eq. (13).

Notably, for χ (3) = 0, we recover the well-known linear-
response function. In that case, Eq. (17) reduces to the Green’s
function G = (H0 − V)−1 of the system [30]. We will see in
the following that it is the effective potential that will give
rise to the effects of χ (3) on Casimir forces and heat transfer.
Analogously to Eq. (16), higher-order derivatives can be used
to infer the nonlinear susceptibilities, but they will not be
relevant for the remainder of the paper, because they play no
role in fluctuational effects.

C. Equilibrium fluctuations and Rytov currents

In the previous subsections, we have determined Eq. (6) for
the fluctuating field E and Eq. (15) for its mean E. However,
in the first case we need to know the noise source F and
in the second case the correlations of the fluctuations δE in
Eq. (11). Because these equations are linked by E = E + δE
and therefore 〈E ⊗ E〉 = E ⊗ E + 〈δE ⊗ δE〉, we will now
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determine δE by use of the FDT. We will then find the
correlations of F and connect them to Rytov theory [3,33].

The equilibrium fluctuations 〈δE ⊗ δE〉eq are related to the
linear-response function G̃ defined by Eq. (16) through the
FDT [32], given explicitly as

〈δEω ⊗ δE∗
ω′ 〉eq = δ(ω − ω′)

b(ω)

2i
G̃

eq
AH(ω), (18)

b(ω) = h̄

πε0

ω2

c2

1

1 − exp
( − h̄ω

kBT

) , (19)

with the reduced Planck constant h̄ and thermal energy kBT .

G̃
eq = (H0 − Ṽ

eq
)
−1

is the linear response, given by Eq. (17)
in equilibrium (denoted by the superscript “eq,” also used for
averages 〈· · · 〉eq). The subscript denotes the anti-Hermitian
part of an operator, OAH = O − O†. Note that for symmetric
operators, 1

2i
OAH = ImO. We use this slightly more involved

form of the FDT to avoid restriction to cases with symmetric
responses. In the rest of the work, we will only include the
frequency dependence of operators explicitly if necessary to
avoid ambiguity (e.g., when there is more than one frequency
involved).

Unlike in linear systems, the linear response G̃ as well as
the effective potential Ṽ in Eq. (11) depend on the correlations
of δE and are in general different in equilibrium as compared
to the nonequilibrium situation considered in Sec. III.

The effective potential or dielectric function in equilibrium
is given by Eq. (11) or (13) with the equilibrium correlator on
the right-hand side. This will be discussed in Sec. II D below.
Equation (18) gives a rigid and well-known relation between
two different measurable quantities, and it is the heart of our
analysis. The correlator 〈δE ⊗ δE〉eq determines the Casimir
force while the linear response G̃

eq
describes optical scattering

experiments.
Using the fluctuations obtained by the FDT, we can also

determine the correlations of the noise sources F. For E =
Ein = 0, we have from Eq. (6) (we include here a finite χ (2) to
demonstrate its consequences)

F = (H0 − V)δE − M[δE ⊗ δE] − N [δE ⊗ δE ⊗ δE].

(20)

As before, we note a subtlety at zero frequency for finite
χ (2)(0,ω′, − ω′). This implies a contradiction of Eq. (20) with
the fundamental assumption 〈F〉 = 0, however only at ω = 0.

Keeping only terms up to leading order in χ (2) and χ (3), the
equilibrium correlator of F follows directly from Eq. (20),

〈Fω ⊗ F∗
ω′ 〉eq = (H0 − V)ω〈δEω ⊗ δE∗

ω′ 〉eq(H0 − V)†ω′

− (H0 − V)ω〈δEω ⊗ N [δE ⊗ δE ⊗ δE]∗ω′ 〉eq

−〈N [δE ⊗ δE ⊗ δE]ω ⊗ δE∗
ω′ 〉eq(H0−V)†ω′ .

(21)

We can further assume Gaussianity of the fields in the last two
terms, because they carry already an explicit factor of χ (3) (and
are thus to be taken from the linear system). Specifically, by
using Isserlis’ theorem (also known as Wick’s theorem or the
Furutsu-Novikov formula) and the commutation properties of

N , we can write

〈N [δE ⊗ δE ⊗ δE] ⊗ δE∗〉eq

= 3N [〈δE ⊗ δE〉eq · ]〈δE ⊗ δE∗〉eq. (22)

We note the appearance of the same operator as in Eq. (11),
which may be written in terms of Ṽ or, equivalently, G̃. We
therefore find

〈Fω ⊗ F∗
ω′ 〉eq = [(

G̃
−1
ω

)〈δEω ⊗ δE∗
ω′ 〉(G̃−1

ω′
)†]eq

. (23)

