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Machine learning spatial geometry from entanglement features

Yi-Zhuang You,1 Zhao Yang,2 and Xiao-Liang Qi2
1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

2Department of Physics, Stanford University, California 94305, USA

(Received 18 October 2017; revised manuscript received 5 January 2018; published 31 January 2018)

Motivated by the close relations of the renormalization group with both the holography duality and the deep
learning, we propose that the holographic geometry can emerge from deep learning the entanglement feature of a
quantum many-body state. We develop a concrete algorithm, call the entanglement feature learning (EFL), based
on the random tensor network (RTN) model for the tensor network holography. We show that each RTN can be
mapped to a Boltzmann machine, trained by the entanglement entropies over all subregions of a given quantum
many-body state. The goal is to construct the optimal RTN that best reproduce the entanglement feature. The
RTN geometry can then be interpreted as the emergent holographic geometry. We demonstrate the EFL algorithm
on a 1D free fermion system and observe the emergence of the hyperbolic geometry (AdS3 spatial geometry) as
we tune the fermion system towards the gapless critical point (CFT2 point).
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I. INTRODUCTION

Holographic duality [1–3] is a duality proposed between a
quantum field theory (the boundary theory) and a gravitational
theory (the bulk theory) in one higher dimension. In 2006, S.
Ryu and T. Takayanagi proposed the Ryu-Takayanagi (RT)
formula [4], which relates the entanglement entropy of a
boundary region to the area of the minimal surface in the
bulk that is homologous to the same region. The RT formula
and its generalizations [5–8] point out that entanglement plays
a fundamental role in holographic duality. One perspective
to understand the entanglement-geometry correspondence is
to consider a tensor network representation of a quantum
many-body state [9,10], and view the network geometry as
a representation of the dual spatial geometry [11,12]. Many
different schemes of tensor network approaches have been
investigated [9,10,13–28]. Tensor network states with various
entanglement properties similar to holographic theories have
been constructed [29–36]. In particular, the random tensor
network (RTN) states [31] are shown to satisfy the Ryu-
Takayanagi formula [4] and the quantum error correction prop-
erties [37] in the large bond dimension limit. The RTN states on
all possible graphs form an overcomplete basis of the boundary
Hilbert space [32], so that a generic many-body state of the
boundary can be mapped to a superposition of RTN’s with
different geometry. For states with a semiclassical bulk dual,
one expects the superposition to be strongly peaked around a
“classical geometry,” which provides the best approximation
to entanglement entropy of different regions in the given state.
In other words, finding the best RTN description of a given
many-body state can be considered as a variational problem
similar to the familiar variational wave function approach,
except that the criterion of the optimization is not minimizing
the energy but reproducing entanglement features of the state
such as entanglement entropy and Renyi entropies of various
subsystems. For deeper understanding of holographic duality,
such as understanding how boundary dynamics are mapped

to bulk gravitational dynamics, it is essential to develop a
systematic approach of finding the optimal network geometry
for generic many-body states.

In this paper, we propose that the RTN optimization problem
can be mapped to a deep learning problem [38–40], because the
paradigm of neural network based deep learning is precisely
about how to adjust the network connectivity (geometry) to
achieve a certain optimization goal. More specifically, we
propose a learning approach, called the entanglement feature
learning (EFL), which learns the entanglement features in
the quantum many-body state and encodes the entanglement
structures in the neural network connectivity. Interestingly,
the deep learning approach provides not only a technical
tool to optimize the RTN, but also a profound connection
between tensor networks and neural networks in terms of
their geometric interpretations. Based on this interpretation,
the holographic dual spatial geometry of a quantum many-
body state could emerge as the neural network geometry
from machine learning the entanglement features. In other
words, spacial geometry is just an efficient way to encode
entanglement features. The corresponding tensor network can
be viewed as a disentangling circuit that gradually resolves the
entanglement features at different layers, which is the common
idea underlying other tensor network holography approaches
[36]. For simplicity, we will consider the second Renyi entropy
S(2)(A) of all subregions A as entanglement features of a state.
Using the second Renyi entropy of some regions as the training
data, the goal of the neural network is to give the best prediction
to the second Renyi entropy of other regions. As the learning
is done, the geometric structure of the neural network can be
interpreted as the emergent holographic bulk geometry. This
draws a direct connection between holographic duality and the
deep learning, as illustrated in Fig. 1. This connection was
also made in a recent work [41], based on the similarity in
their relations to the renormalization group [11–15,42–46].
The relation between neuron networks and tensor networks
have also been discussed recently in Refs. [47–52].
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FIG. 1. Conceptual connections between holographic duality and
deep learning.

