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Extended orbital modeling of spin qubits in double quantum dots
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Orbital modeling of two electron spins confined in a double quantum dot is revisited. We develop an extended
Hund-Mulliken approach that includes excited orbitals, allowing for a triplet configuration with both electrons
residing in a single dot. This model improves the reliability and applicability of the standard Hund-Mulliken
approximation, while remaining largely analytical, thus it enables us to identify the mechanisms behind the
exchange coupling dynamics that we find. In particular, our calculations are in close agreement with exchange
values that were recently measured at a high interdot bias regime, where the double occupancy triplet configuration
is energetically accessible, demonstrating reduced sensitivity to bias fluctuations, while maintaining the large
exchange needed for fast gating.
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I. INTRODUCTION

Spins of electrons confined in gate-defined lateral quantum
dots (QDs) are a promising realization of a qubit, due to
their scalability and relative isolation from their host material,
as compared with the charge degree of freedom. In recent
years, remarkable progress has been made in the coherent
manipulation of single-spin [1,2], two-spin [3,4], and three-
spin [5,6] qubits.

The exchange interaction (J ) between electron spins is a
central component in all spin-based qubits. In their original
proposal, Loss and DiVincenzo envisioned using gate voltage
to control the exchange interaction between two electrons lo-
calized in neighboring QDs [7]. The high tunability of J that is
traditionally obtained by changing the bias (ε) between the two
dots, provides a subnanosecond control handle. In the context
of single-spin qubits, J provides a fast and accessible two-
qubit coupling gate. In contrast, single-spin rotations require
coupling to the small magnetic moment of the electron, which
is much more challenging. Combining on-chip micromagnets
that create field gradients across each QD [8], with electrical
control over the exchange interaction [3], Tarucha’s group
demonstrated a universal set of gates on solid-state single-spin
qubits, albeit with single-spin rotation times that are still 2–3
orders of magnitude longer than exchange gates [9].

The challenging manipulation of single-spin qubits has
prompted a number of proposals to encode the logical qubit
states into two-spin singlet (S) and unpolarized triplet (T0)
states [10–12]. In these devices, Pauli spin blockade is used
to initialize the qubit in a doubly occupied singlet state, J

provides single-qubit rotations about the z axis, and inhomo-
geneous nuclear spin polarization generates a magnetic field
gradient that provides x-axis rotations [13]. Two-qubit gates
between S − T0 qubits in neighboring two double QDs were
proven to be more challenging but have also been demonstrated
[14,15].
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While encoding the qubit states in exchange-coupled elec-
tron spins alleviates the challenging tasks of single-spin ad-
dressability and control, it renders the S − T0 qubit vulnerable
to decoherence from charge noise, since J is electrostatic in
nature and its coupling to the fluctuating charge environment
(e.g., through its interdot bias dependence) is much stronger
than the spin-orbit-mediated charge coupling of single-spin
qubits [16–18]. The sensitivity of J to bias fluctuations is
heightened with increased bias, due to the very different charge
distributions of the triplet and hybridized singlet in this regime.
This results in increased susceptibility of the qubit to charge
noise and has been a long-lasting problem of these QD devices,
as the desired fast gating achieved in the positive bias regime
comes at the price of increased decoherence rates. Indeed, the
realization of a controlled-PHASE gate between two S − T0

qubits was made possible by identifying charge noise as the
main obstacle and mitigating it using a spin echo pulse along
the x axis [15].

In a set of experiments targeted at characterizing both
low- and high-frequency components of charge noise, Dial
et al. first operated an S − T0 qubit at a high-bias regime,
where excited orbitals and thus a doubly occupied triplet
configuration become energetically accessible [19]. In this
regime, both singlet and triplet states are hybridized, and
their charge distributions are much more similar, giving rise
to reduced dJ/dε while maintaining large J . As expected,
reduced sensitivity to charge noise was manifested at this new
regime by enhanced quality of coherent exchange oscillations.

The main goal of the current work is to develop an orbital
model that captures the electronic states at this high-bias oper-
ating regime. Rather than employing all-numerical approaches
like configuration interaction (CI) [20] or exact diagonalization
[21], we develop an extended Hund-Mulliken (HM) approach
that allows us to derive analytical results, while rendering
the important orbital features of the system correct within a
useful range of parameters, as specified below. In addition to
using our model to study the high-bias regime, we explore the
dependence of J on magnetic field and double dot geometry.
Our analytical treatment points at the main mechanisms behind
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the exchange behavior and allows us to identify useful working
positions that may improve electrical control of QD spin qubits.

II. EXTENDED ORBITAL MODEL FOR
SINGLET-TRIPLET QUBITS IN A DOUBLE QD

The physical system we consider consists of two electrons
localized in a pair of laterally coupled QDs, whose singlet
and triplet spin configurations serve as the qubit computational
basis states. For concreteness we employ parameters relevant
for GaAs quantum dots, but our approach can be applied
directly to other semiconductor QD materials, and in particular
to Si [22] or Si/SiGe [23,24], as long as a single-valley
calculation is justified, i.e., when the considered device has a
sufficiently large valley splitting and a uniform ground valley
state composition, where intervalley matrix elements vanish
[17,25]. In such a case, the Hamiltonian we consider below
effectively does not couple the ground valley state to higher
energy valley states and our model is directly applicable for
Si-based QDs. We note, however, that the larger effective
mass and dielectric constant in Si, generate larger Coulomb
couplings and smaller kinetic energy, as compared with GaAs,
resulting in more stringent conditions for the validity of the
HM model.

A. System Hamiltonian

Taking the magnetic (B) and electric (E) fields along the
z and x axis, respectively, the Hamiltonian describing the
coupled QDs includes single-particle, two-particle (Coulomb),
and Zeeman terms and is given by

H = Horb + HZ =
2∑

i=1

H SP
i + HC + HZ, (1)

H SP
i = 1

2m

[
pi − e

c
A(ri)

]2
+ exiE + V (ri), (2)

HC = e2

κ|r1 − r2| , HZ = gμB

h̄
B ·

∑
i

Si. (3)

The single-particle Hamiltonian H SP
i describes the dynamics

of a single electron confined in the x-y plane, under applied
fields, where B is coupled to the electron charge through a
vector potential A(r) = 1

2B(−y,x,0). Taking GaAs parame-
ters, the electron’s effective mass as m = 0.067me, and the
dielectric constant and effective g factor are κ = 13.1 and
g = −0.44, respectively.

We consider a two-dimensional (2D) quartic confinement
potential [26] to model the two nominally identical QDs:

V (x,y) = h̄ω0

2

[
1

4d2
(x2 − d2)2 + y2

]
, (4)

where d is the dimensionless half interdot distance, measured
in effective Bohr radius of a harmonic dot, aB = √

h̄/mω0,
and the coordinates henceforth are measured in aB units. The
gate-voltage-induced electric field E in Eq. (2) is directed
along the line connecting the centers of the two dots and splits
the single-particle energies through tilting of the confinement
potential, as well as shifting the orbitals. Figure 1 qualitatively
depicts the effects of interdot bias on the confinement potential.

FIG. 1. A cut along the y = 0 plane of the quartic confinement
potential for d = 2.5, with (dashed-red line) and without (solid-
blue line) interdot bias. In the limit where �x � d , the bias term
approximately shifts the two potential minima by −�x, and induces
an approximate energy difference ε, both defined in the main text.
The exact bias-shifted single-particle energies that are used in our
calculations are given in Appendix B.