Using Eqs. (17) and (18), we can further write this as

〈Fω ⊗ F∗
ω′ 〉eq = −δ(ω − ω′)

b(ω)

2i
(H0 − Ṽ

eq
)AH, (24)

which agrees with the relation for Rytov currents for linear
systems [3,33]. As noted in Ref. [26], the noise sources (the
Rytov currents) are related to the effective potential Ṽ

eq
in the

same manner as they are related to the bare potentialV in linear
systems. This confirms the interpretation of Ṽ

eq
as the linear-

response function, as it appears in a fluctuation dissipation
theorem with the noise in Eq. (24). Equations (18) and (24) are
thus two versions of the fluctuation dissipation theorem [32].
Note that the imaginary part of H0 in Eq. (24) accounts for
the fluctuations in the absence of any objects (due to the dust
[34]).

We have thus demonstrated the consistency of FDT and
Rytov theory in the nonlinear case. It is interesting to note
that the Rytov currents are uncorrelated in space, as they are
in linear systems, because the effective potential is local in
space. The potential and the noise are, however, nonlocal in the
sense that their value at one position depends on the properties
of the system at all other points in space. For example, the
effective potential of a point inside an object depends on the
shape of the object or on the presence of surrounding objects.
It means that Eq. (24) is an implicit equation for 〈F ⊗ F∗〉eq,
just as Eq. (18) is an implicit equation for 〈δE ⊗ δE∗〉eq.

We note that ImṼ
eq

in Eq. (24) must be positive, as
can already be seen by its connection to an autocorrelation
function. This property is, however, hard to show explicitly
without posing additional constraints on χ (3).

D. The effective dielectric function in equilibrium

In previous sections, we showed how the effective potential
Ṽ can be used to take into account nonlinear effects in
equilibrium. The most important quantity is the linear-response
function, equivalently expressed by the potential Ṽ

eq
, the di-

electric function ε̃
eq
ij , or G̃

eq
, because it governs the fluctuations.

We will thus investigate the linear response in more detail with
simple examples in this section.

Writing Eqs. (12) and (13) using the FDT in Eq. (18) gives
the effective dielectric function in equilibrium,

ε̃
eq
ij (r; ω) = εij (r; ω) +

∫
dω′N eq

ij (r; ω,ω′), (25)

N
eq
ij (r; ω,ω′) = 3χ

(3)
ijkl(r; −ω,ω,ω′, − ω′)

× b(ω′)
2i

GAH(r,r; ω′)eq
kl . (26)

Note that we used the Green’s function G = (H0 − V)−1

instead of the linear response (with a tilde) as in Eq. (18).
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This is correct to leading order in χ (3). G is known exactly for
several geometries, so that these equations are closed.

We note that the imaginary part of the Green’s function, as
appearing in Eq. (26), generally diverges at coinciding points
in absorbing media, which is a well-known property [29] and a
recurrent problem of perturbative expansions in field theories
[35]. There have been suggestions on how to circumvent this
divergence, e.g., by introducing a rigid sphere approximation
of the δ function [36] appearing in the Green’s function, which
appears very similar to an ultraviolet cutoff often introduced
in classical field theory.

This problem can also be mitigated in some cases. For
example, when computing the Casimir force in Ref. [26], we
noted that the nontrivial distance dependence of the force is
not sensitive to the divergence, as it cancels out when compar-
ing two different distances. It is thus important to carefully
investigate which experimental quantities are insensitive to
the mentioned divergence and can thus be predicted. In the
remainder of the paper, we will point to this issue for any shown
example and reflect on it in Sec. IV. We also comment that
using a purely real ε omits the divergence in any circumstance.

In the interest of simplifying the calculation and interpreta-
tion of specific examples, especially in view of the complicated
tensorial structure of χ

(3)
ijkl , we consider a highly symmetric

material. First, we assume that the bare dielectric function is
isotropic, such that εij = δij ε. Regarding χ

(3)
ijkl , it is known that

for centrosymmetric materials, the third-order susceptibility
can be written as [17]

χ
(3)
ijkl = χ

(3)
1122δij δkl + χ

(3)
1212δikδjl + χ

(3)
1221δilδjk. (27)

Further simplifying, we only keep the first term from Eq. (27),
such that we use

χ
(3)
ijkl = χ (3)δij δkl . (28)

With these simplifications, the resulting effective dielectric
function is isotropic,

ε̃
eq
ij (r; ω) = δij

[
ε(r; ω) +

∫
dω′N eq(r; ω,ω′)

]
, (29)

N eq(r; ω,ω′) = 3χ (3)(r; −ω,ω,ω′, − ω′)

× b(ω′)ImG(r,r; ω′)eq
kk. (30)

We will consider the examples of a single plate and two
parallel plates using Ref. [37]. It gives G in a plane-wave
basis for arbitrary parallel layered structures, which contains
the cases of a single semi-infinite plate (two layers: vacuum-
plate) and two parallel semi-infinite plates (three layers: plate-
vacuum-plate).