In this work, we point out that for “machine learning
holography,” what should be learned are the entanglement
features of the quantum many-body states. We also develop a
concrete EFL algorithm that can be implemented in numerics.
A terminology dictionary of EFL is summarized in Table I. Our
EFL approach is based on a deep learning architecture known
as the deep Boltzmann machine (DBM) [53–55]. Boltzmann
machines are a class of machine learning models that have
been introduced in condensed matter physics research in many
recent works [48–50,52,56–61], in particular Ref. [57] contains
a nice review of Boltzmann machines for physicists. We show
that each RTN can be mapped to a DBM with the same
network structure, therefore, the optimal RTN state can be
found by training the corresponding DBM. However, there
is no efficient method to train a generic DBM, so we have
to make some restrictions to the neural network architecture
in order to make EFL a practical (rather than theoretical)
algorithm. To this end, we will restrict to the RTN on planar
graphs. It turns out that the planar RTN already has sufficient
expression power to represent a rich variety of states from
area law [62–64] to volume-law [65–67] entanglement. We
develop an efficient deterministic learning approach based
on the exact solution of planar graph Ising models. We then
demonstrate the EFL in 1D free fermion systems and show how
the holographic geometry grows deeper in the perpendicular
direction as the boundary fermion state approaches critical
point.

The remainder of this paper is organized as follows. In
Sec. II, we will first review the construction of the RTN and
its entanglement properties. In Sec. III, we will propose the
EFL algorithm and analyze some of the technical challenges.
In Sec. IV, we will apply the EFL on a 1D free fermion model
and demonstrate how the holographic bulk geometry can arise
from learning the entanglement features.

TABLE I. A terminology dictionary of EFL

Machine learning EFL

neural network random tensor network
visible units boundary tensors
hidden units bulk tensors
edge weight edge mutual information
training samples entanglement regions
input data entanglement feature
network geometry bulk spatial geometry

FIG. 2. The structure of a RTN state.

II. RANDOM TENSOR NETWORKS

A. Definition of RTN states

We will briefly review the definition of random tensor
network (RTN) state following the projected entangled pair
state (PEPS) approach [31,32]. An RTN state is specified by
an edge-weighted graph G = (V; E,I ) comprising the vertex
set V and the edge set E along with a weighting function
I : E → R+, such that each edge e ∈ E is associated with a real
and positive edge weight Ie. On each vertex v ∈ V , we define
a local Hilbert space Hv = ⊗

e∈dv He
v , where dv denotes the

set of edges adjacent to the vertex v. He
v is the subspace on the

vertex v to be connected to the incident edge e (as the small
blue circle in Fig. 2). Let |μe

v〉 (labeled by μe
v = 1,2, . . . ) be a

complete set of basis states of the Hilbert space He
v .