For all experimentally relevant parameters, we can assume
�x ≡ eEaB/h̄ω0 � d, corresponding to electric fields E �
0.8 MV/m for h̄ω0 = 5 meV and d = 2.5. In this limit, the
position shift and energy difference of the well minima are
approximately given by the quantities �x, and ε ≡ 2h̄ω0d�x,
respectively (see Fig. 1).

HC represents the bare Coulomb interaction between
the two electrons, and we neglect screening effects
that are expected to be minimal in these few-electron
QD devices. We note that the Zeeman splitting is
much smaller than the orbital energies we consider. For
h̄ω0 = 5 meV—the nominal confinement we choose unless
otherwise specified—gμBB/h̄ω0 � 0.03 (μB is the Bohr
magneton), for magnetic fields up to 6T, well beyond typical
applied fields. This allows us to ignore the Zeeman term in
the orbital energy calculations, adding it only in the effective
spin Hamiltonian. Finally, spin-orbit coupling for confined
electrons is several orders of magnitude smaller than the
orbital energy scale, and can be safely ignored in this context.

The 2D quartic potential in Eq. (4) assumes infinite con-
finement in the growth (z) direction, appropriate for typical
gate-defined QD structures, and enables us to approximate
the Coulomb interactions using 2D integrals. It has been
demonstrated experimentally that single-dot spectra in GaAs
are adequately described by a parabolic potential with h̄ω0 on
the order of a few meV [27]. Our main focus here is on weakly
coupled QDs with relatively large separation. At the limit of
d � 1 the quartic potential separates into two harmonic wells
centered around ±d, which provides a convenient starting
point for orbital matrix element calculations. We stress that
confinement in real QD devices may be substantially different
from our simple model. A detailed knowledge of the device
electrostatic structure can enable accurate orbital modeling,
using, e.g., numerical Schrödinger-Poisson CI methods (see,
for example, Ref. [28], where the CI basis was derived
from device-specific density functional theory calculations).
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Instead, our approach here is to use a simple confinement
potential that allows us to obtain analytical results, elucidating
the important physical mechanisms behind orbital dynamics
in these devices.

Other confinement potentials have been used to model
double QDs, including a linear combination of three
Gaussians (accounting for the two wells and central barrier)
[29], a biquadratic potential [20,25,30,31], and a more realistic
finite quadratic potential, used in conjunction with matched
variational orbitals in a Heitler-London calculation [25,32].
The simpler quartic and biquadratic potentials both feature
unrealistic infinite confinement as r → ∞. In addition, the
biquadratic potential underestimates the interdot overlap due
to its unphysical kink in the central barrier, whereas the quartic
potential has different confinement energies in the two dots
under biased configuration. At sufficiently strong bias, the
quartic potential results in a single well, thus it was argued
that the biquadratic potential is better suited to model biased
double dots [25]. Motivated to obtain analytical results, we
nevertheless adopt the quartic potential, contending that even
in the large-bias regime considered below, we are close, but
still below the single-well threshold.

Another caveat shared by the quartic and biquadratic po-
tentials is that the barrier height governing the tunnel coupling
between the dots is determined by the interdot distance,
whereas in experiments the tunnel barrier is controlled by a gate
voltage separately from the interdot distance [33]. Whereas
most experiments implement exchange control using bias de-
tuning, and are thus reasonably modeled by our biased quartic
potential, recent experiments in GaAs [34] and Si [35] QDs
have successfully implemented symmetric exchange control
by independently tuning the central barrier height, resulting in
improved immunity to charge noise. This additional control can
be modeled by refining our confinement potential to include a
Gaussian term that provides a separate handle for the interdot
potential barrier, in the spirit of Ref. [29], but is outside the
scope of the current work.

B. Extended Hund-Mulliken approach

Casting the orbital Hamiltonian as an effective spin Hamil-
tonian, JS1 · S2, the exchange energy J is found by diago-
nalizing the singlet and triplet subspaces of the Hamiltonian
and taking the difference between the lowest-lying singlet and
triplet states, J = Et − Es . There is an infinite number of
single-dot orbitals from which the two-electron states are built,
thus all calculational approaches, including full CI, inevitably
use a truncated basis.

The Heitler-London approximation is the simplest ap-
proach, in which only the ground-state orbitals are used to build
the two separated symmetric and antisymmetric two-electron
states [36]. Singlet-triplet qubits operate at biased configura-
tion and even at moderate bias, the Heitler-London approx-
imation breaks down, as double occupancy states become
energetically favorable. The similarity of electronic states
in a gate-defined double dot to molecular orbitals suggests
the Hund-Mulliken (HM) approximation as an appropriate
approach [26,36]. In this approximation the single-particle
basis states still comprise only the s orbital in each dot, but
doubly occupied two-electron states are allowed, resulting in

a four-dimensional orbital Hilbert space with three singlets:
S(2,0), S(0,2), S(1,1), and one triplet: T (1,1) (due to Pauli
exclusion). Here the two numbers denote the number of
electrons occupying the left and right dot. Considering positive
interdot bias, electron tunneling is induced from the right to
left dot. The hybridization of the S(1,1) and S(2,0) singlets
dramatically lowers the ground singlet state and in the absence
of such triplet hybridization, the resulting exchange increases
by several orders of magnitude (negative bias will similarly
induce S(1,1)-S(0,2) hybridization with the same resulting
exchange).

As discussed in the introduction, we are interested in
extending the standard HM model to capture the orbital
dynamics in the high-bias regime, where p orbitals and thus
doubly occupied triplet states become energetically accessi-
ble. Rather than employing an sp-hybridized Heitler-London
basis [26] (that still excludes double occupancy states and
is thus unsuitable for this biased regime), or performing an
all-numerical CI calculation with extended state basis, we
opt to keep the Hilbert space minimal by including only the
lowest excited orbital in each dot, while still keeping double
occupancy states. This choice limits the validity regime of our
model, but as shown below, we are still able to qualitatively
capture the exchange dynamics at biases well beyond the triplet
anticrossing [19], covering a wide range of working positions
employed in current experiments with QD devices. The validity
and reliability of our exchange calculations are discussed in
Appendix A. We note that strictly speaking an HM calculation
includes only s orbitals, but to avoid confusion with the more
commonly used sp-hybridized Heitler-London approximation,
we refer to our approach as extended Hund-Mulliken.

A standard single-particle state basis, from which the
approximate two-particle state solutions for the orbital Hamil-
tonian in Eq. (1) can be constructed, are the Fock-Darwin
solutions to the two-dimensional parabolic potential (for a
derivation see, e.g., Ref. [31]). The ground and first excited
(so called p−) orbitals under magnetic field, centered at the
minima of each (unbiased) well, ±d, are given (in a−1

B units) by

ϕ
g
± =

√
b

π
e− b

2 [(x∓d)2+y2]e∓iyd
√

b2−1,

(5)

ϕe
± = b√

π
e− b

2 [(x∓d)2+y2]e∓iyd
√

b2−1(x ∓ d − iy),

and their energies are h̄ω and 2h̄ω − h̄ωL, respectively.
Here, ω = bω0, where b =

√
1 + ω2

L/ω2
0 is the magnetic

compression factor, and ωL = eB/(2mc) is the Larmor
frequency. Henceforth, we state energies in h̄ω0 units, so that
the ground and first excited energies read b, and 2b − √

b2 − 1,
respectively. In the presence of an electric field, the above
orbitals are both shifted by �x.