We start with a single plate. As mentioned above, the
imaginary part of the Green’s function at coinciding points
[ImG̃(r,r; ω′), as appearing in Eq. (30)] is infinite inside
absorbing materials, so the effective dielectric function cannot
be computed without further (microscopic) information in
general. Subtracting from it the solution of an unbound (bulk)
system with the same dielectric function heals the divergence,
except for points that are very close to the plate’s surface. In
the case of a single semi-infinite plate, we therefore restrict
ourselves to a real bare ε = 4, for which Eq. (30) can be numer-
ically evaluated. The result, which is nevertheless insightful,

FIG. 1. Spatial dependence of the effective dielectric function
inside a single isotropic nonabsorbing plate (ε = 4). z is the distance
from the surface and λ′

0 = 2π c

ω′ is the wavelength corresponding
to ω′ in vacuum. Note that while N

eq
plate(r; ω,ω′) depends also on

ω, the plotted quantity is independent of ω due to division with
χ (3)(r; −ω,ω,ω′, − ω′).

is shown in Fig. 1. The effective dielectric function is inhomo-
geneous even though all material parameters (χ (1) and χ (3))
are homogeneous. We thus see explicitly the aforementioned
property: The effective dielectric function at a certain position
depends on the shape of the object. Specifically, there is an
interference pattern of half of the wavelength of the primed
frequency, which corresponds to a single reflection from the
surface, while far away from the surface the bulk value is
approached. Note, however, that since in Eq. (29) we integrate
over all ω′, this interference pattern appears in the effective
dielectric function only if χ (3)(−ω,ω,ω′, − ω′) has a sharp
resonance peak in ω′.

The case of two identical parallel surfaces at distance
d provides additional insights. Here, we may compute the
difference of the effective dielectric function between the cases
of the second plate present or absent. Mathematically, we thus
subtract from N

eq
double the result of the isolated plate, N

eq
plate,

and obtain a finite result, because the divergence in G cancels.
This important observation, which was also used in Ref. [26] to
compute the Casimir force, contains a very important physical
statement: While it is difficult to predict the response of a single
object, it is possible to predict the response of two objects, given
that the responses of the individual objects are known.

The numerical results for identical plates are shown in
Figs. 2 (without absorption) and 3 (with absorption). Not unlike
in the single-plate case, an interference pattern arises due to
reflections from the second plate (notice the phase shift at
different separations). In the nonabsorbing case, these persist
throughout the material, while they are limited by the skin
depth in absorbing materials. As expected, at large separations
d we recover the single-plate result.

These graphs have a very direct connection to the Casimir
force between two parallel nonlinear plates of Ref. [26]. As
mentioned before, the Casimir force is now found by using
the well-known Lifshitz formula [2] for linear materials, but
replacing the bare ε by the (inhomogeneous) effective one.
Recall that in Ref. [26], we found that the force displays a
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FIG. 2. The effective dielectric function inside one of two nonab-
sorbing parallel plates (ε = 4), where z is the distance from the surface
and d is the separation between the plates. λ′

0 = 2π c

ω′ = 600 nm is
the corresponding wavelength in vacuum.

different power law as a function of d for close separations. For
the quantum limit the power law changes as d−4 → d−8, and
for the thermal limit d−3 → d−6. This may now be understood
in terms of Figs. 2 and 3, because the effective dielectric
function changes with d, yielding an additional d dependence
in the Casimir force.

III. NONEQUILIBRIUM: HEAT RADIATION

A. Nonequilibrium Rytov currents and field correlations

In Sec. II we developed FE for nonlinear materials in
equilibrium, from which inhomogeneous dielectric functions
and the Casimir effect for nonlinear objects can be found. In
equilibrium, the theory is well grounded by the FDT, relating
the linear response and field fluctuations directly by Eq. (18).
We now aim to address the out-of-equilibrium scenario of N

objects held at different temperatures Tn (n = 1, . . . ,N), with
an environment at temperature T0, and compute heat radiation
and heat transfer for these objects.

In this nonequilibrium case, certain assumptions are neces-
sary to compute the fluctuations of the electric field, because

FIG. 3. Same quantity as in Fig. 2 for lossy plates with a dielectric
constant ε = 4 + i and vacuum wavelength λ′

0 = 2π c

ω′ = 600 nm.

the FDT is in general not valid. A useful approximation, which
is also used for linear FE, is the assumption of local thermal
equilibrium (LTE). In this case, the (nonoverlapping) objects
are considered to be in thermal equilibrium at temperatures Tn.