We then define a random state |ψv〉 ∈ Hv on each vertex v

(as the big red circle in Fig. 2),

|ψv〉 =
∑
[μv]

T [μv]
⊗
e∈dv

∣∣μe
v

〉
. (1)

The coefficient tensor T is a random tensor, whose tensor
elements are independently drawn from normal distributions
following P (T ) ∝ e− 1

2

∑
[μv ] |T [μv]|2 . On each edge, we define an

entangled pair state |Ie〉 (as the blue link in Fig. 2) in the Hilbert
space

⊗
v∈∂e He

v (where ∂e denotes the set of two vertices at
the end of the edge e),

|Ie〉 =
∑
[μe]

λ[μe]
⊗
v∈∂e

∣∣μe
v

〉
. (2)

The entanglement of |Ie〉 across the edge is characterized by the
edge mutual information Ie. Each edge could have a different
Ie in general. If we treat the coefficient λ[μe] = λμe

1μ
e
2

as a
matrix, the nth Renyi mutual information can be expressed as

I (n)
e = 2

1 − n
ln Tr(λλ†)n. (3)

In the following, we will focus on the case of Renyi index
n = 2 and take Ie = I (2)

e unless otherwise specified. It is free to
choose λ on each edge, as long as the edge mutual information
Ie matches the edge weight Ie of the graph G. There is also a
set of special edges (the thick edges in Fig. 2) on the boundary
of the network. They are the external edges (physical legs)
that connects to the physical degrees of freedom. On these
edges, we assume that the entangled pair states are maximally
entangled, hence the edge mutual information is 2 ln D∂ with
D∂ being the bond dimension of the external leg.
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Given the random state |ψv〉 on each vertex v and the
entangled pair state |Ie〉 on each edge e, the RTN state can be
constructed by projecting the entangled pair states to random
vertex states via the following partial inner product:

|G〉 =
⊗
v∈V

⊗
e∈E

〈ψv|Ie〉. (4)

The remaining subspaces (as solid circles in Fig. 2) on the
dangling ends of the external edges are not touched by the
projection. They form the physical Hilbert space Hphy =⊗

v∈V∂
Hphy

v in which the RTN state |G〉 is supported. Here
V∂ denotes the set of boundary vertices, i.e., the subset of V
whose vertices are connected to the external edges. It is worth
mentioning that |G〉 should better be treated as an ensemble
of RTN states, instead of a single specific state, due to the
randomness in |ψv〉. All states in the ensemble are labeled
by the same edge-weighted graph G and share the similar
entanglement feature.

B. Entanglement Features of RTN States

The entanglement feature of a quantum many-body state
refers to the full set of entanglement entropies over all entan-
glement subregions. In general, one could include all orders of
Renyi entropies in the definition, but we will only focus on the
second Renyi entropies in the following and leave the generic
discussion to the last section.

Given an ensemble of RTN states |G〉 and a subregion A ⊆
V∂ , the ensemble-typical second Renyi entropy SG(A) over the
subregion A is defined via

e−SG (A) = E
TrA(TrĀ |G〉〈G|)2

(Tr |G〉〈G|)2
, (5)

where E takes the RTN ensemble expectation value (i.e.,
averaging over the random states |ψv〉 on all vertices), and
Ā = V∂ \ A denotes the complement region of A. We have
explicitly introduced the denominator Tr |G〉〈G| to ensure the
normalization of the RTN density matrix. An important result
of Ref. [31] is to show that the entanglement entropy SG(A)
can be expressed in term of the free energies of a classical Ising
model on the same graph G in the large bond dimension limit.
A more general treatment away from that limit is provided in a
related work Ref. [68], but in this work, we will only consider
the large bond dimension limit.

To specify the Ising model, we first introduce a set of Ising
spins σv = ±1 for all v ∈ V and an additional set of Ising
variables τv = ±1 on the boundary v ∈ V∂ only. The model is
described by the energy functional

EG[σ,τ ] = −
∑
e∈E

Je

∏
v∈∂e

σv − h
∑
v∈V∂

τvσv. (6)

The Ising coupling Je ≡ Ie/4 is set by the edge mutual
information Ie of the RTN state. The external field h ≡ 1

2 ln D∂

is set by the local Hilbert space dimension D∂ of the physical
degrees of freedom (which is also the bond dimension of the
external leg). Only σv spins are dynamical, and τv are just Ising
variables that specifies the directions of the external pinning
field hτv on the boundary. The configuration of τv is determined