While the Fock-Darwin solutions are orthogonal within
each dot, interdot wave functions have the following overlaps:

S ≡ 〈ϕ+|ϕ−〉 = e−d2(2b− 1
b

),

S± ≡ 〈ϕ±|ϕe
∓〉 = ±(b +

√
b2 − 1)S, (6)

See ≡ 〈ϕe
+|ϕe

−〉 =
[

1 − d2

b
(b +

√
b2 − 1)2

]
S.
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To facilitate the construction of the two-electron Hamiltonian
matrix elements, we first orthonormalize the four basis states
in Eq. (5). The orthonormalized states are given by

�
g
± = 1

Ng

(ϕg
± − gϕ

g
∓ − g±ϕe

∓),

(7)

�e
± = 1

Ne

(ϕe
± − geeϕ

e
∓ − ge

±ϕ
g
∓).

Each orthonormalized state comprises primarily one Fock-
Darwin orbital, with additional contributions corresponding
to the overlap between the primary orbital and the two orbitals
in the other dot. The normalization constants are found to
be Ng = (1 + g2 + g2

± − 2g±S± − 2gS)−1/2 and Ne = (1 +
g2

ee + ge2
± + 2ge

±S± − 2geeSee)−1/2. The hybridization coeffi-
cients are calculated from the orthogonalization conditions of
the wave functions, Eq. (7):

〈�±|�∓〉 = S − 2g + g2S + g(g±S± + g∓S∓)

+ g+g−See = 0,

〈�e
±|�e

∓〉 = See − 2gee + g2
eeSee + gee(ge

∓S± + ge
±S∓)

+ ge
+ge

−S = 0,

〈�±|�e
∓〉 = S± − g± − ge

± + ge
∓(gS + g±S±) + ggeeS∓

+ g±geeSee = 0,

〈�±|�e
±〉 = −ge

±S − geeS± − gS∓ + gge
± − g±See

+ g±gee = 0. (8)

Symmetry considerations determine that g− = −g+ and ge
− =

−ge
+. These coupled nonlinear equations cannot be solved

analytically, but for sufficiently large interdot distance, where
overlaps are small, the g coefficients are well approximated by
their first-order solution:

g ≈ S

2
, gee ≈ See

2
,

(9)

g± ≈ S±
2S − See

S + See

, ge
± ≈ S∓

2See − S

S + See

.

A comparison between these approximate solutions and the
numerically obtained exact values is shown in Fig. 2 as a
function of half interdot separation d. We observe that the
approximate solutions are accurate down to d � 2, covering
device geometries employed in experiments with GaAs gate-
defined QDs. For d � 2 and typical confinement energies,
the HM model breaks down anyway (see Appendix A),
thus Eq. (9) can be safely used within our model’s validity
regime.

There are 10 singlets and six triplets that can be constructed
from the four orthogonalized states in Eq. (7). We reduce the
Hilbert space by eliminating two-particle states comprising
two excited orbitals, which are energetically inaccessible to
the same extent as states comprising a ground orbital and
the second excited (p+) orbital, originally excluded from
our model. The resulting Hilbert space has a total of 12
states with seven singlets and five triplets, listed in Table I.
When considering a limited bias regime (e.g., around the
singlet or triplet avoided crossings), one can further reduce
the Hilbert space and obtain closed-form analytical results, as
we show in Appendix C. The matrix elements of the orbital

FIG. 2. Orbital hybridization coefficients vs half interdot sep-
aration d . Solid lines depict the exact numerical solution to
Eq. (8) and dashed lines show the approximate solution given
by Eq. (9).

Hamiltonian in Eq. (1), in the basis of the 12 states given in
Table I, include single-particle energy and tunneling terms and
two-particle Coulomb coupling terms. They are constructed
from bare (nonorthogonalized) matrix elements whose explicit
closed-form expressions are given in Appendixes B 1 and B 2,
respectively. Appendix B 3 details the process of obtaining
the final matrix elements from these building blocks. The
Hamiltonian matrix is then diagonalized numerically and the
orbital eigenenergies are determined.

III. EXCHANGE SPLITTING RESULTS

We now present results of our exchange calculations and
its dependence on various parameters. We note that across the
range of approximation approaches and model confinement
potentials, exchange values can differ by an order of magnitude
[25], thus our results should be considered as qualitative or
semiquantitative, at best. Nevertheless, since the bias depen-
dence of J spans several orders of magnitude, we believe that
the main features are correctly captured.

TABLE I. The 12 two-particle states comprising the system’s
truncated Hilbert space. The three singlets and one triplet listed in
the top three rows of the table are the ground orbitals included in the
standard HM model [26].

Singlets Triplets

S(0,2) = �+�+ –

S(2,0) = �−�− –

S(1,1) = 1√
2
(�−�+ + �+�−) T (1,1) = 1√

2
(�−�+ − �+�−)

Se(0,2) = 1√
2
(�+�e

+ + �e
+�+) Te(0,2) = 1√

2
(�+�e

+ − �e
+�+)

Se(2,0) = 1√
2
(�−�e

− + �e
−�−) Te(2,0) = 1√

2
(�−�e

− − �e
−�−)

Sge(1,1) = 1√
2
(�−�e

+ + �e
+�−) Tge(1,1) = 1√

2
(�−�e

+ − �e
+�−)

Seg(1,1) = 1√
2
(�e

−�+ + �+�e
−) Teg(1,1) = 1√

2
(�e

−�+ − �+�e
−)
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FIG. 3. (a) Orbital energies of the 12 two-electron states included
in our extended HM model vs interdot bias. Solid (dashed) lines
depict singlet (triplet) energies. (b) Zoom on the lowest-lying singlet
and triplet energies, exhibiting avoided crossings. The labels state
the predominant content of each eigenfunction. (c) Exchange energy
calculated with the current extended HM approach (solid blue line)
and the original HM model of Ref. [26] (dashed green line). Vertical
dotted lines mark the locations of the two anticrossings, determined
by equal S(1,1) and S(2,0) [T (1,1) and Te(2,0)] content in the lowest
lying singlet [triplet] eigenvectors. (d) (∂J/∂ε)/J calculated with
the extended (solid blue line) and original (dashed green line) HM
models. For all plots, B = 0.1 T and the quartic confinement potential
parameters are ω0 = 5 meV and d = 2.5.

A. High-bias regime

An example of the energy diagram as a function of interdot
bias ε is shown in Fig. 3(a), where solid (dashed) lines depict
singlet (triplet) energies. Here and throughout the paper ε

corresponds to the energy difference between the two wells,
as depicted in Fig. 1, rather than the detuning from the
S(2,0)-S(1,1) degeneracy point, commonly used in many
experimental works. Focusing on the lowest lying singlets
[primarily comprising S(1,1) and S(2,0)], and triplets [pri-
marily comprising T (1,1) and Te(2,0)], Fig. 3(b) depicts the
expected singlet anticrossing, followed by a triplet anticrossing
at a higher interdot bias. At this large positive bias, the resulting
exchange energy [blue solid line in Fig. 3(c)] presents marked
flattening as compared with the standard HM (green dashed
line), where no triplet hybridization is allowed. The high-bias
J flattening observed in our extended HM calculation is a direct
result of the double-occupancy states included in our model for
both singlet and triplet configurations, as their charge distribu-
tions and thus their bias dependence is much more similar.

