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Trend reversal in the magnetic-field dependence of exciton spin-transfer rates in diluted magnetic
semiconductors due to non-Markovian dynamics
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We investigate theoretically the influence of an external magnetic field on the spin dynamics of excitons in
diluted magnetic semiconductor quantum wells. To this end, we apply a quantum kinetic theory beyond the Markov
approximation which reveals that non-Markovian effects can significantly influence the exciton spin dynamics.
If the magnetic field is oriented parallel to the growth direction of the well, the Markovian spin-transfer rate
decreases monotonically with increasing field as predicted by Fermi’s golden rule. The quantum kinetic theory
follows this result qualitatively but predicts pronounced quantitative differences in the spin-transfer rate as well
as in the long-time spin polarization. However, for an in-plane magnetic field, where the Markovian spin-transfer
rate first drops and then increases again, quantum kinetic effects become so pronounced that the Markovian
trend is completely reversed. This is made evident by a distinct maximum of the rate followed by a monotonic
decrease. The deviations can be traced back to a redistribution of carriers in energy space caused by correlations
between excitons and magnetic dopants. The same effect leads to a finite electron-spin polarization at long times
in longitudinal as well as transverse fields which is much larger than the corresponding Markovian prediction.
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I. INTRODUCTION

Diluted magnetic semiconductors (DMS) [1–4] form a
widely studied subclass of semiconductors that show promise
for spintronics applications [5–8]. In these systems a small
number of magnetic impurities such as manganese are intro-
duced to create localized magnetic moments that interact with
the carrier spin. We focus on the class of paramagnetic II-VI
DMS where these ions are incorporated isoelectrically. The
carrier spin dynamics in such systems is typically studied using
optical pump-probe experiments while varying parameters
such as doping concentration, temperature, well width, and
magnetic field [9–17]. Regarding the dependence of dynamical
spin relaxation on the magnetic field, a transverse field (Voigt
geometry) is of particular interest since it allows not only
a direct measurement of electron and hole g factors via
their respective precession frequencies but also enables a
straightforward separation of electron, hole, and manganese
spin relaxation effects in experiments [9,10].

However, fundamental observations in the ultrafast spin
dynamics in these systems remain not understood, as evident
by the persistent underestimation of measured spin-transfer
rates by calculations using Fermi’s golden rule for quasifree
electrons as well as an observed nonmonotonic dependence
of the transverse spin relaxation on magnetic field [13,14]. It
has been argued that some of the discrepancies between theory
and experiment are the result of probing excitons rather than
quasifree carriers since typical experiments are performed at
the exciton resonance [10,12,14,15,18–21]. However, a simple
replacement of the electron mass by the exciton mass in Fermi’s
golden rule strongly overestimates the spin decay. It has been
shown only recently that theoretically and experimentally
obtained spin-transfer rates for vanishing magnetic field can
be reconciled if correlation effects are taken into account [22].

An analysis of the spin dynamics for quasifree carriers
has revealed that non-Markovian effects become relevant for
excitations in the vicinity of sharp structures in the elec-
tronic density of states [23]. In particular, this applies to
the vicinity of the band edge where the density of states
drops abruptly to zero. For electrons in a parabolic band
structure, it has been shown [23] that the spin dynamics
becomes Markovian provided that the kinetic energy h̄ω of
the carriers is large compared to h̄τ−1 where τ−1 denotes the
Markovian spin relaxation rate. For direct optical excitation
of excitons this condition is never fulfilled since light couples
only to excitons with vanishing center-of-mass motion. Thus,
it can be expected that non-Markovian features will be pro-
nounced in this case which will be corroborated in the present
paper.

In this paper, we investigate theoretically the magnetic-
field dependence of exciton spin-transfer rates in longitudinal
as well as transverse fields. Although the spin dynamics
of excitons has been investigated theoretically before, most
theories do not go beyond Fermi’s golden rule and therefore
do not account for correlations between the carrier and the
impurity subsystem [24–28], despite the fact that correlation
effects have been shown to influence the spin dynamics even for
quasifree carriers [29,30] and are necessary in order to obtain
a quantitative agreement between theory and experiment for
vanishing magnetic field. We perform numerical calculations
using a recently developed quantum kinetic theory (QKT) for
the spin dynamics of excitons [22] that accounts for genuine
many-body correlations not captured by Fermi’s golden rule.
Apart from the usually considered s−d exchange interaction
in DMS [1,2] between electrons and magnetic impurities our
theory also includes the nonmagnetic scattering of carriers at
the localized impurities, which turns out to have a profound
impact on the spin dynamics in finite magnetic fields despite
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the fact that nonmagnetic scattering does not contribute to
Markovian spin-transfer rates.

In Faraday geometry, it is found that the Markovian spin-
transfer rate as a function of magnetic field decreases mono-
tonically. A systematic comparison of theses results with nu-
merically extracted exciton spin-transfer rates from a quantum
kinetic calculation reveals quantitative differences but shows a
similar overall trend. However, in Voigt configuration, where
the Markovian rate increases after a short initial decrease, the
QKT predicts a completely reversed dependency of the spin-
transfer rate on the magnitude of the applied field. There, after
a small initial rise of the rate with increasing magnetic field, a
maximum followed by a virtually monotonic decrease appears.
The origin of these deviations between quantum kinetic and
Markovian calculations can be traced back to a redistribution
of exciton center-of-mass momenta to regions which are inac-
cessible in the Markov limit. Such a redistribution of carrier
momenta is made possible by a significant correlation energy
which cannot be captured in a single-particle approach and is
particularly caused by nonmagnetic scattering of carriers at im-
purities. Moreover, the spin polarization at long times predicted
by the QKT is generally much larger than the corresponding
Markovian value, an effect which is especially pronounced in
Voigt geometry where a dephasing to zero is expected.

The paper is structured as follows: First, we discuss the
different contributions to the Hamiltonian modeling the system
and briefly recapitulate the derivation of the quantum kinetic
equations from Ref. [22]. Second, the Markov limit of the
quantum kinetic equations is established in order to obtain
expressions for exciton spin-transfer rates in Faraday and Voigt
configuration which can be compared with the predictions of
the QKT. The Markovian expressions are also used to obtain
analytical insights into correlation energies in the system.
Turning to the numerics, we perform simulations of the exciton
spin dynamics in a Zn1−xMnxSe quantum well in a longitu-
dinal magnetic field and discuss the role of the correlation
energy as well as the time-resolved redistribution of exciton
kinetic energies. Finally, after discussing the spin dynamics
in Voigt configuration, we numerically extract characteristic
spin-transfer rates for both longitudinal and transverse mag-
netic fields from our simulations and compare them with the
corresponding Markovian predictions.

II. MODEL AND EQUATIONS OF MOTION

In this section we briefly present the Hamiltonian along
with the relevant dynamical quantities for the quantum kinetic
description of the exciton spin.

A. Model

Our aim is to study the magnetic-field dependence of the
spin transfer between excitons and the manganese subsystem
in an intrinsic DMS quantum well excited at the 1s exciton
resonance. To this end, we employ a recently developed
quantum kinetic theory [22] accounting for correlation effects
not captured by Fermi’s golden rule. The model Hamiltonian
comprises the following contributions [22]:

H = H e
0 + H h

0 + Hconf + HC + H e
Z + H h

Z + H Mn
Z + Hlm

+ Hsd + Hpd + H e
nm + H h

nm. (1)

The crystal Hamiltonian for electrons and holes can be written
as

H e
0 + H h

0 =
∑
lk

El
kc

†
lkclk +

∑
vk

Ev
kd

†
vkdvk, (2)

where c
†
lk (clk) denotes the electron creation (annihilation)

operator in the conduction band l with wave vector k and d
†
vk

(dvk) is the respective creation (annihilation) operator for holes
in the valence band v. Together with the confinement given by
Hconf and the Coulomb interaction

HC =1

2

∑
kk′q

(
Vq

∑
ll′

c
†
l′k′+qc

†
lk−qclkcl′k′

+ Vq

∑
vv′

d
†
v′k′+qd

†
vk−qdvkdv′k′

− 2Vq

∑
lv

c
†
lk′+qd

†
vk−qdvkclk′

)
, (3)

a diagonalization of these four contributions in the single-pair
subspace yields the exciton wave functions and energies. We
consider a quantum well of width d with infinitely high barriers
and project the wave function onto the lowest confinement

stateu0(z) =
√

2
d

cos (π
d
z). The Fourier components of the bulk

Coulomb potential before the projection onto the well states
are Vq = e2

εε0

1
q2 , where e is the elementary charge, ε0 denotes

the vacuum permittivity, and ε is the static dielectric constant
of the material.