FIG. 3. Entanglement entropy as the minimal cut (in black)
through the tensor network that separates the region A (in red) from
Ā (in blue). The Ising domain wall is automatically the minimal
cut in the large bond dimension (low temperature) limit. Different
network structures gives rise to different scaling behaviors of the
entanglement entropy: (a) area law S(A) ∼ const., (b) logarithmic
law S(A) ∼ ln LA, and (c) volume law S(A) ∼ LA.

by the choice of the entanglement region A:

τv(A) =
{−1 v ∈ A,

+1 v ∈ Ā.
(7)

Tracing out the dynamical spins σv , the free energy F [τ ] of
the boundary spins τv can be defined via

e−FG [τ ] =
∑
[σ ]

e−EG [σ,τ ]. (8)

In the large bond dimension limit (Ie 
 1), it was shown [31]
that the typical second Renyi entropy of the RTN state |G〉 is
given by the free energy difference

SG(A) = FG[τ (A)] − FG[τ (∅)], (9)

where τ (A) denotes the boundary pinning field configuration
specified in Eq. (7) and τ (∅) denotes the configuration of τv =
+1 for all v ∈ V∂ . The derivation of Eq. (9) is reviewed in
Appendix A. The physical intuition of Eq. (9) comes from the
interpretation [4] of the entanglement entropy as the area of
the minimal surface that separates the region A from Ā in the
holographic bulk. Correspondingly, the free energy difference
F [τ (A)] − F [τ (∅)] measures the energy cost of the domain
wall that separates the part A from Ā in the tensor network
(see Fig. 3), which matches the holographic interpretation of
the entanglement entropy in the large bond dimension limit.
Technically, the advantage of RTN over other types of tensor
networks also lies in the fact that the second Renyi entropy
of the RTN state can be efficiently estimated from the free
energy of the corresponding Ising model as in Eq. (9). For a
generic tensor network, calculating its entanglement entropy
requires to diagonalize the reduced density matrix, which could
be much more difficult than solving the Ising model in many
cases.

The set of entanglement entropies {SG(A)|A ⊆ V∂} consti-
tutes the entanglement feature of the RTN state, which only
depends on the graph G and its edge weights Ie. The RTN state
thus provides us a model to encode the entanglement feature
directly in the network structure (i.e., the graph geometry). This
is the essential idea behind the tensor network holography.
In many previous approaches, a bulk geometry is first given
and a tensor network is tiled on the background geometry.
The resulting tensor network state then produces the entangle-
ment feature on the holographic boundary that is dual to the
holographic bulk geometry. For example, Fig. 3 demonstrates
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how different network structures lead to different scaling be-
haviors of the single-interval entanglement entropy. However,
in this work, we would like to consider the inverse problem:
given the entanglement feature of a quantum many-body state,
how to determine the optimal holographic geometry? We will
show that this problem can be mapped to a machine learning
problem, which we called the entanglement feature learning
(EFL).

III. ENTANGLEMENT FEATURE LEARNING

A. General algorithm

The goal of EFL is to develop an RTN ensemble that best
matches the entanglement feature of the given many-body
state |�〉. The graph geometry of the RTN is then interpreted
as the dual bulk geometry. In principle, all graph geometries
can be realized on a complete graph (the graph with all-to-all
connections) by adjusting the edge weights Ie. For example,
an edge in the complete graph can be disconnected by setting
its weight Ie = 0 to zero. Therefore optimizing the graph
geometry is equivalent to optimizing the set of edge weights
on the complete graph, and the latter is a typical problem of
the neural network based deep learning. We will apply the
deep learning technique to optimize the random tensor network
connections and obtain the optimal holographic geometry of
the given quantum many-body state.