In this positive bias regime, the qubit dephasing time T ∗
2

has been experimentally found to be inversely proportional to
∂J/∂ε, suggesting that nuclear noise is negligible and the main
noise source is low-frequency voltage fluctuations [19]. The

observed number of exchange oscillations, used as a figure of
merit for their quality, is therefore proportional to J (∂J/∂ε)−1

and is experimentally found to be approximately constant at the
positive bias regime (consistent with the observed exponential
dependence of J on ε). The plot of (∂J/∂ε)/J in Fig. 3(d)
shows a pronounced maximum at the singlet anticrossing
and an abrupt drop at the triplet anticrossing to a value of
0.07—fivefold smaller than its calculated value without a
doubly occupant triplet (dashed-green line). The experimental
value extracted at this high-bias regime is 0.06—remarkably
close to our calculated value, demonstrating the simultaneous
existence of large J and reduced sensitivity to bias fluctuations
[19]. Overall, we find a reduction of two orders of magnitude in
(∂J/∂ε)/J from its maximal value. As was noted in Ref. [19],
close to the singlet anticrossing, where ∂J/∂ε is very large,
T ∗

2 is too short to be correctly captured, and the extracted
values of J and plot ∂J∂/εJ are unreliable, precluding a direct
comparison of our calculations with measured values.

B. Exchange dependence on magnetic field and interdot bias

The orbital energy structure shown in Fig. 3 can change
significantly with different system parameters. We first study
the relative bias locations of the lowest lying singlet and triplet
anticrossings, as they are directly responsible for the J tunabil-
ity and its sensitivity to bias fluctuations. Figure 4 shows anti-
crossing bias locations vs B for several confinement energies
and two interdot distances. Generally, these anticrossings occur
when electron tunneling from the right to left dot becomes
energetically favorable. In a triplet configuration, the electron
needs to tunnel to the excited orbital in the left dot, whereas
in a singlet configuration it can tunnel to the ground orbital.
One would then naively estimate the bias difference between
singlet and triplet anticrossings to amount to the energy gap
between the s and p− orbitals, which at zero magnetic field
is simply h̄ω0. This gap is partially offset, mostly due to the
reduced on-site Coulomb repulsion in the doubly occupied
triplet state (U terms in Table IV), resulting in a ∼1.25 meV
energy difference for h̄ω0 = 4 meV, as seen in Fig. 4(a).

FIG. 4. Bias locations of singlet (solid lines) and triplet (dashed
lines) anticrossings vs magnetic field for several quartic confinement
energies and half interdot separation of (a) d = 2.5 and (b) d = 3.
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With increased magnetic field, the ground orbital energy is
raised, while the excited orbital energy is reduced. The singlet
anticrossing is then mostly impacted by the increased on-site
Coulomb repulsion (due to the magnetic orbital compression),
resulting in a mild increase in its anticrossing bias, whereas
the triplet anticrossing bias is more drastically reduced due
to the reduced Fock-Darwin excited orbital energy. The order
at which the singlets and triplets anticross is thus reversed at
B = 1.15 T for h̄ω0 = 4 meV and at larger B for stronger
confinement, due to the scaling of the energy gap between the
ground and excited orbitals. Increasing the interdot separation
from d = 2.5 to d = 3 [Fig. 4(b)] has almost no effect on
the on-site Coulomb terms at the weak-coupling regime we
consider, but it reduces the interdot direct and exchange
Coulomb terms by ∼0.2 meV and should have therefore
increased the anticrossing biases. Instead, we observe that both
anticrossings occur at lower biases, and find it to be due to
the d dependence of the quartic-potential-related Q terms in
the single-particle energies, with larger effect on the excited
orbital and thus on the triplet energies (see Table II). As a
result, the anticrossing order reversal occurs at lower magnetic
fields (B = 0.63 T for h̄ω0 = 4 meV), as seen in Fig. 4(b).
Since the d dependence of the anticrossing locations is specific
to the quartic potential details, one should not take it too
seriously.

The dependence of J on the magnetic field exhibits several
interesting features. At larger magnetic fields, J demonstrates
an exponential decay due to the increased magnetic com-
pression of the orbitals (and hence their reduced overlap),
in qualitative agreement with the standard HM model. We
have verified that J > 0 at B = 0 throughout the parameter
range considered, satisfying the Lieb-Mattis theorem for a
two-particle system under a symmetric potential [36] (see
also Appendix A). For a symmetric double dot (ε = 0),
Fig. 5(a) shows a transition from antiferromagnetic (J > 0)
to ferromagnetic (J < 0) spin-spin coupling at magnetic fields
that are considerably lower than those predicted by the standard
HM model, in qualitative agreement with previously reported
sp-hybridized calculations [26,29]. This behavior is consistent
throughout the considered range of d values and extends to
biased double dots, as seen in Fig. 5(b). In contrast with the
standard HM results, J values calculated with our extended
HM model show prominent ferromagnetic amplitudes, most
notably in biased configurations, since we include triplet
hybridization that lowers its energy and guarantees it remains
the ground state over a wider range of magnetic fields.

Figure 6 presents a color map of J (B,ε), where the white
line marking J = 0, exhibits a nonmonotonous dependence on
bias. This behavior is associated with the different mechanisms
that govern the S − T energy crossing in the low- and high-
bias regimes, as we now explain. In the low-bias regime,
where both singlet and triplet states are predominantly in
their separated (single occupancy) configurations, the S − T

crossing is governed by the competition of Coulomb exchange
terms and direct (single-particle) tunneling [29]. Electrons
in the triplet configuration tend to repel each other so that
their Coulomb interaction is reduced, making the triplet the
ground state when the Coulomb contribution dominates. As
B increases, orbital wave functions are squeezed and their
overlap is reduced, making the long-range Coulomb couplings

FIG. 5. J vs magnetic field calculated using our extended HM
model (solid lines) and standard HM (dashed lines) at (a) zero bias
and (b) ε = 7.5 mV. Blue lines and left axes depict J for half interdot
separation of d = 2.5, while green lines and right axes depict J for
d = 3. The inset in panel (a) provides a zoom around the S − T

crossing for the d = 3 case. ω0 = 5 meV in all plots.

dominant. Within the low-bias regime, we find that the direct
tunneling contribution becomes smaller as ε increase (see
Table II in Appendix B), while Coulomb terms are independent
of ε. As a result, lower B is needed to establish Coulomb
dominance (and thus negative J ) as ε is raised.

The origin of the increase in transition B with bias at
the high-bias regime is very different. Here, both singlet
and triplet anticrossings have occurred and the two electrons

FIG. 6. A color map of J vs B and ε for d = 2.5 and ω0 = 5 meV.
The white line depicts singlet-triplet energy crossing (J = 0). The J

values at the lower-bias regime are very small, as compared with the
right side of the map, making it difficult to discern color variations in
this regime.
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FIG. 7. B(ε) at which J = 0 for several confinement energies,
with (a) d = 2.5 and (b) d = 3.

predominantly occupy a single dot in both configurations. The
ground orbital energy is increased with B while the excited
orbital energy is lowered. Together with a reduced triplet
on-site Coulomb interaction (half in magnitude as compared
with the singlet—see Table III in Appendix B), the triplet
becomes the ground state at sufficiently high B. We find
different bias dependence of the singlet and triplet energies,
arising from their single-particle Q terms, where the excited
orbital contribution decreases more slowly with ε as compared
with the ground orbital (see Table II in Appendix B). As a result,
when B is fixed at a value above the S − T crossing and bias
is swept up, the singlet energy will inevitably fall below the
triplet energy. We stress again that the bias dependence at this
regime originates from the details of the quartic potential and
is therefore model specific. Finally, in the vicinity of the two
anticrossings, the lowest-lying singlet and triplet states have
sizable probabilities of both single- and double-occupancy
orbital configurations, thus both aforementioned mechanisms
impact the location of the S − T energy crossing, resulting in
a nonmonotonous behavior in the bias range 5 � ε � 9 mV,
for the example depicted in Fig. 6.