A homogeneous external magnetic field B is incorporated
via the Zeeman terms

H e
Z = geμB

∑
ll′k

B · se
ll′c

†
lkcl′k, (4a)

H h
Z = −6κμB

∑
vv′k

B · sh
vv′d

†
vkdv′k, (4b)

H Mn
Z = gMnμB

∑
Inn′

B · Snn′ P̂ I
nn′ , (4c)

for electrons, holes, and Mn atoms, respectively. We denote
the vector of electron spin matrices by se

ll′ = 1
2σ ll′ , where σ ll′

is the vector of Pauli matrices, and sh
vv′ = 1

3 Jvv′ describes the
hole spin in terms of the vector of 4 × 4 angular momentum
matrices Jvv′ with v,v′ ∈ {− 3

2 , − 1
2 , 1

2 , 3
2 } [31]. Finally, Snn′

denotes the vector of impurity spin matrices with n,n′ ∈
{− 5

2 , − 3
2 ,..., 5

2 }. To describe the impurity spin at a particular
site in the DMS, we make use of the operator P̂ I

nn′ = |I,n〉〈I,n′|
where the ket |I,n〉 denotes the spin state n of the I th impurity
atom. The constant ge is the g factor of the electrons, κ is the
isotropic valence-band g factor [32], gMn denotes the impurity
g factor, and μB is the Bohr magneton. The light-matter
coupling in the dipole approximation [33] is given by

Hlm = −
∑
lvk

(E · Mlvc
†
lkd

†
v−k + E · Mvldv−kclk) (5)

with an electric field E and the dipole moment Mlv for
a transition from a state in the valence subband v to the
conduction subband l.
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The exchange interaction between the s-like conduction-
band electrons and the p-like valence-band holes with local-
ized d-shell electrons of the Mn impurities typically dom-
inates the spin dynamics in DMS and can be written as
[1,2,22,34]

Hsd = Jsd

V

∑
Inn′
ll′kk′

Snn′ · se
ll′c

†
lkcl′k′ei(k′−k)·RIP̂ I

nn′ , (6a)

Hpd = Jpd

V

∑
Inn′

vv′kk′

Snn′ · sh
vv′d

†
vkdv′k′ei(k′−k)·RIP̂ I

nn′ . (6b)

Throughout this paper, we absorb the factor h̄ appearing in the
spin matrices in the coupling constants Jsd and Jpd as well as
the Bohr magneton μB .

Due to the band-gap mismatch that arises when doping
atoms are incorporated into the host lattice, there is also a
nonmagnetic scattering of carriers at impurities that we model
via [29]

H e
nm = J e

0

V

∑
I l

kk′

c
†
lkclk′ei(k′−k)·RI , (7a)

H h
nm = J h

0

V

∑
Iv

kk′

d
†
vkdvk′ei(k′−k)·RI . (7b)

An estimation for the scattering constants J e
0 and J h

0 for
electrons and holes, respectively, in a DMS A1−xMnxB can be
obtained by considering the change in the band gap of the host
material AB compared to MnB [22]. It should be noted that
we assume a short-range carrier-impurity interaction, which
is a good approximation in isoelectrically doped II-VI DMS
since the long-range contribution is already contained in the
effective crystal Hamiltonian. There, the Coulomb interaction
is screened by the valence-band electrons [29].

B. Quantum kinetic equations for the exciton spin

A quantum kinetic theory for the exciton spin dynamics in
DMS quantum wells described by Eq. (1) has been derived in
Ref. [22] in the two-particle exciton basis. This theory is based
on a density-matrix formalism together with a correlation
expansion and explicitly accounts for carrier-impurity corre-
lations as dynamical variables. To obtain a tractable problem
the resulting hierarchy of equations of motion is truncated by
accounting only for terms up to second order in the external

laser field according to the dynamics-controlled truncation
(DCT) [35].

Here, we consider excitations of heavy-hole excitons at the
1s resonance with circularly polarized (σ−) light so that the
hole spin is oriented antiparallel with respect to the growth
direction (mJ = − 3

2 ). We focus on narrow quantum wells
with a large hh-lh splitting that arises, e.g., because of the
confinement and strain [32]. Due to the conservation of angular
momentum, the initial electron spin therefore points in the op-
posite direction (↑). In principle there are various mechanisms
which could change the spin orientation of the heavy hole.
One such mechanism stems from the long-range exchange
part of the Coulomb interaction [25,26,36] which allows for
a transition from the − 3

2 to the 3
2 hh spin state accompanied

by a simultaneous flip of the electron spin. However, for the
quantum wells considered here, the corresponding interaction
energy is on the order of 10 μeV. Comparing this value with
the typical energy of the s−d interaction ∼10 meV, we will
neglect the exchange interaction in the following.

In DMS, another spin-flip mechanism for heavy holes arises
from the p−d exchange interaction given by Eq. (6b). If the
band mixing between heavy and light holes is sufficiently
small, Hpd provides no direct matrix element that could cause
a hh spin flip to the state with mJ = 3

2 , so that a spin flip of
the heavy hole induced by Hpd requires an intermediate occu-
pation of light-hole states. However, such processes require an
energy on the order of the hh-lh splitting and are suppressed
for sufficiently large splittings [10,22,28,37,38]. The degree
of band mixing as well as the magnitude of the hh-lh splitting
depend on the width of the quantum well, the details of the
barrier, as well as on the strain and are therefore strongly
sample dependent. It is thus not surprising that measured hole
spin relaxation times found in a particular sample can vary
between a rapid decay of optically polarized hole spins [10,39]
and extremely long hole spin lifetimes which may even exceed
the radiative recombination time of excitons [12,37,40].

In the present paper we concentrate on samples where the
heavy-hole spin lifetime is long such that on the time scale of
interest the hh spins can be considered as being pinned along
the growth direction of the quantum well. This allows us to
focus only the exciton-bound electron spin dynamics.

Since Eq. (1) describes a system that is isotropic in the x−y

plane, one can average over the polar angles ψi of the two-
dimensional center-of-mass wave vectors Ki by going over
to the quasicontinuous limit, thereby reducing the numerical
demand of the resulting equations of motion. Thus, we label
the dynamical variables according to the absolute value Ki

of the exciton center-of-mass momentum vector Ki . Choosing
the z axis along the growth direction of the quantum well, the
dynamical variables are:

nK1 =
∫ 2π

0

dψ1

2π

∑
σ

〈
Ŷ
†
σ− 3

2 1sK1
Ŷσ− 3

2 1sK1

〉
, (8a)

sK1 =
∫ 2π

0

dψ1

2π

∑
σσ ′

se
σσ ′

〈
Ŷ
†
σ− 3

2 1sK1
Ŷσ ′− 3

2 1sK1

〉
, (8b)

y↑/↓ = 〈
Ŷ↑/↓− 3

2 1s0

〉
, (8c)
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q
↑/↓

ηlK1
= V d

NMn

∫ 2π

0

dψ1

2π
f

0K1
η1s1s

∫
dz|u0(z)|2

∑
nn′I

Sl
nn′δ(z − ZI )