Given a quantum many-body state |�〉 (to learn), we first
extract its entanglement feature by collecting the second Renyi
entanglement entropies S�(A) over different entanglement
subregions A:

S�(A) = − ln Tr
A

(Tr
Ā

|�〉〈�|)2. (10)

Admittedly, calculating the entanglement entropy of a generic
many-body state is difficult. However, let us assume that these
data can be in principle collected, for example, by experimental
measurements [69–72]. Then they can be used to construct the
training set

{(τ (A),S�(A))|A ⊆ V∂}, (11)

where τ (A) is the boundary pinning field configuration defined
in Eq. (7), which is just another way to specify the entanglement
region A. Usually, it is not practical to collect entanglement
entropies for all possible subregions A ⊆ V∂ , so only a subset
of the entanglement feature will be used in the EFL (how to
sample the subset will be explained in details later). Once the
entanglement feature is collected, we will make no further
reference to the original quantum state |�〉.

We wish to fit the entanglement feature of the given state
|�〉 by the RTN state |G〉. We would like to emphasize that
we are not intended to find the tensor network representation
of the state |�〉, which could be a much harder task. We just
want to find the optimal tensor network geometry such that the
entanglement features between |�〉 and |G〉 match as much as
possible. In fact, as the tensors are random in the RTN, the RTN
state |G〉 would be very different from (most likely orthogonal
to) the given state |�〉. To learn the tensor network geometry
from the entanglement feature, there are two possible learning
approaches: supervised learning or unsupervised learning.

In supervised learning, each training sample is a pair
(τ (A),S�(A)) consisting of the Ising configuration τ (A) as
the input object and the entanglement entropy S�(A) as the
desired output value. The supervised learning will seek for a
fitting function SG(A) based on the RTN model with minimal
prediction error. The supervised EFL is essentially a regression
problem. We can choose to minimize the mean square error loss
function, which is commonly used for regression problems

L(G) = avg
A⊆V∂

(SG(A) − S�(A))2. (12)

The variational parameters will be the edge weights Ie that
parametrize the graph G (and the RTN model).

In unsupervised learning, the training samples τ (A) are
“unlabeled,” but they appear with an empirical probability
distribution

P� [τ (A)] ∝ e−S� (A). (13)

Such training set can be prepared by Monte Carlo sampling
the entanglement region A following the Boltzmann weight
e−S� (A) on the given state |�〉. The goal of the unsupervised
learning is to train a generative model that could reproduce
the samples τ (A) with the probability distribution close to
the empirical distribution as much as possible. If the goal is
achieved, it is believed that the generative model has capture
the hidden features in the training data. For our purpose, we
take the RTN model as the generative model, which generates
the sample τ (A) with the model probability

PG[τ (A)] ∝ e−SG (A) ∝ e−FG [τ (A)], (14)

or more precisely,

PG[τ ] = 1

ZG

∑
[σ ]

e−EG [σ,τ ],

ZG =
∑
[τ ]

e−FG [τ ] =
∑
[σ,τ ]

e−EG [σ,τ ],

(15)

where the energy model EG[σ,τ ] is given by Eq. (6). If
we treat the bulk spins σ as hidden units and the boundary
spins τ as visible units, the model is precisely mapped to the
Boltzmann machine [73,74] in machine learning. The goal
is to approximate the empirical distribution P� [τ ] by the
distribution PG[τ ] produced by the Boltzmann machine. To
measure how similar the two distributions are, the Kullback-
Leibler divergence is typically used as the objective function

L(G) =
∑
[τ ]

P�[τ ] ln
P� [τ ]

PG[τ ]
, (16)

which is minimized if PG[τ ] → P� [τ ]. Because the empirical
distributionP� [τ ] was constructed in Eq. (13) to encode the en-
tanglement feature of |�〉, if the Boltzmann machine managed
to reproduce this distribution after training, the entanglement
feature should have been learnt and encoded in the neural
network connectivity, which gives us a representation of the
emergent holographic bulk geometry.