The fact that the S − T energy crossing takes place at lower
magnetic fields in asymmetric double-dot devices is practically
useful, as it enables one to turn off the exchange interaction by
properly tuning the control fields to experimentally accessible
values. The locations of this idle position for several device
geometries are shown in Fig. 7, where B(ε) at which J = 0 is
plotted. At half interdot separation of d = 2.5 [Fig. 7(a)] we
obtain the idle positions with minimum fields of B = 0.74 T,
1.32 T, and 1.96 T at ε = 7 mV, 6 mV, and 6.5 mV, respectively.
For larger dot separation, J = 0 is obtained at even lower
magnetic fields, as depicted in Fig. 7(b), since the wave
function overlap is lower to begin with, and lowerB is sufficient
to compress the orbitals so that Coulomb interaction becomes
dominant. While this trend is consistent for biased dots, we
note that it is reversed at zero bias, where J = 0 is reached
at a higher field when d is increased [see also Fig. 5(a)]. A
closer inspection of J (d) at zero bias reveals a nonmonotonous
approach to zero, a phenomenon that was also observed in
Ref. [25], where it was hypothesized to be confinement-model
dependent. We conclude that, contrary to the biased case, the

exact location of J = 0 at zero bias is a result of a delicate
balance between several contributions, and may well be the
result of our use of quartic potential.

IV. CONCLUSION

The exchange interaction between two electrons confined in
a double QD is a key ingredient in all spin-based qubits, and its
tunability through interdot bias provides a convenient control
handle. At the same time, the exchange sensitivity to bias
fluctuations, derived from the different charge distributions of
the singlet and triplet configurations, plays an important role
in limiting the qubit coherence and reducing its gate fidelities.

In this work we developed an extended HM orbital model
that improves the reliability and applicability range of the stan-
dard HM model. In particular, our model correctly accounts for
the reduced sensitivity of J to bias fluctuations in the high-bias
regime, in excellent agreement with experimental values [19].
The analytical approach we have taken allowed us to study the
dynamics of the exchange interaction throughout the validity
range of our model, and identify the mechanisms behind it.

It would be interesting to use our extended HM model
with a confinement potential that includes separate control
over barrier height. This will allow us to model symmetric
exchange control that was recently demonstrated [34,35] and
directly compare its performance with bias control, potentially
unraveling useful information on the orbital landscape of
double-dot devices. In addition, we expect that our extended
HM approach can be applied to three-spin qubits in triple
QDs [5,6,37,38], possibly revealing subtle interplays between
interdot tunnel couplings, intradot level splittings, and spin
correlation energies that directly impact exchange behavior
in these devices. In this context, we mention a recent work
that explored exchange coupling of a multielectron QD to a
neighboring two-electron double dot [39,40]. Using a Hubbard
model with an additional excited orbital, the authors were
able to explain intricate nonmonotonous exchange behavior
(including negative J ) for both the spin-1/2 state at odd
occupancies and the spin-1 state at even occupancy of the
multielectron dot.
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APPENDIX A: TRUNCATED HILBERT SPACE UNDER
THE HUND-MULLIKEN APPROXIMATION

In this Appendix we briefly discuss the applicability of
our extended HM approach. A well-known validity test for
exchange calculations is the Lieb-Mattis theorem, stating that
at zero magnetic field the ground state of a two-particle
system under a symmetric confinement potential must be in
a singlet configuration [36]. It was noted that the Heitler-
London model breaks down when c = √

π/2e2/(κaB h̄ω0) >

2.8 (corresponding to ω0 = 2.13 meV for GaAs), predicting
J < 0 at B = 0 for sufficiently large overlap between the two
dots [26]. Similarly, the standard HM breaks down, though at
much smaller interdot distances. This problem intensifies for Si
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dots, where both the larger Coulomb energy (due to reduced
screening) and the smaller kinetic energy (due to the larger
effective mass) lead to critical c values reached at smaller dot
sizes [25].

The p− orbitals were introduced in our extended HM model
to allow for triplet hybridization in the high-bias regime. In
addition, the p− orbitals induce anisotropy that allows for
more spread in the electronic wave functions and a better
account of the two-electron correlations, both contributing to
lower the orbital energy [29]. The latter improvement should be
particularly valuable as both Heitler-London and HM methods
are known to underestimate electron correlations. While our
extended HM approach should thus provide more reliable J

values in the smaller d regime, it has been generally observed
that the accuracy of CI calculations does not necessarily
improve with the size of the basis states. An indication of the
potential difficulties associated with state-basis truncation is
given by our inability to orthogonalize the wave functions be-
low d � 1.7, largely independent of ω0. In this regime, neither
the approximate equations [Eq. (9)] nor our numerical solver
provide reliable values for the hybridization coefficients—a
problem that we believe is related to the absence of the p+
orbital in our model.

Steering away from this strong-coupling regime, which
has not been implemented experimentally, to the best of our
knowledge, we verify the applicability of our model in the
rest of the d and ω0 ranges, by examining the values for
which ∂J/∂d decreases monotonically with d at B = 0 and
ε = 0. We find that for ω0 ≈ 1.6 meV (corresponding to aB ≈
270 Åand c ≈ 3.25), ∂J/∂d becomes positive at d ≈ 2.4,
marking a breakdown of our model. This critical d value
is increased for yet smaller ω0 values (or larger dots). In
this regime the standard HM model performs better then our
extended HM model, breaking down at d = 1.65 for ω0 = 1.6
meV. On the other hand, for ω0 > 1.6 meV, the extended HM
model does not generate positive ∂J/∂d for any d value.
Instead, as d is reduced, ∂J/∂d presents an abrupt increase
in magnitude at some critical value dc, that is reduced with
increased ω0, as depicted in Fig. 8. While not in violation with
the Lieb-Mattis theorem, we believe that this behavior is an
artifact of our truncated space, and conclude that J values
in this regime are less reliable. All results presented in the
main text are for QDs with confinement energies above ω0 = 4
meV and half separation above d = 2.5, well above the validity
limits indicated by Fig. 8.

Another limitation of our model emerges at very large
magnetic fields, where J drops exponentially with B (see, e.g.,
Fig. 5). A numerical calculation that studied corrections to the
Heisenberg interaction revealed that at high magnetic fields,
the ground state alternates between singlet and triplet states,
so that additional zero crossings can occur at larger B fields
than those shown in Figs. 5–7 in the main text [41].

By far, our crudest approximation is to exclude the relatively
close p+ orbital in our calculations. The energy splitting
between the p± orbitals is ≈ 0.35h̄ω0 at B = 1 T, and while
J can get as high as 1–2 meV at the large-bias regime, none of
the direct tunneling or Coulomb terms exceeds ≈ 10μeV for
d � 2.5. The truncation of the p+ orbital is not a fundamental
limitation of our approach and it is possible to include it, albeit

FIG. 8. Critical d values at which ∂J/∂d calculated with the
extended HM model abruptly changes (but remains negative) against
ω0. We judge that below dc, calculated J values are unreliable. The
inset shows an example of J (d) for ω0 = 2 meV, where both standard
(dashed-green line) and extended (solid-blue line) HM results are
shown. The vertical dashed line marks the reliability regime of the
extended HM model.

at the price of additional hybridization coefficients and an
increase in Hilbert space dimension from 12 to 20 (11 singlets
and 9 triplets, provided that we keep two-electron states with
only one p orbital). While not fully justified, our truncated
Hilbert space results in exchange values that pass all validity
tests within the parameter range used, and match experimental
values surprisingly well.