〈
Ŷ↑/↓− 3

2 1sK1
eiK1·RI P̂ I

nn′
〉
, (8d)

z
↑/↓

ηK1
= V d

NMn

∫ 2π

0

dψ1

2π
f

0K1
η1s1s

∫
dz|u0(z)|2

∑
I

δ(z − ZI )
〈
Ŷ↑/↓− 3

2 1sK1
eiK1·RI

〉
, (8e)

Q
αK2

ηlK1
= V d

NMn

∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
f

K1K2
η1s1s

∫
dz|u0(z)|2

∑
σσ ′I
nn′

Sl
nn′s

e,α
σσ ′δ(z − ZI )

〈
Ŷ
†
σ− 3

2 1sK1
Ŷσ ′− 3

2 1sK2
ei(K2−K1)·RI P̂ I

nn′
〉
, (8f)

Z
αK2

η K1
= V d

NMn

∫ 2π

0

dψ1

2π

∫ 2π

0

dψ2

2π
f

K1K2
η1s1s

∫
dz|u0(z)|2

∑
σσ ′I

s
e,α
σσ ′δ(z − ZI )

〈
Ŷ
†
σ− 3

2 1sK1
Ŷσ ′− 3

2 1sK2
ei(K2−K1)·RI

〉
(8g)

with l ∈ {x,y,z}, α ∈ {0,x,y,z}, and se,0
σ1σ2

= δσ1,σ2 . The exci-

ton creation (annihilation) operator Ŷ
†
σ− 3

2 1sK1
(Ŷσ− 3

2 1sK1
) refers

to the 1s exciton ground state where the exciton-bound electron
has spin σ ∈ {↑,↓}, the quantum number of the exciton-bound
hole is mJ = − 3

2 , and the center-of-mass wave vector is given
by K1.

In Eqs. (8), nK1 represents the K-resolved occupation
density of the excitons on the 1s parabola, sK1 describes the
spin density of 1s exciton-bound electrons, and y↑/↓ are the
interband coherences. We explicitly account for correlations
between the exciton and the Mn subsystem which are described
by the remaining quantities. The exciton wave function enters
the dynamics via the form factors [22]

f
K1K2

η1s1s = 2π

∫ ∞

0
dr rR2

1s(r)J0(η|K1 − K2|r), (9)

where R1s(r) is the radial part of the exciton wave function,
J0(x) denotes the cylindrical Bessel function of order zero, and
the constant η is either ηe = me

M
or ηh = mh

M
with the electron

mass me, the heavy-hole mass mh, and the exciton mass M =
me + mh.

The complete equations of motion for the variables in
Eqs. (8) can be found in Eqs. (A1) in Appendix A. Since
the carrier density is typically much lower than the impurity
density, it is a good approximation to describe the impurity
spin density matrix by its initial thermal equilibrium value
throughout the dynamics [41], which is why the impurity spin
is not included as a dynamical variable. For all calculations in
this paper we assume a thermal impurity-spin density matrix
calculated with a temperature of 2 K.

III. MARKOV LIMIT

Most theoretical works on the spin dynamics in DMS
are based on an application of Fermi’s golden rule
[9,12,14,28,42–45] where correlation effects are neglected. To
be able to compare the predictions of our quantum kinetic
theory to the existing literature, we perform the Markov limit
of our equations, from which spin-transfer rates similar to
Fermi’s golden rule can be obtained. A comparison between
the QKT and its Markov limit also makes it possible to
pinpoint correlation effects in the spin dynamics that are not
captured by Fermi’s golden rule. In this section, we present the
Markovian equations of motion derived from the QKT, extract

spin-transfer rates for Faraday and Voigt configuration, and
provide an analytical expression for the correlation energy.

A. Derivation

If we choose the coordinate system such that the z axis
is oriented along the magnetic field, the system is most
conveniently described by the spin-up and spin-down exciton
density as well as the perpendicular electron spin density with
respect to the z axis given by

n↑/↓
ω1

= 1
2nω1 ± sz

ω1
, (10a)

s⊥
ω1

= sω1 − sz
ω1

ez, (10b)

respectively, where ez is the unit vector along the z axis.
Instead of the center-of-mass wave number K we label the
variables by the angular frequency ω = h̄K2

2M
which turns out

to be advantageous for the numerical evaluation of energy-
conserving delta functions. Thus, h̄ω describes the kinetic
energy of the center-of-mass motion of the 1s-hh exciton. One
can then make use of the quasicontinuous limit in order to
convert the appearing sums over K into integrals over ω with a
density of states D(ω) = V M

2πh̄d
for a quantum well with volume

V and width d, with M denoting the mass of the hh exciton.
Treating the impurity spin system as a spin bath, the

influence of the Mn spin can be subsumed in the constants
b± = 1

2 (〈S2 − (Sz)2〉 ± 〈Sz〉), b‖ = 1
2 〈(Sz)2〉, and b0 = 〈Sz〉.

The mean-field precession frequencies of electrons and Mn
impurities in the external magnetic field are given by

ωe = 1

h̄
geμBB + JsdNMnb

0

h̄V
ez, (11a)

ωMn = 1

h̄
gMnμBB, (11b)

respectively.
Finally, let us define angle-averaged exciton form factors

according to

F
η2ω1ω2
η11s1s = 2π

∫ 2π

0
dψ

∫ ∞

0
dr

∫ ∞

0
dr ′ rr ′R2

1s(r)R2
1s(r

′)

× J0(η1K12(ψ)r)J0(η2K12(ψ)r ′), (12)

where K12 = |K1 − K2| and ψ denotes the angle between
K1 and K2 and Ki =

√
2Mωi

h̄
. These form factors contain
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FIG. 1. Sketch of the exciton band structure with Markovian
spin-flip processes in an external magnetic field B in the Faraday
configuration. The figure shows the 1s exciton parabolas with the
exciton-bound electron in the spin-up (↑) and spin-down state (↓),
respectively. Transitions are sketched by blue arrows.

the influence of the exciton wave function on the dynamical
quantities of interest.

B. Faraday configuration

If the magnetic field is oriented parallel to the growth
direction of the quantum well (Faraday configuration), the
equations for n

↑/↓
ω1 and s⊥

ω1
are completely decoupled since

only spin-flip processes between the spin-up and the spin-down
band occur. In this case, the z axis of the coordinate system
coincides with the growth direction. Because the electron spins
are initially prepared parallel to the growth direction, s⊥

ω1
is

zero throughout the dynamics and the Markovian equations of
motion read [22]:

∂

∂t
n↑/↓

ω1
= 

↑/↓
E + INMnMJ 2

sd

2h̄3V d

∫ ∞

0
dω δ(ω − (ω1 ± ωsf ))

× F
ηhωω1
ηh1s1s

(
b±n↓/↑

ω − b∓n↑/↓
ω1

)
. (13)

Using a σ− circularly polarized laser pulse, the optical gener-
ation rates are given by 

↑
E = E and 

↓
E = 0 for the spin-up

and spin-down occupations, respectively. The rate E can be
easily inferred by combining Eq. (A1c) for the coherence with
Eq. (A1a) and is given explicitly in Eq. (B2). The constant I

is an overlap integral involving the envelope functions due to
the confinement along the growth direction and is given by
Eq. (A2). The spin-flip scattering shift

h̄ωsf := h̄
(
ωz

e − ωz
Mn

)
(14)

appearing in the delta function in Eq. (13) ensures that the
energy cost or release of spin flip-flop processes between
the electron and the Mn system are correctly accounted
for. Furthermore, only the magnetic coupling constant for
the conduction band Jsd influences the spin transfer on the
Markovian level since all contributions due to nonmagnetic
scattering as well as the p−d exchange interaction vanish. A
sketch of the situation can be found in Fig. 1, which depicts

the Zeeman-shifted spin-up and spin-down bands as well as
the spin-flip processes between them.