For both supervised and unsupervised learning, the training
procedure is to minimize objective function L(G), which
is formally a functional of the edge-weighted graph G. As
mentioned before, we can always embed the graph G in a
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FIG. 4. Computation graph of EFL. Arrows indicate the direc-
tions that the data flow. The training data are prepared in the red
module.

large enough complete graph and take the edge weights Ie (or
equivalently the Ising couplings Je = Ie/4) as the variational
parameters. Hence we can use a gradient descent algorithm
over L(G) to find its minimum according to the following
update rule:

Ie ← Ie − rl

∂L(G)

∂Ie

, (17)

where rl denotes the learning rate. The whole EFL algorithm is
summarized as the computation graph in Fig. 4. In the training
process, the neural network learns the entanglement feature of
the input quantum state |�〉. As the training converges, we open
up the neural network and extract the network connectivity
from the parameters Ie, which parametrize the optimal edge
mutual information of the RTN as well as the optimal graph
geometry in the holographic bulk.

In this work, we will adopt the supervised learning approach
and leave the unsupervised learning approach for future inves-
tigation. There are still two technical obstacles that we have
to overcome to make the EFL really a practical (rather than
theoretical) algorithm for tensor network holography. In the
remainder of this section, we will analyze the obstacles and
provide solutions to them.

B. Deterministic learning on planar graph

The gradient descent method is not practical for training
generic Boltzmann machines with unrestricted connections
(i.e., on a complete graph). One major reason lies in the
lack of efficient inference method: the complexity to evaluate
the free energy FG[τ ] (or the marginal distribution PG[τ ]) of
the Boltzmann machine grows exponentially with the number
of hidden units. Adding restrictions to the network structure
allows for more efficient training algorithms, such as the
restricted Boltzmann machine (RBM) [38,75,76]. By stacking
RBM layers, one obtains a deep architecture known as the deep
Boltzmann machine (DBM) [53], which better fits the purpose
of EFL to produce the geometry deep in the holographic
bulk. However, the original proposal to estimate the learning

gradient for the DBM is based on the Monte Carlo method.
It is found that the deep layers typically receive very weak
gradient signals, which can be easily overwhelmed by the
thermal fluctuations introduced by the Monte Carlo process.
The net effect is that the thermal noise will drive the edge
weights Ie in the deep layers to follow a random walk until
the activation saturates. Therefore the deep layers can not be
trained by stochastic learning algorithms. Instead, we need
deterministic learning [61] algorithms. The idea is to avoid
the Monte Carlo sampling and evaluate the Ising model free
energy analytically. Several approximate methods have been
developed, including the belief propagation [77–79] and the
high-temperature series expansion [80].

Instead of approximate approaches, if we restrict the net-
work geometry to planar graphs, there are exact learning
methods [81–83], exploiting the exact solvability of planar
graph Ising models [84–86] (by mapping them to free Ma-
jorana fermion problems on related but different graphs, see
Appendix B for details). Naively, it seems too restricted to
study planar graphs, which are very special among all graphs.
However, the RTN on a planar graph can already model a
variety of entanglement features on the holographic boundary,
as demonstrated in Fig. 3. For example, the volume-law
entanglement can be described by a planar network geometry
with flat or positive curvature, because in that case the minimal
surface is pushed to the boundary. Therefore the planar graphs
can describe a large family of states of interest [87], including,
for example, area-law [62–64] ground states of local Hamil-
tonians and volume-law [65–67] excited eigenstates satisfying
the eigenstate thermalization hypothesis [88–90].

Details of the Ising-Majorana fermion mapping is reviewed
in Appendix B. As a short summary, the free energy FG[τ ] can
be calculated from the Pfaffian of the lattice adjacency matrix
A[J,hτ ] (with edges weighted by J and hτ ) on which the dual
fermions live:

FG[τ ] =
∑
e∈E

Je + h
∑
v∈V∂

τv − ln pf A[J,hτ ]. (18)

The computational complexity is of the cubic order of the
graph size. The gradient can also be calculated efficiently from
d(ln pf A) = 1

2 Tr A−1dA. Because there is no thermal fluctu-
ation in the gradient signal, the edge weights in deep layers
can be trained towards their optimal values deterministically.
On the other hand, considering the DBM with planar graph
architecture is also physically plausible for the purpose of
the tensor network holography, because the planar graph is
naturally a discretized description of the 2D spatial part of the
(2 + 1)D holographic geometry [as the holographic dual to the
(1 + 1)D quantum many-body state].