To be able to assign different temperatures, we start by
denoting the susceptibilities of order m (m = 1,3) of object
n as χ (m)

n (r). These are nonzero only when r lies within object
n. Note that χ (2) has no influence on the following discussion.
Since the objects are spatially separated from one another, the
total susceptibilities can be found through summation as

χ (m)(r) =
N∑

n=1

χ (m)
n (r). (31)

We may also write χ (m)(r ∈ Vn) = χ (m)
n (r), where Vn is the

volume of the object. The same applies for the bare potential
(V = ∑N

n=1 Vn) and the nonlinear operator (N = ∑N
n=1 Nn),

as they follow from χ (1) and χ (3), respectively. The effective
potential is then Ṽ = ∑N

n=1 Ṽn, where we have [see Eqs. (10)
and (11)]

Ṽn = Vn + 3Nn[〈δE ⊗ δE〉 · ]. (32)

The key point in implementing the LTE approximation
within FE is to recognize that the equilibrium Rytov currents
in Eq. (24) can be written as

〈Fω ⊗ F∗
ω′ 〉eq = δ(ω − ω′)

N∑
n=0

b(ω)

2i

(
Ṽ

eq
n

)
AH. (33)

We have denoted V0 = Ṽ0 = −H0 as the vacuum potential
with an infinitesimal imaginary part (absorption). This is
known as the environment dust [34] and is needed to take into
account radiation to and from the environment.

Since object n is considered to be in local equilibrium
at temperature Tn, we can assign an index to the distribu-
tions b(ω),

bn(ω) = h̄

πε0

ω2

c2

[
1 − exp

(
− h̄ω

kBTn

)]−1

. (34)

Recalling that index n = 0 denotes the environment with
temperature T0, we arrive at the nonequilibrium correlator of
the Rytov currents,

〈Fω ⊗ F∗
ω′ 〉 = δ(ω − ω′)

N∑
n=0

bn(ω)

2i

(
Ṽ

eq
n

)
AH. (35)

Note that the effective potential Ṽ depends on the field
fluctuations 〈δE ⊗ δE〉 and is thus different out of equilibrium
compared to the corresponding equilibrium potential Ṽ

eq
.

The correlations of the field fluctuations δE out of equilib-
rium can be found by following the same reasoning leading
to Eq. (23) (with E = 0). Using ABAHA† = (ABA†)AH, we
obtain

〈δEω ⊗ δE∗
ω′ 〉 = G̃ω〈Fω ⊗ F∗

ω′ 〉G̃†
ω′

= δ(ω − ω′)
N∑

n=0

bn(ω)

2i
(G̃ṼnG̃

†
)AH. (36)

Recall that the linear-response operator is given by Eq. (17)
as G̃ = (H0 − Ṽ)−1 together with Eq. (32), so that Eq. (35) is
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indeed physically meaningful, because the potential Ṽ is the
physical linear response of the nonequilibrium system.

As in the equilibrium case, we have an implicit system
of equations to determine the fluctuations and the effective
potential. It can be solved perturbatively in χ (3) and we will
derive an explicit form for the effective dielectric function in
the next subsection, from which the correlator 〈δE ⊗ δE∗〉 can
then be computed with Eq. (36).

B. The nonequilibrium effective dielectric function

From Eqs. (35) and (36) we can see that, as in the equi-
librium case, the effects of nonlinear terms on fluctuations
can be taken into account with the effective potential Ṽ or,
equivalently, the effective dielectric function. The latter is
obtained by substituting the correlator for the electric-field
fluctuations of Eq. (36) into Eqs. (12) and (13), giving us

ε̃ij (r; ω) = εij (r; ω) +
∫

dω′Nij (r; ω,ω′), (37)

Nij (r; ω,ω′) =
N∑

m=0

3χ
(3)
ijkl(r; −ω,ω,ω′, − ω′)

× bm(ω′)
2i

(G̃ṼmG̃
†
)AH(r,r; ω′)kl . (38)

These expressions reduce to the equilibrium cases ε̃
eq
ij and N

eq
ij

of Eqs. (25) and (26) if all temperatures are equal. This is
because, by definition,

∞∑
m=0

Ṽm = −G̃
−1

. (39)

Note that the sum starts at 0, so that it contains also the
famous environment dust [34]. If all temperatures are equal,

then one recovers
∑

m
b(ω′)

2i
(G̃ṼmG̃

†
)AH = b(ω′)

2i
G̃AH, as in the

equilibrium expression.
It is instructive and useful to isolate the nonequilibrium

contribution of the effective dielectric function. It is defined as

Nneq = N − N eq, (40)

where N eq is the equilibrium limit corresponding to the
temperature at the position where N is evaluated. For r located
inside object n, it reads

N
neq
ij (r ∈ Vn; ω,ω′)

= 3χ
(3)
ijkl(r; −ω,ω,ω′, − ω′)

N∑
m=0

bm(ω′) − bn(ω′)
2i

× (G̃ṼmG̃
†
)AH(r,r; ω′)kl . (41)

This expression depends on the temperatures of all objects,
because the nonlinear term couples the fluctuations in the
different objects.