APPENDIX B: ORBITAL HAMILTONIAN
MATRIX ELEMENTS

In this Appendix we provide details of the calculation of the
matrix elements of our orbital Hamiltonian. It is convenient to
evaluate the single-particle portion of the Hamiltonian, Eq. (1),
by referencing it to the Hamiltonian of two-dimensional
harmonic wells, centered at ±d [26], such that

Horb = h−(r1) + h+(r2) + Q−(r1) + Q+(r2) + HC,

h±(r) = 1

2

(
p − e

c
A(r)

)2
+ 1

2
[(x ∓ d)2 + y2] + xε

d
, (B1)

Q±(r) = 1

2

[
x4

4d2
− 3x2

2
− 3d2

4
± 2xd

]
,

where coordinates are measured in aB units, generalized
momenta in h̄a−1

B units, and energies in h̄ω0 units.
The calculation of the system’s eigenenergies is carried out

in four steps: (i) closed-form expressions for the single-particle
(kinetic) and two-particle (Coulomb) bare matrix elements are
calculated within the ground and excited Fock-Darwin orbitals,
Eq. (5); (ii) the orthogonalized matrix elements are constructed
out of combinations of the bare terms, according to Eq, (7);
(iii) the orthogonalized terms are combined to find the final
Hamiltonian matrix elements for the 12 singlet and triplet states
listed in Table I; (iv) the resulting matrix is diagonalized to find
the orbital eigenenergies. Below we provide details pertaining
to these calculational steps.
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TABLE II. Bare single-particle matrix elements in h̄ω0 units. The overlap integrals are given in Eq. (6).

h terms

〈ϕ±|h±|ϕ±〉 = b − ε2

8d2 ± ε

2

〈ϕ±|h±|ϕ∓〉 = S
(
b − ε2

8d2 ± ε

2

)
〈ϕe

±|h±|ϕe
±〉 = 2b − √

b2 − 1 − ε2

8d2 ± ε

2

〈ϕe
±|h±|ϕe

∓〉 = See

(
2b − √

b2 − 1 − ε2

8d2 ± ε

2

)
〈ϕ±|h±|ϕe

∓〉 = S±
(
b − ε2

8d2 ± ε

2

)
〈ϕe

±|h±|ϕ∓〉 = S∓
(
2b − √

b2 − 1 − ε2

8d2 ± ε

2

)
〈ϕ±|h±|ϕe

±〉 = 0

〈ϕ±|h∓|ϕe
±〉 = ∓ d√

b

Q terms

〈ϕ±|Q±|ϕ±〉 = 1
32b2d4

[
3d2 + 3bε(ε ∓ 4d2) + b2ε3

4d2 (ε ∓ 8d2)
]

〈ϕ±|Q±|ϕ∓〉 = S

32b2d4

[
3d2 + 3b(ε2 − 4d4) − b2

4d2 (2d2 ± ε)3(6d2 ∓ ε)
]

〈ϕe
±|Q±|ϕe

±〉 = 1
32b2d4

[
9d2 + 6bε(ε ∓ 4d2) + b2

4d2 ε3(ε ∓ 8d2)
]

〈ϕe
±|Q±|ϕe

∓〉 = 1
32b2d4

{
See

[
3d2 − b2

4d2 (2d2 ± ε)3(6d2 ∓ ε) + 3b(ε2 − 4d4)
] + 3S(2d2 + bε2 − 2d4)

}
〈ϕ±|Q±|ϕe

∓〉 = S±
32b2d4

[
3d2 − b2

4d2 (2d2 ± ε)3(6d2 ∓ ε) + 4b(ε2 − 4d4)
] − S

16d3b3/2

[
3ε + b

2d2 (ε ∓ 4d2)(ε ± 2d2)2
]

〈ϕe
±|Q±|ϕ∓〉 = S∓

32b2d4

[
3d2 − b2

4d2 (2d2 ± ε)3(6d2 ∓ ε) + 4b(ε2 − 4d4)
] − S

16d3b3/2

[
3ε + b

2d2 (ε ∓ 4d2)(ε ± 2d2)2
]

〈ϕ±|Q±|ϕe
±〉 = − 1

16d3b3/2

[
3(ε ∓ 2d2) + b

2d2 ε2(ε ∓ 6d2)
]

〈ϕ±|Q∓|ϕe
±〉 = − 1

16d3b3/2

[
3(ε ± 2d2) + b

2d2 ε2(ε ± 6d2) ∓ 16bd4
]

1. Single-particle bare matrix elements

We define single-particle energy and tunneling terms in a
biased quartic potential as

ε
g
± = 〈ϕg

±|h± + Q±|ϕg
±〉,

εe
± = 〈ϕe

±|h± + Q±|ϕe
±〉, (B2)

ε
ge
± = 〈ϕg

±|h± + Q±|ϕe
±〉,

and

tg = 〈ϕg
±|h± + Q±|ϕg

∓〉,
te = 〈ϕe

±|h± + Q±|ϕe
∓〉, (B3)

t
ge
± = 〈ϕg

±|h± + Q±|ϕe
∓〉,

where h± and Q± are the (biased) harmonic-well Hamiltonians
and quartic potential correction terms, respectively. Note that
for all three cases (ground, excited, or mixed orbitals) we
have 〈ϕ±|h∓ + Q∓|ϕ±〉 = 〈ϕ∓|h∓ + Q∓|ϕ∓〉 and 〈ϕ±|h∓ +
Q∓|ϕ∓〉 = 〈ϕ∓|h∓ + Q∓|ϕ±〉 (although the h and Q matrix
elements are not equal independently, their combinations are).
In addition, in Eq. (B3) we used the fact that t

g
+ = t

g
− ≡ tg and

t e+ = t e− ≡ t e. The explicit expressions for the h and Q matrix
elements are listed in Table II.

2. Coulomb terms

We denote a generic bare (nonorthogonalized) Coulomb
term as cijkl , where i,j,k,l ∈ {g,e} and c ∈ {u,vd,vx,w,x}. The
five types of Coulomb couplings correspond to the various
double-dot occupancies (in either ground or excited orbitals)

and are given by

u = 〈ϕ+ϕ+|HC |ϕ+ϕ+〉,
vd = 〈ϕ+ϕ−|HC |ϕ+ϕ−〉,
vx = 〈ϕ+ϕ−|HC |ϕ−ϕ+〉, (B4)

w = 〈ϕ+ϕ+|HC |ϕ+ϕ−〉,
x = 〈ϕ+ϕ+|HC |ϕ−ϕ−〉,

where ϕ± ∈ {ϕg
±,ϕe

±}. Symmetry properties of the
Coulomb interaction, 〈ϕiϕj |HC |ϕkϕl〉 = 〈ϕjϕi |HC |ϕlϕk〉 =
〈ϕkϕl|HC |ϕiϕi〉, determine the number of distinct matrix
elements in each of the five groups. In addition, it can be
verified that the simultaneous swapping of all four orbitals,
+ ←→ −, in Eq. (B4) leaves the term unchanged for an
even number of excited orbitals and adds a sign for an odd
number of excited orbitals. Although our Hilbert space is
truncated to include up to one excited orbital in each dot, the
orthogonalized matrix elements include (small) contributions
from all 16 bare orbital combinations. Taking these symmetry
considerations into account we find that there are seven distinct
terms of each of the u, vd, vx, and x types, and 16 distinct
terms of the w type. The explicit closed-form expressions for
these bare Coulomb terms are listed in Table III.