For an initial excitation of electrons in the spin-up state and
no further driving, since excitons are optically generated with
K = 0, i.e., ω = 0, only the variables n

↑
0 and n↓

ωsf
retain finite

values due to the conservation of energy enforced by the delta
function. Thus, Eq. (13) reduces to the coupled equations

∂

∂t
n

↑
0 = INMnMJ 2

sd

2h̄3V d
F

ηhωsf 0
ηh1s1s

(
b+n↓

ωsf
− b−n

↑
0

)
, (15a)

∂

∂t
n↓

ωsf
= INMnMJ 2

sd

2h̄3V d
F

ηhωsf 0
ηh1s1s

(
b−n

↑
0 − b+n↓

ωsf

)
. (15b)

From Eqs. (15), we can infer that

∂

∂t

(
n

↑
0 + n↓

ωsf

) = ∂

∂t
n = 0 (16)

with the total exciton density n being a conserved quantity.
We note in passing that the evaluation of Eq. (13) for the

spin-down component for ω1 = ωsf , which leads to Eq. (15b),
is mathematically problematic since then the root of the argu-
ment of the delta function coincides with the lower boundary
of the integration. In order to obtain physically meaningful
results, we extend the integration over ω to the interval (−ε,∞)
with an arbitrarily small parameter ε so that the integration over
the delta function can always be performed straightforwardly.
Any other method for evaluating the contribution of this delta
function would destroy the symmetry between Eq. (15a) and
Eq. (15b) so that the conservation of the number of particles
ensured by Eq. (16) would no longer hold.

Equation (16) can then be used to condense Eqs. (15) into
a single differential equation for the spin-up occupation at
ω = 0:

∂

∂t
n

↑
0 = − INMnMJ 2

sd

2h̄3V d
F

ηhωsf 0
ηh1s1s (b+ + b−)n↑

0

+ INMnMJ 2
sd

2h̄3V d
F

ηhωsf 0
ηh1s1s b

+n. (17)

This is solved by

n
↑
0 (t) = (n − ζ )e−τ−1

‖ t + ζ (18)

with the parallel spin-transfer rate

τ−1
‖ = INMnMJ 2

sd

2h̄3V d
(b+ + b−)Fηhωsf 0

ηh1s1s (19)

and a parameter ζ = b+
b++b− n related to the equilibrium value

sz
eq of the z component of the electron spin that is reached at

t → ∞ via

sz
eq = ζ − 1

2
n = b0

2(b+ + b−)
n. (20)

From Eq. (19) it becomes clear that the exciton form
factor F

ηhωsf 0
ηh1s1s , which decreases when ωsf becomes larger [22],

significantly influences the Markovian rate depending on the
value of ωsf . Since ωsf depends on the impurity content as well
as the magnitude of the applied magnetic field, it is instructive
to plot the form factor for various doping fractions as a function
of magnetic field, which is done in Fig. 2.
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FIG. 2. Magnetic field dependence of the form factor F
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ηh1s1s that

enters the spin-transfer rate for three different Mn doping fractions x.

If the doping fraction is on the order of 0.1% or lower, the
influence of the exciton form factor on the spin-transfer rate is
less than 10%. However, for higher doping concentrations, the
form factor causes a significant decrease of the rate that can be
as large as 60%.

C. Voigt configuration

If an in-plane magnetic field is applied to the quantum
well, the electron spins perform a precession dynamics. This
precession is damped down by a characteristic rate which,
in general, is different from the rate found in the Faraday
configuration. For quasifree electrons, the precession axis is
determined by the direction of the external magnetic field
as well as the direction of the mean impurity magnetization
and points along ωe. Using the same convention as in the
previous section, we choose the z axis parallel with respect
to the magnetic field and rotate the coordinate system such
that y labels the growth direction.

However, because the hole spins are pinned along the
growth direction as described in Sec. II B, the combined field
due to the impurity magnetization and the external magnetic
field will experience a tilt out of the quantum-well plane. This
tilt is caused by the correlations between the hh spins and the
Mn ions which act back on the electron spins. Alternatively, one
can also use a symmetry-based argument in order to understand
why the precession axis changes: Since the hh spins always
point along the growth direction, they effectively break the
rotational symmetry of the system around the vector ωe so that
the electron-spin precession is not damped down to zero but
reaches a finite value instead. Therefore, in Voigt geometry, the
expected dephasing of the electron spins due to the precession
will be accompanied by a relaxation-type dynamics, resulting
in a finite spin polarization at long times.

In the corresponding equations of motion, which can be
found in Eqs. (B1) in Appendix B, the tilt of the overall
field experienced by the electron spins manifests in a coupling
between the variables n

↑/↓
ω1 and s⊥

ω1
which is proportional to the

product JsdJpd . Since these coupling terms contain either b+ or
b− as prefactors, which both depend on the Mn magnetization,
it is clear that the magnitude of the long-time spin polarization

also depends on the magnitude of the applied magnetic field.
However, some of these terms contain a divergence ∼ 1

ω−ω0
at

certain frequencies ω0. These divergences are an artifact of the
Markov limit, where one assumes for the memory integral [22]∫ 0

−t

dτe−i(ω−ω0)τ t → ∞
≈ πδ(ω − ω0) − P i

ω − ω0
. (21)

Note that the above expression is only meaningful when
integrated over ω and P denotes the Cauchy principle value.
A divergence therefore appears in the imaginary part of the
memory in the limit t → ∞ as a consequence of the Markov
limit.

Divergences of this kind also appear in the perpendicular
spin component of quasifree electrons [46]. In contrast to the
Faraday configuration, where contributions from the imaginary
part of the memory cancel out [30,47], the imaginary part
describes a renormalization of the spin precession frequency
for electrons in the Voigt configuration. However, the broad
initial carrier distributions of quasifree electrons (typically
several meV) causes an averaging over many frequencies ω

so that all observables remain finite [46]. For excitons, the
spectrally sharp nature of the optically generated exciton dis-
tribution does not lead to such an averaging, so that divergences
remain in the Markovian results. In order to obtain meaningful
expressions, all terms stemming from the imaginary part of the
memory integral are neglected in numerical calculations on the
Markovian level throughout this paper.

If one is only interested in the spin-transfer rate for the
perpendicular electron spin component without the influence of
the hole spins, this amounts to neglecting all terms proportional
to the magnetic coupling constant Jpd in Eqs. (B1). Disregard-
ing the coupling to the hole spins is similar to what one would
typically do when applying Fermi’s golden rule since then only
the electron-spin part is of interest. The resulting equation for
the perpendicular spin component reads

∂

∂t
s⊥
ω1

= �⊥
E + ωe × s⊥

ω1
− INMnMJ 2

sd

4h̄3V d

∫ ∞

0
dω

× [b−δ(ω − (ω1 + ωsf)) + b+δ(ω − (ω1 − ωsf))

+ 4b‖δ(ω−ω1)]Fηhωω1
ηh1s1s s⊥

ω1
, (22)

where the first term describes the optical excitation with rates
x

E = 0 and 
y

E = E [cf. Eq. (B2)]. The vector product causes
a precession of s⊥

ω1
around ωe, which is damped down by the

remaining term. Thus, when only accounting for the influence
of Jsd , the equations for n

↑/↓
ω1 and s⊥

ω1
once more decouple so

that a damped precession dynamics remains. From Eq. (22) we
obtain a spin-transfer rate in the Voigt configuration given by

τ−1
⊥ = INMnMJ 2

sd

4h̄3V d

(
F

ηhωsf0
ηh1s1s b− + 4b‖) (23)

for an exciton occupation at ω1 = 0. Note that the second delta
function in Eq. (22), which is proportional to b+, does not
contribute to this result since ω1 − ωsf < 0 if ω1 = 0.