C. Architecture and regularization

Besides the deterministic learning, another technical chal-
lenge of EFL is the redundancy in the graphical representation
of the entanglement feature. For example, consider an Ising
model with three spins as shown in Fig. 5(a), described by

E[σ,τ ] = −J1σ1σ2 − J2(σ1 + σ2)σ3 − h(τ1σ1 + τ2σ2),

(19)
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FIG. 5. Redundancy in a three-vertex graph. (a) The network
structure. (b) The objective function in the J1-J2 plane. A flat channel
indicates the redundant direction.

which is parameterized by two Ising couplings J1 and J2. But
the free energy F [τ ] = − ln

∑
[σ ] e

−E[σ,τ ] only depends on an
effective coupling (obtained by first tracing out the σ3 spin)

Jeff = J1 + 1
2 ln cosh 2J2. (20)

So there is a trade-off between J1 and J2: as long as Jeff

remains unchanged, adjusting J1 and J2 in the opposite way
will not change the free energy F [τ ], and thus will not affect
the objective function. As illustrated in Fig. 5(b), there will
be a flat channel along which all different edge weights are
degenerated in the objective function.

This phenomenon can be viewed as a discrete analog of
the diffeomorphism redundancy of the gravity theory. It also
poses a problem to the EFL, because each time the training
will end up with a different edge weight configuration along
the flat direction, which makes it hard to compare the network
geometries between two training. Before coming up with a
systematic classification of these redundancies, we have to
introduce a “gauge fixing” by hand. This is done by imposing
more restrictions on the architecture.

In the following, we will consider two particular architec-
tures: the cylindrical and the hyperbolic network as shown in
Fig. 6. In particular, the hyperbolic network in Fig. 6(b) can
be viewed as a variation of the convolutional deep Boltzmann
machine architecture. Both networks have layered structure.
Within each layer, the horizontal (intralayer) bonds and the
zigzag (interlayer) bonds can trade off each other (approxi-
mately), similar to the situation in Fig. 5. To fix this redundancy,
we lock the interlayer coupling to the intralayer coupling on
the UV side (i.e., the side closer to the boundary), see Fig. 6. If
the training data are translation invariant along x direction, we
will also set the coupling uniform within each layer to respect
the translation symmetry.

FIG. 6. Two architectures of planar graph DBM: (a) cylindrical
network and (b) hyperbolic network. Both assume periodic boundary
condition along the x direction. The bonds of the same color are locked
to the same coupling strength Jz.

The learning signal originates from the training data and is
passed down layer-by-layer from the boundary into the bulk.
Suppose at the beginning, all couplings are initialized to zero.
When the training data are presented to the machine, the first
layer learns the local spin correlation in the training samples
and develops the coupling J1 to match the correlation. Due to
the interlayer couplings, the spin correlation in the first layer
will induce the residual spin correlation in the second layer.
The residual correlation is then presented to the second layer
to train the coupling J2 and so on. So the deeper layer should
be designed to resolve the residual correlations that can not be
resolved in the previous layers. Bearing this physical picture
in mind, we propose the following feasible domain:

J1 � J2 � J3 � · · · � 0, (21)

where Jz is the coupling strength in the zth layer. In the
algorithm implementation, the condition Eq. (21) is checked at
each training step. If the condition is violated, the parameters Jz

will be pulled back to the nearest boundary point of the feasible
domain. In the machine learning terminology, Eq. (21) can
be considered as a regularization that coordinates the training
among different layers and effectively prevents overfitting in
the first several layers.