More precisely, in the above expression only objects with
Tm �= Tn contribute, where Tn is the temperature at r. This has
an important implication regarding the mentioned divergence
of G at coinciding points. Because Ṽm is only nonzero inside
body m and r is inside body n, the two Green’s functions
in Eq. (41) connect points in different objects only (the sum

does not contain the term m = n). The expression for G
evaluated at two different points is notably finite. We thus find
that the deviation of the effective dielectric function from its
equilibrium value is a quantity that can be predicted within this
framework.

If we have only a single body in vacuum, then the above
expression simplifies to

N
neq
ij,single(r; ω,ω′) = 3χ

(3)
ijkl(r; −ω,ω,ω′, − ω′)

× [benv(ω′) − bobj(ω
′)]

× (
G̃ Im

[ − G−1
0

]
G̃

†)
(r,r; ω′)kl . (42)

We see that if there is only a single body in vacuum, the
effective dielectric function depends on the temperature of the
environment, in stark contrast to linear materials.

C. Heat radiation and transfer

In Appendix, we show that the net heat radiated from a
body can be written in terms of the fluctuation correlations
[see Eq. (A6)], starting from the Poynting vector. By using the
result obtained in Eq. (36), the net heat (including incoming
and outgoing radiation) from object n in the presence of N − 1
other objects can be written as (derivation in Appendix)

Hn = − 1

4μ0

N∑
m=0

∫
dω

2π

1

ω
[bn(ω) − bm(ω)]

× Tr[(Ṽn)AHG̃(Ṽm)AHG̃
†
]. (43)

We were not able to show that Ṽ and therefore G̃ are generally
symmetric (implying microreversibility [34]) in the considered
nonequilibrium situation. This is why Eq. (43) is not symmetric
in indices n and m. If Ṽ is symmetric, the slightly simpler
Eq. (A12) follows (see Appendix), which is then symmetric
in n and m like the corresponding formula for linear systems
[31,38].

Equation (43) reiterates the statement that in order to
calculate the heat radiation or transfer, all we need to know
are the effective linear properties of the system—the effective
nonequilibrium dielectric function or linear response. Recall
that in the nonlinear case, the effective dielectric function
depends on the geometry and temperature of the rest of the
system in a nontrivial fashion as per Eqs. (37) and (38).

Equation (43), apart from the mentioned issue about sym-
metries, is similar in form to trace formulas obtained in
Refs. [31,38–40]. Reference [31] writes it in terms of the
scattering or T-operators,

T̃ = H0G̃Ṽ, (44)

where the tilde again denotes the physical linear response.
More precisely, formula Eq. (A12) in Appendix, the sym-
metric version of Eq. (43), is equivalent to the expressions
of Refs. [31,41] when reduced to the linear system.

For a single body in vacuum (assuming symmetry of Ṽ),
the heat radiation takes the form that is reminiscent of the
corresponding result for linear systems [31],

H = 1

μ0

∫
dω

2π

1

ω
[bobj(ω) − benv(ω)]

× Tr(Im[G0]ImT̃ − Im[G0]T̃ Im[G0]T̃
∗
). (45)
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FIG. 4. The nonequilibrium effective dielectric function inside a
semi-infinite plate, where z is the distance from the surface. ε = 4 + i,
λ′

0 = 2π c

ω′ = 50 μm, and Tobj = h̄ω′
kB

≈ 287 K were fixed while Tenv

was varied between zero and 2Tobj.

This equation follows from Eq. (A12) when reduced to a
single body and substituting the identities (44) and G̃ = G0 +
G0T̃G0.