3. Final orbital matrix elements

The terms listed in Tables II and III and the hybridization
coefficients, Eq. (9), are used to construct the orthogonalized
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TABLE III. Bare Coulomb terms in h̄ω0c units (only distinct terms are listed). The overlap integrals are given in Eq. (6). In these expressions,
I d
n ≡ In(bd2), I x

n ≡ In[d2(b − 1/b)], and Iw
n ≡ In(d2/4b) denote the nth-order modified Bessel functions with the indicated arguments.

u terms
ugggg = √

b

ueggg = 0

uegeg = 3
4

√
b

uegge = 1
4

√
b

ueegg = 0

ueeeg = 0

ueeee = 11
16

√
b

vd terms

v
gggg

d = √
be−bd2

I d
0

v
eggg

d = − bd

2 e−bd2[
I d

0 − I d
1

]
v

egeg

d =
√

b

4 e−bd2[
3I d

0 + 2bd2
(
I d

0 − I d
1

)]
v

egge

d =
√

b

4 e−bd2[
I d

0 − 2bd2
(
I d

0 − I d
1

)]
v

eegg

d =
√

b

4 e−bd2[
I d

1 − 2bd2
(
I d

0 − I d
1

)]
v

eeeg

d = bd

2 e−bd2[
bd2

(
I d

0 − I d
1

) + 1
4

(
I d

0 − 3I d
1

)]
veeee

d =
√

b

4 e−bd2[( 11
4 − bd2

)
I d

0 + 2bd2(1 + bd2)
(
I d

0 − I d
1

)]
vx terms

vgggg
x = √

be−bd2
SIx

0

veggg
x = −

√
b

2 e−bd2[
bS

(
I x

0 + I x
1

) + S+
(
I x

0 − I x
1

)]
vegeg

x =
√

b

2 e−bd2[
See

(
I x

0 − I x
1

) + S(1 − bd2)
(
I x

0 + I x
1

) − 1
2 SIx

0

]
vegge

x = b3/2

2d2 e−bd2[
bd2S

(
I x

0 + I x
1

) + (S − See)
(
I x

0 − I x
1

) + 1
2 SIx

0

]
veegg

x = − b3/2

2d2 e−bd2[
bd2S

(
I x

0 + I x
1

) + (S − See)
(
I x

0 − I x
1

) − 1
2 SIx

1

]
veeeg

x =
√

b

2 e−bd2{[
(b + √

b2 − 1)See − b

4 S − 1
2 S+

](
I x

0 − I x
1

) + [
b

2 S + 1
4 S+ − b2d2S

](
I x

0 + I x
1

)}
veeee

x =
√

b

4 e−bd2{[( 11
8 + bd2

)
S − 2d2

(
2b + 1

b
+ 2

√
b2 − 1

)
See

](
I x

0 − I x
1

) + [
3
8 S + See − d2

(
b + 1

b
− 2b2d2

)
S
](

I x
0 + I x

1

)}
w terms

wgggg = √
be

−d2
4b SIw

0

weggg = −
√

b

4 e− d2
4b S

(
Iw

0 − Iw
1

)
wgegg =

√
b

4 e− d2
4b S

(
3Iw

0 + Iw
1

)
wggeg = −

√
b

4 e− d2
4b

(
2bS − S+

)(
Iw

0 − Iw
1

)
wggge =

√
b

4 e− d2
4b

[
2bS

(
Iw

0 − Iw
1

) + S+
(
3Iw

0 + Iw
1

)]
wegeg = 1

8
√

b
e− d2

4b S
(
d2

(
Iw

0 − Iw
1

) + 6bIw
0

)
wgege = 1

8
√

b
e− d2

4b

[
d2

(
5Iw

0 + 3Iw
1

)
S − 4bd2

(
3Iw

0 + Iw
1

)
S+ + 6bIw

0 S
]

wegge = 1
8
√

b
e− d2

4b

[
d2

(
S − 4bS+

)(
Iw

0 − Iw
1

) + 2bIw
0 S

]
wgeeg = 1

8
√

b
e− d2

4b S
[
d2(Iw

0 − Iw
1 ) + 2bIw

0

]
weegg = 1

8d
e− d2

4b S+(b + √
b2 − 1)

[
d2

(
Iw

0 − Iw
1

) + 2bIw
0

]
wggee = 1

8
√

b
e− d2

4b

{[
2d2S + b(S − See)

](
Iw

1 − Iw
0

) + 2 b2

d2 (S − See)Iw
1

}
weeeg = 1

16
√

b
e− d2

4b S+
[
d2

(
Iw

1 − Iw
0

) − b
(
11Iw

0 + 3Iw
1

)]
weege = 1

16
√

b
e− d2

4b

{
d2

[
(8b2 − 1)S+ − 4bS

](
Iw

0 − Iw
1

) − 5bS+
(
Iw

0 + Iw
1

) + 4b
[
(4b2 + 1)S+ − 2bS

]
Iw

1

}
wegee = 1

16
√

b
e− d2

4b

{[
(1 + 2b2)(4b + d2)S + 2bd2(bS − S+) − 4b2S+

](
Iw

0 − Iw
1

) + [
7bS − 2b2(2bS − S+)

](
Iw

0 + Iw
1

)}
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TABLE III. (Continued.)

w terms

wgeee = 1
16

√
b
e− d2

4b

{[
(d2 + 2b)S+ + 2bd2S

](
Iw

0 − Iw
1

) + (3bS+ − 2b2S)
(
Iw

0 + Iw
1

)}
weeee = 1

32
√

b
e− d2

4b

{[
2(d2 − 10b)See − d2

(
1 + d2

b

)
S
](

Iw
0 − Iw

1

) − [
14bSee − 3d2S

](
Iw

0 + Iw
1

) + 2b
(
3 − 28bd2

)
SIw

0

}
x terms

xgggg = √
bS2

xeggg = −√
bSS+

xegeg = √
bS

(
See + 1

4 S
)

xegge = √
bS+

[
b2

2d2 S − (
1 + b

4d2

)
S+

]
xeegg = √

bS2
+

xeeeg = −√
bSeeS+

xeeee = √
b
(
S2

ee − 5
16 S2

)

kinetic and Coulomb matrix elements. We denote orthogonal-
ized elements with capital letters, i.e., E and T for energy
and tunneling terms, and U,Vd,Vx,W , and X for Coulomb
terms. These orthogonalized elements are then combined to
provide the final matrix elements of the orbital Hamiltonian,
in the basis of the 12 singlet and triplet states listed in Table I.
Since singlets are symmetric and triplets are antisymmetric
in their orbital degrees of freedom, they are not coupled by
our symmetric Hamiltonian, resulting in a total of 28 singlet
and 15 triplet matrix elements, listed in Table IV. Explicit
expressions of elements involving only ground orbitals can
be found in Ref. [26] (for nonbiased configuration) and in
Ref. [42] (including bias).