To summarize, in contrast to the Faraday case, the Marko-
vian equations of motion for the Voigt geometry are com-
plicated and display divergences at certain characteristic fre-
quencies. This means that, for studying the time-resolved
exciton spin dynamics, our quantum kinetic approach becomes
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a necessity since it avoids the artificial divergences encountered
in the Markov approximation. Nevertheless, when neglecting
the influence of the hh spins, one can still derive analytical
expressions for Faraday as well as Voigt geometry. In the
Faraday configuration, the obtained expression corresponds to
the typically considered Fermi-golden-rule result [28].

D. Correlation energy

One of the major changes when going beyond a Markovian
description is that the correlation energy has to be taken into
account in the energy balance, which is a consequence of
the many-body nature of the problem that is not captured in
a single-particle approach. In order to gain insight into the
buildup and magnitude of the correlation energy in the system
of interest here, it is instructive to derive an expression for the
total energy as a functional of the exciton density nK1 and the
electron spin sK1 . To this end we split the total energy into parts
corresponding to the individual contributions in Eq. (1) and
treat them as functionals of the variables defined in Eqs. (8),
which yields:

〈H0〉 =
∑
K1

h̄ωK1nK1 , (24a)

〈
H e

Z

〉 = geμBB ·
∑
K1

sK1 , (24b)

〈
H h

Z

〉 = 3κμBBz
∑
K1

nK1 , (24c)

〈
H Mn

Z

〉 = gMnμB

NMn

d
B · 〈S〉, (24d)

〈Hsd〉mf = JsdNMn

V
〈S〉 ·

∑
K1

sK1 , (24e)

〈Hpd〉mf = −JpdNMn

2V
〈Sz〉

∑
K1

nK1 , (24f)

〈
H e/h

nm

〉mf = J e/h
0 NMn

V

∑
K1

nK1 , (24g)

〈Hsd〉c = JsdNMn

V 2

∑
lK1K2

Q
lK2

−ηhlK1
, (24h)

〈Hpd〉c = −JpdNMn

2V 2

∑
K1K2

Q
0K2

ηezK1
, (24i)

〈
H e/h

nm

〉c = J e/h
0 NMn

V 2

∑
K1K2

Z
0K2

−ηh/ηe K1
, (24j)

where H0 := H e
0 + H h

0 + Hconf. The expectation values are
split into mean field (mf) and correlation (c) contributions. Note
that, since the number of particles is a conserved quantity, the
expectation values 〈H h

Z〉, 〈Hpd〉mf, and 〈H e/h
nm 〉mf are constant

and only cause an energetic offset once the driving has ended.
In the Markov limit, the correlations Q

αK2
ηlK1

and Z
αK2

η K1
can

be written as functionals of nK1 and sK1 , as explained in detail
in Ref. [22]. Feeding these functionals back into Eqs. (24) one
obtains the correlation energies

〈Hsd〉c = −INMnJsd

h̄V 2

∑
K1K2

[
JsdF

ηhK1K2
ηh1s1s

(
b−(

1
2nK1 + sz

K1

)
ωK2 − (

ωK1 + ωsf
) + b+(

1
2nK1 − sz

K1

)
ωK2 − (

ωK1 − ωsf
))

+ 1

ωK2 − ωK1

(
F

ηhK1K2
ηh1s1s

(
2J e

0 b0sz
K1

+ Jsdb
‖nK1

) + 2F
ηeK1K2

−ηh1s1s

(
J h

0 b0 − Jpdb
‖)sz

K1

)]
, (25a)

〈Hpd〉c = INMnJpd

h̄V 2

∑
K1K2

1

ωK2 − ωK1

(
F

ηeK1K2
ηe1s1s

(
J h

0 b0 − Jpdb
‖)nK1 + F

ηeK1K2
−ηh1s1s

(
J e

0 b0nK1 + 2Jsdb
‖sz

K1

))
, (25b)

〈
H e

nm

〉c = −INMnJ
e
0

h̄V 2

∑
K1K2

1

ωK2 − ωK1

(
2F

ηhK1K2
ηh1s1s

(
J e

0 nK1 + Jsdb
0sz

K1

) + F
ηeK1K2

−ηh1s1s

(
2J h

0 − Jpdb
0
)
nK1

)
, (25c)

〈
H h

nm

〉c = −INMnJ
h
0

h̄V 2

∑
K1K2

1

ωK2 − ωK1

(
F

ηeK1K2
ηe1s1s

(
2J h

0 − Jpdb
0
)
nK1 + 2F

ηeK1K2
−ηh1s1s

(
J e

0 nK1 + Jsdb
0sz

K1

))
. (25d)

Here, the divergences appearing at the roots of the de-
nominators are integrable, which can be easily verified in the
quasicontinuous limit

∑
K → ∫

dKD(K) since the density of
states D(K) is linear in K for a quasi two-dimensional system.

IV. NUMERICAL RESULTS

In the following we present and discuss the exciton-bound
electron spin dynamics in a finite external magnetic field in
Faraday or Voigt configuration and focus in particular on
the comparison between spin-transfer rates predicted by the

quantum kinetic theory and those in the Markov limit. For
all calculations, we model a σ−-polarized excitation pulse
with 100 fs FWHM resonant with the 1s-hh transition and
consider a 20 nm wide Zn1−xMnxSe quantum well for which
we calculate an exciton binding energy of about 20 meV. The
lattice constant [3] is 0.567 nm, me/m0 = 0.1 and mhh/m0 =
0.8 are the effective electron and heavy-hole masses in terms
of the free electron mass [48], and the coupling constants
[3] are given by Jsd = −12 meV nm3, Jpd = 50 meV nm3,
J e

0 = 22 meV nm3, andJ h
0 = 0. For the dielectric constant [49]

we use a value of ε = 9.
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FIG. 3. (a) Time evolution of the exciton-bound electron spin in a Zn0.99Mn0.01Se quantum well in a magnetic field B = 0.5 T in Faraday
configuration according to the quantum kinetic theory (QKT) and the Markovian calculation (Markov) normalized to the maximum spin after
the pulse. (b) Total energy (Etot), kinetic energy (Ekin), magnetic correlation energy (Ec

m), and nonmagnetic correlation energy (Ec
nm) per exciton

according to Eqs. (24). Also shown are the magnetic (Ẽc
m) and nonmagnetic (Ẽc

m) correlation energies per exciton in the Markov limit according
to Eqs. (25) evaluated using the occupations from the QKT.

A. Faraday configuration

In Faraday geometry, the magnetic field is oriented parallel
to the spin polarization immediately after the excitation pulse.
A typical example of the resulting electron spin dynamics in
an external magnetic field with a magnitude of B = 0.5 T can
be seen in Fig. 3(a). The results are normalized with respect to
the maximum spin after the pulse.

When comparing the quantum kinetic (blue solid curve)
with the Markovian result (red dashed-dotted curve) it becomes
clear that, similar to the case without magnetic field [22], the
quantum kinetic theory initially predicts a slower spin decay
than the Markov theory. This stems from a cutoff of the memory
kernel given by Eq. (21) due to the close proximity of excitons
to the bottom of the exciton parabola. As discussed in detail
in Ref. [22], the retraction of the memory integral to a delta
function only happens in the limit t → ∞. For finite times,
however, the memory integral yields a sinclike behavior whose
oscillations are cut off at the bottom of the exciton parabola,
thus effectively lowering the observed spin decay rate.

Furthermore, due to the finite magnetic field, the spin no
longer decays to zero but rather reaches a finite value for
long times. In the Markov limit this can be attributed to the
difference of the rates for the scattering from the spin-up to the
spin-down band and vice versa. The resulting stationary value
can be calculated analytically and is given by Eq. (20). Looking
at Fig. 3(a) one can observe that the stationary value of the
electron spin predicted by the quantum kinetic theory strongly
deviates from the Markovian result. Similar deviations have
previously been found for quasifree electrons and have been
argued to arise due to strong carrier-impurity correlations [29].

The observed deviations clearly reveal effects that cannot be
captured on a Markovian level. In order to obtain a quantitative
understanding of the effects of correlations in the system, we
plot various contributions to the total energy in Fig. 3(b). All
energy expectation values are divided by the constant exciton
density after the excitation pulse to obtain energies per exciton.