D. Heat radiation of a semi-infinite plate: Kirchhoff’s law
and Planck’s law

We proceed by computing the nonequilibrium part of the
effective dielectric function for a single plate using Eq. (42). To
simplify the following discussion, we consider again a highly
symmetric material with εij = εδij and χ

(3)
ijkl = χ (3)δij δkl . In

that case, the effective dielectric function is diagonal, and we
obtain from Eq. (42)

ε̃ij (r; ω) = δij

[
ε(r; ω) +

∫
dω′N (r; ω,ω′)

]
, (46)

Nneq(r ∈ Vn; ω,ω′) = 3χ (3)(r; −ω,ω,ω′, − ω′)

×
N∑

m=0

[benv(ω′) − bobj(ω
′)]

× (
G̃ Im

[ − G−1
0

]
G̃

∗)
(r,r; ω′)kk,

(47)

where N = N eq + Nneq, with the equilibrium part given in
Eq. (30).

The numerical results (using again the Green’s function for
planar systems from Ref. [37]) are shown in Fig. 4 for ε =
4 + i. The term G̃ Im[−G−1

0 ]G̃
∗

was evaluated using so-called
environment dust [31,34], which is finite. We see that there is
no interference pattern forming in N

neq
plate, which is in contrast to

the equilibrium dielectric function. Deep inside the material,
i.e., for large z, Nneq

plate vanishes. For nonabsorbing media, Nneq
plate

is independent of z (not shown).
Notably, the nonequilibrium contribution changes sign with


T = Tobj − Tenv, as can be seen from Eq. (47) since b is
monotonic in temperature. This implies that with a nonzero
imaginary part of χ (3) (of either sign), it is in principle
possible to obtain Imε̃ < 0, i.e., a medium with a negative
absorption at the given frequency. This means that a probing

wave would experience gain in an otherwise passive system
due to interactions with the nonequilibrium fluctuations. While
there is no fundamental principle ruling this out (in contrast to
the equilibrium case), it remains to be seen whether materials
with suitable combinations of χ (1) and χ (3) exist to display any
such phenomenon.

More importantly, Fig. 4 shows that the effective dielectric
function (which determines heat radiation) of the plate depends
on the temperature of the environment, not just the plate itself.
This is a clear nonlinear effect (it is absent for linear materials),
which can be measured experimentally. In the case of multiple
bodies, the effective dielectric function also depends on the
temperatures of other objects (in addition to their positions as
in the equilibrium case).

This observation has implications for Kirchhoff’s law of
radiation. It states that, in equilibrium, the absorptivity and
emissivity of a body are equal. It is thus a variant of the
principle of detailed balance. Although it strictly only holds
in equilibrium, it has been shown to be valid (and often used)
for linear bodies out of equilibrium as well (see, e.g., the
discussion in Ref. [31]). The analysis in Sec. III A, as well
as Fig. 4, shows an interesting variant of this law: Because
the nonequilibrium effective dielectric function can be used
for computation of absorption as well as emission coefficients,
Kirchoff’s law stays indeed valid in the considered order of
χ (3). However, these coefficients depend on the temperature
of the environment. This means that the experiments measuring
the emission and absorption need to be performed in exactly
the same conditions (same temperatures, surrounding bodies,
etc.).

We noted in the previous subsection that we cannot prove
the symmetry of the nonequilibrium potential Ṽ in general,
mostly due to the lack of symmetries of χ

(3)
ijkl . For the highly

symmetric version used in Fig. 4, χ
(3)
ijkl = χ (3)δij δkl , Ṽ is

symmetric. If Ṽ may turn out to be nonsymmetric in other
cases, this would manifest a more dramatic breakdown of
Kirchoff’s law, because such nonsymmetric nonequilibrium
Ṽ would explicitly break microreversibility. This has to be
investigated in the future.

Noting the change of the dielectric function in Fig. 4, one
may ask whether the plate in that figure may radiate stronger
than a blackbody. This question is immediately answered from
the observation that the radiation of the plate is given by
known formulas (see, e.g., [31]), where the dielectric function
ε needs to be replaced by the effective one of Fig. 4. While
explicit computation of the corresponding Fresnel coefficients
for spatially varying ε may be challenging, a general statement
is nevertheless possible. The radiation of a planar surface,
irrespective of the values of ε(ω), is bound by the radiation
of a blackbody [see, e.g., Eq. (26) of Ref. [42] or Ref. [43]].
Therefore, for the radiation linear in χ (3), we have

dω
H(ω)

A
� dω

h̄ω3

4π2c2

[
exp

(
h̄ω

kBT

)
− 1

]−1

, (48)

where the radiation of the plate per surface area A is H/A =∫ ∞
0 dωH(ω)/A. The radiation of a planar surface thus obeys

the fundamental bounds implied by Planck’s law. We note,
however, that Eq. (48) relies on the symmetry of Ṽ; the
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possibility of nonsymmetric Ṽ out of equilibrium must be
investigated in the future.

E. Radiation of a sphere: Negative radiation

We now turn to the radiation of a nanosphere. We start by
evaluating the isotropic effective dielectric function in Eq. (46)
using also the simplification χ

(3)
ijkl = χ (3)δij δkl as in Sec. II D.