APPENDIX C: LOCAL ANALYTICAL APPROXIMATIONS

The extended HM model used to generate the results
presented in the main text includes 12 two-particle basis
states given in Table I. In the vicinity of the singlet and
triplet anticrossings, the higher states become sufficiently
removed from the lowest lying levels and one can obtain
approximate exchange values by considering the reduced 2 × 2
singlet and triplet subspaces comprising S(1,1)-S(2,0) and
T (1,1)-Te(2,0), respectively. The singlet and triplet Hamilto-
nians are given by

HS =
(

ES(2,0)

√
2(T g + W )√

2(T g + W ) ES(1,1)

)
, (C1)

and

HT =
(

ETe(2,0) T
ge
+ + �W

T
ge
+ + �W ET (1,1)

)
, (C2)

where the two-particle energies are given in Table IV, the
direct tunneling and Coulomb terms are given in Tables II and
III, respectively, and we have defined �W ≡ Wgegg − Weggg

and omitted superscripts from ground-orbital-only Coulomb
matrix elements for brevity. Diagonalizing these Hamiltonians,

we find the approximate J as

J = ET
− − ES

− = 1

2

[
ETe(2,0) + ET (1,1) − ES(2,0) − ES(1,1)

+
√

(ES(2,0) − ES(1,1))2 + 8(T g + W )2

−
√(

ETe(2,0) − ET (1,1)
)2 + 4(T ge + �W )2

]
, (C3)

depicted by the red-dashed line in Fig. 9. Keeping only
leading contributions in interdot overlap (appropriate for the
considered weak-coupling regime), we find the asymptotes of
Eq. (C3) at biases below the singlet anticrossing (εSC) and
above the triplet anticrossing (εTC) as

J ≈
{

−2Vx + 2(tg+w)2

ε
g
−−ε

g
++u−v+

− (tge
+ +�w)2

εe−−ε
g
++uegeg−v+

, ε < εSC

εe
− − ε

g
− − u + uegeg, ε > εTC.

(C4)

We note that in the lower bias regime, the first two terms in
Eq. (C4) match the extended Hubbard limit given in Ref. [26],

FIG. 9. Exact solution for J (ε) (solid blue line) and several
approximations in the vicinity of the singlet and triplet anticrossing,
discussed in the text. Parameters used are B = 0.1 T, ω0 = 5 meV,
and d = 2.5.
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TABLE IV. Orbital Hamiltonian matrix elements. In these terms V± ≡ Vd ± Vx.

Diagonal terms

Singlets Triplets

ES(0,2) = 2E
g
+ + Ugggg –

ES(2,0) = 2E
g
− + Ugggg –

ES(1,1) = E
g
+ + E

g
− + V

gggg
+ ET (1,1) = E

g
+ + E

g
− + V

gggg
−

ESe (0,2) = E
g
+ + Ee

+ + Uegeg + Uegge ETe (0,2) = E
g
+ + Ee

+ + Uegeg − Uegge

ESe (2,0) = E
g
− + Ee

− + Uegeg + Uegge ETe(2,0) = E
g
− + Ee

− + Uegeg − Uegge

ESge (1,1) = E
g
− + Ee

+ + V
egeg

d + V egge
x ETge(1,1) = E

g
− + Ee

+ + V
egeg

d − V egge
x

ESeg (1,1) = E
g
+ + Ee

− + V
egeg

d + V egge
x ETeg (1,1) = E

g
+ + Ee

− + V
egeg

d − V egge
x

Off-diagonal Terms

Singlets Triplets

〈S(0,2)|H |S(2,0)〉 = Xgggg –

〈S(0,2)|H |S(1,1)〉 = √
2(T g + Wgggg) –

〈S(0,2)|H |Se(0,2)〉 = √
2(Ege

+ + Ueggg) –

〈S(0,2)|H |Se(2,0)〉 = √
2Xggge –

〈S(0,2)|H |Sge(1,1)〉 = √
2Wggeg –

〈S(0,2)|H |Seg(1,1)〉 = √
2(T ge

+ + Wggge) –

〈S(2,0)|H |S(1,1)〉 = √
2(T g + Wgggg) –

〈S(2,0)|H |Se(0,2)〉 = √
2Xeggg –

〈S(2,0)|H |Se(2,0)〉 = √
2(Ege

− + Ueggg) –

〈S(2,0)|H |Sge(1,1)〉 = √
2(T ge

− − Wggge) –

〈S(2,0)|H |Seg(1,1)〉 = −√
2Wggeg –

〈S(1,1)|H |Se(0,2)〉 = T
ge
− + Wgegg + Weggg 〈T (1,1)|H |Te(0,2)〉 = T

ge
− + Wgegg − Weggg

〈S(1,1)|H |Se(2,0)〉 = T
ge
+ − Wgegg − Weggg 〈T (1,1)|H |Te(2,0)〉 = T

ge
+ + Wgegg − Weggg

〈S(1,1)|H |Sge(1,1)〉 = E
ge
+ + V

eggg
+ 〈T (1,1)|H |Tge(1,1)〉 = E

ge
+ + V

eggg
−

〈S(1,1)|H |Seg(1,1)〉 = E
ge
− + V

eggg
+ 〈T (1,1)|H |Teg(1,1)〉 = −(Ege

− + V
eggg
− )

〈Se(0,2)|H |Se(2,0)〉 = Xegeg + Xegge 〈Te(2,0)|H |Te(2,0)〉 = Xegeg − Xegge

〈Se(0,2)|H |Sge(1,1)〉 = T g + Wegeg + Wgeeg 〈Te(0,2)|H |Tge(1,1)〉 = T g + Wegeg − Wgeeg

〈Se(0,2)|H |Seg(1,1)〉 = T e + Wgege + Wegge 〈Te(0,2)|H |Teg(1,1)〉 = T e + Wegge − Wgege

〈Se(2,0)|H |Sge(1,1)〉 = T e − (Wegge + Wgege) 〈Te(2,0)|H |Teg(1,1)〉 = T e − (Wgege − Wegge)

〈Se(2,0)|H |Seg(1,1)〉 = T g − (Wgeeg + Wegeg 〈Te(2,0)|H |Teg(1,1)〉 = −T g − (Wgeed − Wegeg)

〈Sge(1,1)|H |Seg(1,1)〉 = V
egge

d + V egeg
x 〈Tge(1,1)|H |Teg(1,1)〉 = V

egge

d − V egeg
x

with interdot Coulomb correlations (first term) and tunneling
and on-site Coulomb repulsion renormalized by long-range
Coulomb couplings (second term). The third term in the lower
bias regime of Eq. (C4) is a new contribution due to the triplet
hybridization, whose magnitude is comparable to those of the
other terms, for the considered parameter range. At lower
bias, where J becomes very small, long-range contributions
from higher states, absent in this reduced Hamiltonian picture,
become important and the approximation breaks down, as seen
by the dotted-green line in Fig. 9.

At the high-bias regime we find that the asymptotic behavior
of Eq. (C3) is accurately captured by the energy difference be-
tween the lowest lying singlet and triplet configurations, since
both are predominantly doubly occupied. Using the explicit

expressions for single-particle energies and bare Coulomb
terms, given in Tables II and III, respectively, the resulting
approximate J at this high-bias limit is given by

J hb
a ≈ h̄ω0

[
b −

√
b2 − 1 + 3

16b2d2
− c

√
b

2

]

+ 3

8bd2

(
ε + ε2

4d2h̄ω0

)
. (C5)

While this result suggests that there is no sweet spot, at which
∂J/∂ε = 0, we note that the bias dependence in Eq. (C5)
emerges from the quartic-potential-related Q terms and is
therefore specific to our confinement model.
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