First of all, we see that the kinetic energy per exciton
(red dashed-dotted curve) increases after the pulse, which is
partly due to the scattering from the spin-up to the spin-down

exciton parabola (cf. Fig. 1). However, the kinetic energy
becomes even larger than the total energy (blue solid curve)
after the pulse, which is compensated by the buildup of a
negative correlation energy of about −0.6 meV per exciton. A
finite correlation energy is obtained due to the magnetic s−d

interaction (orange dashed curve) and, even more prominent,
due to the nonmagnetic interactions given by Ec

nm which
includes the p−d interaction (purple dotted curve). Due to
the pinned hole spins, the latter causes no spin flip of the
electron and can therefore be regarded as a contribution to the
nonmagnetic scattering [22]. The magnetic correlation energy
is significantly smaller than the nonmagnetic one because both
coupling constants associated with nonmagnetic scattering,
namely Jpd and J e

0 , are about four or two times larger than
the magnetic coupling constant Jsd , respectively.

It is also interesting to compare the analytical expressions
for the correlation energies in the Markov limit with the
predictions of the QKT. This is done by evaluating Eqs. (25)
with the occupations and spins obtained from the quantum
kinetic simulation at discrete time steps. In this way, the
aforementioned increase in kinetic energy per exciton due
to the correlations is also accounted for in the Markovian
expressions for the energies. The results are given by the circles
and triangles in Fig. 3(b) and are in good agreement with the full
quantum kinetic calculation where the energies are calculated
according to Eq. (24).

The occupation of states with higher kinetic energy can be
seen most clearly in Fig. 4, which shows the time evolution
of the energetically-resolved exciton occupation on the 1s

parabola. Based on the discussion in Sec. III B, in the Markov
limit one expects a scattering only between states with E = 0
and E = h̄ωsf (cf. dashed line in Fig. 4), so that no other
energies would be occupied. However, the correlations cause
a significant redistribution towards states with other center-of-
mass momenta, so that excitons reach kinetic energies that are
inaccessible in the Markov limit. The fact that states with ki-
netic energies other than E = 0 and E = h̄ωsf remain occupied
even after tens of picoseconds underlines that the redistribution
is not to be associated with energy-time uncertainty but is

045210-8



TREND REVERSAL IN THE MAGNETIC-FIELD … PHYSICAL REVIEW B 97, 045210 (2018)

ki
ne

ti
c

en
er

gy
(m

eV
)

time (ps)

0

1

2

3

4

5

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

oc
cu

pa
ti

on

h̄ωsf

FIG. 4. Time evolution of the energetically-resolved exciton oc-
cupation using the same parameters as in Fig. 3. The dashed line
corresponds to the spin-flip scattering shift h̄ωsf ≈ 2.4 meV.

rather caused by true many-body correlations in the system
which remain finite even for long times. Experimentally, the
time-resolved energetic redistribution of excitons on the 1s

parabola can be observed, e.g., using LO-phonon-assisted
photoluminescence which has been done for undoped ZnSe-
based quantum wells by various groups in the past [50–53].

Figure 4 can also be used to understand the difference in the
stationary value of the exciton-bound electron spin in Fig. 3(a)
when comparing the quantum kinetic with the Markovian
result. In the Markov approximation, finite occupations are
only possible at a kinetic energy which corresponds exactly to
the spin-flip scattering h̄ωsf , which is represented in Fig. 4 by
the dashed line. Due to the correlations it also becomes possible
to occupy states below h̄ωsf , which then cannot scatter back to
K = 0 but remain in the opposite spin state. This causes the
deviation of the stationary value of sz

eq observed in Fig. 3(a).

B. Voigt configuration

If the magnetic field is oriented perpendicular with respect
to the initial spin polarization, the Markovian Eqs. (B1) predict
a damped oscillation of the spin, where the damping is typically
associated with a T2 time in experiments [24]. The time
evolution of the electron spin in such a configuration is depicted
in Fig. 5 and is normalized with respect to the maximum spin
reached directly after the pulse.

The quantum kinetic calculation (blue solid curve) shows
a damped precession that reaches an almost stationary value
on a time scale of about 100 ps, whereas the Markovian
simulation (black dashed-dotted curve) predicts a precession
which decays to zero on approximately half that time scale.
Surprisingly, the magnitude of the long-time spin polarization
in the quantum kinetic result is even larger than 10% of the po-
larization directly after the pulse and is thus no marginal effect.
Thus, instead of only quantitatively changing the damping of
the spin precession, the quantum kinetics here also leads to a
qualitatively different behavior of the electron spin.

A comparison of the precession frequencies in the quantum
kinetic and the Markovian results reveals that the frequency
predicted by the QKT is very close to the mean-field frequency
ωe for the first few oscillations but starts to become notably
renormalized after approximately 30 ps. However, the Marko-
vian result is nearly decayed by that time, whereas significant
oscillations in the quantum kinetic result prevail.
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FIG. 5. Time evolution of the exciton-bound electron spin (z
component) in an in-plane external magnetic field B = 0.1 T (x
direction) using the quantum kinetic theory (QKT), data from a
quantum kinetic simulation where the cross terms JsdJpd have been
artificially switched off (QKT, JsdJpd = 0), the quantum kinetic result
with the opposite sign of Jpd (QKT, Jpd → −Jpd ), and a Markovian
simulation (Markov). The results are normalized with respect to the
maximum spin directly after the pulse and the Mn content of the
quantum well is x = 1%.

As discussed in Sec. III C, the finite value of the spin
polarization at long times can be interpreted as a consequence
of the symmetry breaking due to the hh spins which are
pinned along the growth direction. Without the hole spins,
only the initial value of the electron spin due to the optical
excitation breaks the rotational symmetry around the axis of
the magnetic field. But since one could, in principle, prepare
the initial spin in any direction and the dynamics after the
excitation remains the same, the information about the initial
spin orientation is lost for long times so that the spin is expected
to decay to zero. However, when taking the hole spins into
account, there always exists a preferred direction (the growth
direction) in the system which remains distinguished even
for long times. In the Markovian Eqs. (B1), it was found
that the coupling between the spin-up/spin-down occupations
and the perpendicular spin components is mediated by terms
proportional to the product of coupling constants JsdJpd ,
without which an exponentially damped oscillation of the spin
around zero is predicted [cf. Eq. (22)]. Indeed, if we remove
these cross terms in the quantum kinetic calculation and thus
effectively eliminate the information about the direction of
the hole spins we qualitatively recover this prediction (cf. red
solid curve in Fig. 5). This finding corroborates that the hh
spins cause a symmetry breaking and lead to a finite long-time
electron spin polarization in the quantum kinetic result.

Based on the previous discussion, it is clear that the prefactor
JsdJpd not only determines the magnitude of the long-time
spin polarization but also its sign. Thus, changing the sign
of the coupling constant Jpd also causes the stationary value
of the spin to change its sign, which is confirmed by the
corresponding quantum kinetic calculation in Fig. 5 (orange
solid curve). This provides a way to extract the sign of Jpd

relative to Jsd in DMS.

C. Exciton spin-transfer rates

In order to quantify exciton spin-transfer rates as observed in
the quantum kinetic simulations even for cases where the time
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evolution of the spin is highly nonexponential, we numerically
extract the time where the envelope of the spin component
parallel to the growth direction has decayed to a value of
1
e

times the difference between the maximum spin after the
pulse and its stationary value reached at long times. This is
done for simulations using three different Mn doping fractions
with the magnetic field oriented along the growth direction
(Faraday geometry) and perpendicular to it (Voigt geometry),
respectively. The results obtained from the quantum kinetic
calculations are compared with the corresponding Markovian
predictions in Fig. 6. All results are normalized with respect
to the Fermi-golden-rule value, which is 0.01 ps−1, 0.07 ps−1,
and 0.13 ps−1 for a Mn content of x = 0.1%, x = 0.5%, and
x = 1%, respectively.