In the limit where the radius is much smaller than the thermal
wavelength λT = h̄c

kBT
and the skin depth δ = 1

Im
√

εμ
c
ω

, the
Green’s function with one point outside and one point inside
the sphere is given by G = 3

ε+2G0. Using ImG0(r,r; ω)ij =
1

6π
ω
c
δij , we have from Eq. (47)

N
neq
sphere(ω,ω′) = − 3

2π

ω′

c
χ (3)(−ω,ω,ω′, − ω′)

×
∣∣∣∣ 3

ε(ω′) + 2

∣∣∣∣
2

[bobj(ω
′) − benv(ω′)]. (49)

This function is spatially constant inside the (pointlike) sphere.
We may now use this dielectric function to compute the
effective version of the polarizability,

α ≡ ε − 1

ε + 2
R3, (50)

which governs the radiation of small spheres [44,45]. By
substituting the effective dielectric function into Eq. (50) and
expanding in N

neq
sphere, we obtain

α̃(ω) = α̃eq

[
1 + 3

(ε − 1)(ε + 2)

∫
dω′Nneq

sphere(ω,ω′)
]
,

(51)

where α̃eq is the (effective) polarizability in equilibrium. The
radiation of a sphere is then given by

H = 4
ε0

π2c

∫
dω ω2[bobj(ω) − benv(ω)]Imα̃(ω). (52)

Imα̃, which is manifestly positive in equilibrium, may in princi-
ple be negative in the considered nonequilibrium situation, for
suitable regimes regarding the sign of (Tenv − Tobj) as well as
Imχ (3)(−ω,ω). As mentioned before, we see no fundamental
reason that forbids such an occurrence, and it will be interesting
to see whether it can exist in practice.

An instructive extreme case to consider is Imε̃eq = Imα̃eq =
0. This is a particle that does not absorb or emit energy in
equilibrium, so that any absorption is only due to the finite
Imχ (3). Using Eqs. (49), (51), and (52), we then arrive at

H = −54
ε0

π3c3

∫
dω

∫
dω′ω2ω′Imχ (3)(−ω,ω,ω′, − ω′)

× [bobj(ω) − benv(ω)][bobj(ω′) − benv(ω′)]
[ε(ω) + 2]2[ε(ω′) + 2]2

. (53)

The first observation regarding Eq. (53) is that the heat radi-
ation of the sphere remains unchanged if the temperatures of
the object and the environment are interchanged. Considering
specifically Imχ (3) < 0, which is a typical observed case (see,
e.g., Ref. [46] for metal-infused glasses), Eq. (53) yields H >

0. This means energy flowing away from the sphere for any
combination of temperatures. For Tenv > Tobj, this corresponds

to a flow of energy from a cold sphere to a hot environment.
While this cannot be ruled out for a particular frequency, from
thermodynamic considerations we expect that the total heat
(after integration over all frequencies) flows from the hotter to
the colder body.

IV. SUMMARY

In stochastic nonlinear optical systems, fluctuating fields
and induced fields couple, which gives rise to a variety of phe-
nomena that cannot be observed in purely linear systems. We
show that fluctuation effects, such as the Casimir effect or heat
radiation, can be described via known formulas, however using
an effective dielectric function as input. This dielectric function
depends on the shape of the objects, their relative position, and
also on the temperatures of all objects in the system.

The divergence of the electromagnetic Green’s function at
coinciding points prevents a straight computation of the effec-
tive dielectric function on a macroscopic level for absorbing
materials. It is nevertheless possible to circumvent this issue
by considering measurable quantities. Using this principle, the
dependence of the dielectric function on the distance between
the objects is accessible theoretically. This is also true for the
dependence of the dielectric function of one object on the
temperatures of the other objects in a nonequilibrium scenario.

In addition to effects in equilibrium, we saw profound
and thought-provoking implications in the case in which the
temperatures of objects (and the environment) are different.
We discussed the applicability of Kirchoff’s law of radiation
as well as the fundamental bounds of radiation of a planar
surface. For a nanosphere out of equilibrium, we found that
the spectral emission can surprisingly be negative in certain
cases.