In Faraday geometry, the Markov approximation (purple
dashed curve) predicts a decrease of the spin-transfer rate with
increasing magnetic field. This is mainly due to evaluating the
exciton form factor in Eq. (19) at larger values of ωsf where the
form factor has smaller values (cf. Fig. 2). Since the exciton
form factor acts as a prefactor for the rate, a decrease in the
form factor results in a smaller rate. For all Mn doping fractions
depicted in Fig. 6, the quantum kinetic result (blue solid curve)
also follows this trend, albeit quantitative differences of up to
30% are found for small magnetic fields in case of a 1% doping
fraction. The quantitative deviations are most pronounced for
vanishing magnetic field where the cutoff of the memory in the
quantum kinetic equations due to the proximity to the bottom
of the exciton parabola has the largest effect [22]. For higher
fields, this cutoff becomes less and less important and the spin
transfer is again dominated by the decay of the exciton form
factor. This is also the reason why the quantum kinetic result
approaches the Markov limit for high fields.

In contrast to Ref. [22], where it was found that the QKT
predicts an exciton spin-transfer rate for vanishing magnetic
field that is half as large as the Markovian one, here we find
that the QKT rate for the Faraday configuration at B = 0 is
approximately between 76% and 64% of the Markovian rate for

a Mn content of x = 0.1% and x = 1%, respectively. The main
reason for this discrepancy lies in the method which is used
here to numerically extract the spin-transfer rate. Although
the method can be used to obtain a quantitative description of
the decay, it does not capture the highly nonexponential spin
dynamics in this case which is characterized by a significant
spin overshoot [22]. On the other hand, quantum kinetic
features are generally more pronounced for higher doping
concentrations, which means that for a Mn content on the
order of 0.1% it is to be expected that such features are not as
prominent as for doping fractions of about 5% as considered
in Ref. [22].

Surprisingly, the behavior of the quantum kinetic spin-
transfer rates obtained in Voigt geometry (red solid curve)
differs from the Markovian result (orange dashed-dotted curve)
not only quantitatively but also shows a completely reversed
dependence on the magnetic field even for small doping
fractions. For a very dilute quantum well with x = 0.1% in a
transverse magnetic field, Fig. 6(a) shows that the Markovian
result increases continuously with increasing magnetic field.
Increasing the doping fraction of the quantum well causes the
appearance of a minimum for small fields in the Markovian
rates after which an almost linear increase of the rate is ob-
served. This increase is a consequence of the term proportional
to b‖Fηhωω1

ηh1s1s δ(ω − ω1) that appears in the first line of Eq. (B1b)
and Eq. (B1c). Since the majority of excitons remains at
ω1 ≈ 0 throughout the Markovian dynamics, the delta function
causes the exciton form factor to be evaluated at ω = ω1 ≈ 0.
However, for ω = 0, Eq. (12) reduces to the normalization
integral so that F

ηh00
ηh1s1s = 1 no longer depends on ω1. Thus,

only the dependence on the second moment b‖ of the Mn spin
system remains, which becomes larger for higher fields and is
unaffected by the exciton form factor.

In contrast, in the quantum kinetic calculation, the described
tendency is reversed: Instead of a minimum, one observes
a distinct maximum in the magnetic-field dependence of
the spin-transfer rates. The magnetic field corresponding to
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FIG. 7. Time evolution of the energetically-resolved exciton occupation in a transverse magnetic field B = 0.5 T in a Zn1−xMnxSe quantum
well with doping fraction (a) x = 0.1%, (b) x = 0.5%, and (c) x = 1%.

this maximum is Bmax ≈ 0.5 T for x = 0.1% and shifts to
Bmax ≈ 0.2 T when increasing the impurity content by one
order of magnitude to x = 1%. For magnetic fields larger
than Bmax, the QKT then predicts a decrease of the rate with
increasing magnetic field, a result which is completely oppo-
site to the Markovian expectation. A similar nonmonotonic
behavior of spin-transfer rates in transverse magnetic fields
has been observed experimentally in this parameter regime for
Cd1−xMnxTe quantum wells [13,14]. In order to understand
the deviations between the quantum kinetic prediction and
the Markovian result in the Voigt configuration, recall the
explanation of the increasing Markovian rate given above. The
crucial simplification there is the assumption that the excitons
remain close to ω ≈ 0 throughout the dynamics. However, if
correlations between excitons and impurities are taken into
account there is a redistribution of excitons in K space even
for the case of transverse magnetic fields. Thus, the delta
functions appearing in Eqs. (B1) actually have to be evaluated
using the quantum kinetic result for s⊥

ω1
, which is broadened

due to the redistribution and therefore has finite values also
for ω1 �= 0. This means that, overall, the spin decay will be
damped down by an effective exciton form factor evaluated
at ω values determined by the scattering, thereby explaining
the observed decrease of the rate obtained by quantum kinetic
calculations. The redistribution in K space for a transverse
field B = 0.5 T for the three different doping concentrations
discussed previously is shown in Fig. 7, revealing a visible
redistribution even for a Mn content as low as x = 0.1%. This
underlines the fact that the deviations of the quantum kinetic
transverse spin-transfer rates from the Markovian ones has to
be indeed attributed to an energetic redistribution of the exciton
center-of-mass momenta which grows stronger with increasing
doping fraction.

Furthermore, if we artificially switch off the nonmagnetic
scattering, the spin-transfer rates extracted from the corre-
sponding quantum kinetic results (cf. red crosses in Fig. 6)
qualitatively follow the Markovian prediction (cf. orange
pluses in Fig. 6) for all doping concentrations considered
here and only a quantitative difference is observed. In the
equations of motion, neglecting the nonmagnetic scattering
amounts to setting all coupling constants except Jsd to zero.
The maxima in the exciton spin-transfer rates in Figs. 6(b) and
6(c), respectively, are qualitatively similar to experimentally

observed minima in the electron spin-transfer times [13,14].
In our model, this nonmonotonic behavior is a consequence
of the formation of excitons and can be explained with an en-
hanced quantum kinetic redistribution due to the nonmagnetic
scattering which is not captured on a Markovian level.

The fact that nonmagnetic scattering has a much more sub-
stantial impact in Voigt geometry compared with the Faraday
configuration can also be understood on a more intuitive level.
In Voigt geometry, the electron spin undergoes a precession-
type dynamics, i.e., the overall spin decay is mainly due to
ensemble averaging rather than a redistribution to different
energy eigenstates. In this context, the observed decrease
of the quantum kinetic spin-transfer rate compared with the
Markovian prediction can be understood as a consequence
of one or multiple scattering events which occur during one
precession cycle of a particular spin. The scattering then
acts similar to the well-known D’yakonov-Perel’ mechanism
[54,55] where the spin-decay rate is inversely proportional
to the momentum scattering rate. Thus, if momentum scat-
tering is important in the system (cf. Fig. 7), one would
expect a reduction of the spin-transfer rate when compared
to a situation where momentum scattering is not taken into
account.

V. CONCLUSION

We have studied the exciton spin dynamics in a Mn-doped
ZnSe quantum well after optical excitation using a recently
developed quantum kinetic theory [22]. Besides the typically
considered s−d and p−d exchange interactions between
carriers and magnetic dopants we also account for nonmagnetic
scattering at the impurities. Although it does not contribute to
spin decay in a Markovian description, nonmagnetic scattering
nevertheless gives rise to unexpected results when treated on a
quantum kinetic level. Numerical studies of the time-resolved
spin dynamics were carried out for Faraday and Voigt geometry
in an external magnetic field of varying magnitude, revealing
pronounced deviations from Markovian predictions which
highlight the importance of correlations between excitons and
Mn ions.