Overall, we saw that both equilibrium and nonequilibrium
phenomena are intricately affected by nonlinear optical prop-
erties. By using the fluctuational electrodynamics framework,
these results are also applicable for any geometry or materials.
In the future, it may also be generalized to nonzero external
fields, possibly allowing for even more control over the effect
of the nonlinearities.
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APPENDIX: HEAT RADIATION AND TRANSFER FROM
FLUCTUATIONAL ELECTRODYNAMICS

The total energy transmitted across a surface �n surround-
ing object n is given by

Hn =
∮

�n

da〈S〉 · n, (A1)

where 〈S〉 = 〈E × H〉 is the time average of the Poynting
vector and n is a normal vector on �n. The force on the
object (called Casimir force in equilibrium) can be obtained
from the same expression with the Poynting vector replaced
by the Maxwell stress tensor σ = ε0(〈E ⊗ E〉 − 1

2 E2) +
1
μ0

(〈B ⊗ B〉 − 1
2 B2).
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For stationary systems, the correlator 〈E(t) ⊗ H(t ′)〉 de-
pends only on time differences. We can therefore define a
spectral density of the expectation value as

〈E(t) ⊗ H(t ′)〉 =
∫

dω

2π
eiω(t−t ′)〈E ⊗ H∗〉ω, (A2)

where the integration is over positive and negative frequencies.
Since 〈E(t) ⊗ H(t ′)〉 is a real quantity, the real (imaginary) part
of the spectrum is an even (odd) function of the frequency.
Therefore, only the real part remains in the Poynting vector,

〈S〉 =
∫

dω

2π
Re〈E × H∗〉ω. (A3)

Using the divergence theorem, we can rewrite Eq. (A1) as

Hn =
∫

Vn

dV 〈∇ · S〉

=
∫

dω

2π

∫
Vn

dV Re〈∇ · (Eω × H∗
ω)〉. (A4)

With the Maxwell-Faraday equation iωBω = ∇ × Eω, we can
write for nonmagnetic materials (μ = 1)

Hn = 1

μ0

∫
dω

2π

1

ω

∫
Vn

dV Im〈E · (∇ × ∇ × E)∗〉ω. (A5)

By using the symmetric operator G−1
0 = H0 = ∇ × ∇ ×

−ω2

c2 I and remembering that A · B = B · A, we get

Hn = − 1

μ0

∫
dω

2π

1

ω
TrnIm

[
G−1

0 〈E ⊗ E∗〉ω
]
, (A6)

where Trn denotes a (pseudo) trace, which is restricted to
volume Vn. Here we see the imaginary part of the electric-field
correlator.

Let us first check the case in which all temperatures are
equal, where we expect no heat radiation. Taking Eq. (18) for
the correlator, we get

H eq
n = 1

2μ0

∫
dω

2π

1

ω
b(ω)TrnRe

[
G−1

0 G̃AH
]
. (A7)

With the identities G̃ = G0(I + ṼG̃) = (I + G̃Ṽ)G0, we can
obtain an expression with a full trace,

H eq
n = 1

2μ0

∫
dω

2π

b(ω)

ω
Tr Re[(ṼnG̃)AH]. (A8)

Using the properties of the trace, TrAT = TrA and Tr[AB] =
Tr[BA], we see that

H eq
n = − 1

μ0

∫
dω

2π

b(ω)

ω
Tr Im[Im(ṼnG̃)] = 0. (A9)

Therefore, we have shown for consistency that even with
asymmetric response (no micro-reversibility) there is no heat
transfer if the temperatures are equal.

Using Eq. (36) for the correlator with unequal temperatures,
we obtain in a similar fashion to that mentioned above,

Hn = − 1

4μ0

∫
dω

2π

1

ω
bn(ω)Tr[(Ṽn)AHG̃AH]

+ 1

4μ0

N∑
m=0

∫
dω

2π

bm(ω)

ω
Tr[(Ṽn)AHG̃(Ṽm)AHG̃

†
].

(A10)

For the final form, we subtract the contribution of a pseu-
dosystem, where all bodies are at a temperature Tn (therefore
giving no contribution to heat transfer), but with the response
corresponding to the original out-of-equilibrium system,

Hn = − 1

4μ0

N∑
m=0

∫
dω

2π

1

ω
[bn(ω) − bm(ω)]

× Tr[(Ṽn)AHG̃(Ṽm)AHG̃
†
]. (A11)

Note that the terms with Tm = Tn (including m = n) do not
contribute to heat radiation.

Furthermore, if Ṽ and therefore G̃ are symmetric (im-
plying microreversibility [34]), then we can further simplify
Eq. (A11) as

Hn = 1

μ0

N∑
m=0

∫
dω

2π

1

ω
[bn(ω) − bm(ω)]

× Tr(Im[Ṽn]G̃Im[Ṽm]G̃
∗
). (A12)

This is the final form of the net heat radiation from object n

to the environment and other objects. Note that this equation
has a similar structure to expressions in Refs. [31,38–40]. The
imaginary parts of the potentials represent the sources and are
connected by the Green’s functions, representing transmission
coefficients [39,40].
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