First of all, we find quantitative differences between predic-
tions of the QKT and a Markovian theory in Faraday geometry,
such as a much larger stationary spin polarization for long
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times as well as significantly smaller spin-transfer rates. Our
simulations also reveal a complete trend reversal in the exciton
spin-transfer rates as a function of magnetic field in Voigt
geometry even for an impurity content as low as 0.1%: Whereas
the rate slightly decreases for small fields and then increases
monotonically according to the Markovian results, the QKT
predicts an increase of the rate for small fields followed by
a rather monotonic decreasing behavior. This means that,
in the QKT, a maximum in the spin-transfer rate for Voigt
geometry emerges. Similar nonmonotonic features have also
been observed in experiments performed on Cd1−xMnxTe in a
transverse magnetic field [13,14].

Our calculations reveal that the discrepancy between quan-
tum kinetic and Markovian results originates in correlations
between the exciton and Mn subsystem which are particularly
enhanced by nonmagnetic scattering of carriers at impurities.
These correlations manifest in a time-dependent redistribution
of exciton center-of-mass momenta on the 1s parabola to
values that are prohibited in the Markov limit. This effect
is experimentally accessible, e.g., via LO-phonon-assisted
photoluminescence, a technique which has already been used
successfully for nonmagnetic ZnSe quantum wells [50–53].
The redistribution is accompanied by a buildup of a significant

negative correlation energy, which is a consequence of the
many-body nature of the system that is insufficiently described
on the single-particle level.

Albeit there is a lengthy derivation involved, it is straight-
forward to derive Markovian equations from the QKT also
for Voigt geometry, where the spin decay is no longer due to
scattering between different energy eigenstates and Fermi’s
golden rule cannot be applied. For transverse magnetic fields,
a quantum kinetic calculation furthermore reveals that one
obtains an unexpected finite long-time spin polarization which
is not observed in the Markov limit and which can be as large
as 10% of the maximum spin polarization. We argue that this
effect is due to the pinning of the hh spins along the growth
direction which breaks the rotational symmetry around the axis
of the applied magnetic field. In addition, we find that the sign
of the polarization is determined by the sign of the magnetic
coupling constant Jpd relative to Jsd .
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APPENDIX A: QUANTUM KINETIC EQUATIONS

Using the notation
∑

K = ∫
dKD(K) with the two-dimensional density of states D(K) = V

2πd
K , the equations of motion

corresponding to the variables defined in Eqs. (8) read [22]:

∂

∂t
nK1 = 1

h̄
E · M2Im[y↑φ1s]δK1,0 − JsdNMn

h̄V 2

∑
lK

2Im
[
Q

lK1
−ηhlK

] + JpdNMn

h̄V 2

∑
K

Im
[
Q

0K1
ηezK

]

− J e
0 NMn

h̄V 2

∑
K

2Im
[
Z

0K1
−ηh K

] − J h
0 NMn

h̄V 2

∑
K

2Im
[
Z

0K1
ηe K

]
, (A1a)

∂

∂t
sl
K1

= 1

h̄
E · M

(
Im[y↑φ1s]δK1,0δl,z + Im[y↓φ1s]δK1,0δl,x − Re[y↓φ1s]δK1,0δl,y

) +
∑
jk

εjklω
j
e s

k
K1

+ JsdNMn

h̄V 2

∑
K

( ∑
jk

εjklRe
[
Q

kK1
−ηhjK

] − 1

2
Im

[
Q

0K1
−ηhlK

]) + JpdNMn

h̄V 2

∑
K

Im
[
Q

lK1
ηezK

]

− J e
0 NMn

h̄V 2

∑
K

2Im
[
Z

lK1
−ηh K

] − J h
0 NMn

h̄V 2

∑
K

2Im
[
Z

lK1
ηe K

]
, (A1b)

∂

∂t
y↑/↓ = i

h̄
E · Mφ1sδ↑/↓,↑ − i

(
ω0 ± 1

2
ωz

e − 1

2
ωz

h +
(
J e

0 + J h
0

)
NMn

h̄V

)
y↑/↓ − i

1

2
ω∓

e y↓/↑

− i
JsdNMn

2h̄V 2

∑
K

( ± q
↑/↓

−ηhzK
+ q

↓/↑
−ηh∓K

) + i
JpdNMn

2h̄V 2

∑
K

q
↑/↓

ηezK

− i
J e

0 NMn

h̄V 2

∑
K

z
↑/↓

−ηhK
− i

J h
0 NMn

h̄V 2

∑
K

z
↑/↓

ηeK
, (A1c)

∂

∂t
q

↑/↓
ηlK1

= −i

(
ωK1 ± 1

2
ωz

e − 1

2
ωz

h + I
(
J e

0 + J h
0

)
NMn

h̄V

)
q
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ηlK1

− i
1

2
ω∓

e q
↓/↑

ηlK1
+

∑
jk

εjklω
j

Mnq
↑/↓

ηkK1

− i
IJsd

2h̄
F

−ηh0K1
η 1s1s(±〈SlSz〉y↑/↓ + 〈SlS∓〉y↓/↑) + i

IJpd

2h̄
〈SlSz〉Fηe0K1

η 1s1sy
↑/↓

− i
I

h̄
〈Sl〉(J e

0 F
−ηh0K1
η 1s1s + J h

0 F
ηe0K1
η 1s1s

)
y↑/↓, (A1d)
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∂

∂t
z

↑/↓
ηK1

= −i

(
ωK1 ± 1

2
ωz

e − 1

2
ωz

h + I
(
J e
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0
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NMn
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∂
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+
∑
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j
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1

2
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)
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I
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)
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∂

∂t
Z

0K2
η K1

= −i(ωK2 − ωK1 )Z 0K2
η K1

+ i

2h̄
E · M

((
z

↑
ηK1

φ1s

)∗
δK2,0 − z

↑
ηK2

φ1sδK1,0
)

+ i
IJsd

h̄
F

−ηhK1K2
η 1s1s

∑
j

〈Sj 〉(sj

K2
− s

j

K1

) − i
IJpd

h̄
F

ηeK1K2
η 1s1s

1

2
〈Sz〉(nK2 − nK1

)

+ i
I

h̄

(
J e

0 F
−ηhK1K2
η 1s1s + J h

0 F
ηeK1K2
η 1s1s

)(
nK2 − nK1

)
, (A1h)
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]

+ i
IJsd
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j
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k
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k
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IJpd

h̄
F
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η 1s1s

1

2
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K1
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I
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J e
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0 F
ηeK1K2
η 1s1s

)(
sl
K2
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)
, (A1i)

where φ1s := R1s(r = 0) is the radial part of the 1s exciton wave function evaluated at r = 0 and quantities A with an index ±
are defined as A± := Ax ± iAy . The influence of the envelope function u0(z) due to the confinement is given by

I = d

∫ d
2

− d
2

dz|u0(z)|4 = 3

2
, (A2)

where an infinitely deep quantum well is assumed in the last step.
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APPENDIX B: MARKOVIAN EQUATIONS FOR VOIGT GEOMETRY

In Voigt geometry with the coordinate system oriented such that the external magnetic field points along z, the Markovian
equations of motion become:

∂

∂t
n↑/↓

ω1
= ω1 (t) + INMnM

4h̄3V d

∫ ∞

0
dω
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2J 2

sdF
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+ δ
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+ 1
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, (B1a)
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(B1c)

Note that, for numerical calculations, terms of the form 1
ω−ω0

, which stem from the imaginary part of the memory integral, are

dropped since they contain nonintegrable divergences. Assuming a Gaussian laser pulse of the form E(t) = E0 exp(− t2

2σ 2 ) and
performing the Markov limit on the laser-induced carrier-generation term, we obtain for the generation rate

ω1 (t) = 1

h̄2 E(t)E0|M|2φ2
1s

∫ t

t0

dτe
− τ2

2σ2 δω1,0 (B2)

with σ related to the time tFWHM at full width at half maximum of the pulse via σ = tFWHM

2
√

2 log 2
.
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