IV. NUMERICAL RESULTS

A. Training set preparation

Computing the entanglement entropies for a generic quan-
tum many-body state is difficult. As a proof of concept, we
choose the free fermion system to demonstrate the idea of EFL.
ConsiderN copies of the (1+1)D Majorana fermion chain [91],
described by the Hamiltonian

H =
N∑

a=1

∑
i

i(1 + m(−1)i)χi,aχi+1,a, (22)

where χi,a is the Majorana fermion operator of the flavor a

on the site i, satisfying {χi,a,χj,b} = δij δab. The Majorana
coupling (1 + m(−1)i) has a staggered pattern along the chain,
such that each unit cell contains two sites. m ∈ (0,1) and
m ∈ (−1,0) correspond to two different gapped topological
phases of the fermions, which are separated by the quantum
phase transition atm = 0. The critical pointm = 0, the fermion
become gapless and the system is described by a (1+1)D
conformal field theory (CFT) with central charge c = N/2
(where N is the fermion flavor number). The central charge
c and the fermion mass m are two parameters that control
the entanglement feature of the Majorana chain. We will tune
these two parameters to study their effects on the holographic
geometry.

The entanglement entropy of a free fermion state |�〉 can
be efficiently calculated from the fermion correlation function
[92,93]. Let CA = 〈�|χχᵀ|�〉|A be the fermion correlation
restricted to the entanglement subregion A, the second Renyi
entanglement entropy is then given by

S�(A) = − 1
2 Tr ln

(
C2

A + (1 − CA)2
)
. (23)

We can then collect the entropy S� (A) over arbitrary region
A. The entanglement cut is always placed between the unit
cells (i.e., the region A always contains complete unit cells).
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Therefore the local Hilbert space dimension in each unit cell
is D∂ = 2N = 22c. Correspondingly, the external pinning field
in the Ising model is set by h = 1

2 ln D∂ = c ln 2.
In the following, we will perform the EFL on the ground

state of the Majorana fermion chain. The lattice is fixed to
the size of 64 sites (i.e., 32 unit cells) with the periodic
boundary condition. The entanglement features are collected
from Eq. (23) and then served to the machine as the training
data. For the 32-unit-cell fermion chain, there are altogether 232

possible choices of the entanglement region A (as each unit cell
can choose to be included in the region A or not). Obviously,
it is both unfeasible and unnecessary to collect S�(A) for
all these 232 regions. We will only collect a subset of them.
There are several options to choose the sampling ensemble of
entanglement regions.

Option(1) is to sample all of them with equal probability.
With this sampling scheme, most of the entanglement regions
will contains multiple small and disconnected intervals. Con-
sequently, this sampling is not efficient at conveying large-
scale entanglement features for large single intervals (which
represent the correlations between far-separated entanglement
cuts in the Ising model language).

Option(2) is to sample only single interval regions. As
the interval length varies, these regions cover different scales
of entanglement features, but the multipartite entanglement
features are missing. We will use these single-interval data for
some testing cases to see if the machine has the generalization
ability to predict multi-interval entropies form single-interval
data.

Option(3), the most comprehensive one, is to weight the
entanglement region A by the number of intervals nA in A, such
that the probability distribution p(A) ∼ e−nA/n̄ is controlled by
the average interval number n̄. We may tentatively take n̄ = 2,
which provides a nice balance between the single-interval
and the multi-interval entanglement features. We call this
the interval-weighted sampling scheme for the entanglement
regions. As we have checked in our numerics, the choice
of n̄ does not affect training result much (which may be an
indication of the internal consistency in entanglement features
collected at different interval numbers).

B. Choosing the central charge

We first fix the fermion mass to m = 0 and run the EFL on
the hyperbolic network architecture. The visible layer has 32
units, matching the 32 unit cells of the fermion chain. Each
deeper layer halves the number of units, so the number of
units per layer vanishes after five layers, and the network can
not go deeper. A uniform weight Iz (or equivalently the Ising
coupling Jz = Iz/4) is assigned to all links in the same layer,
where z = 1,2, . . . ,5 labels the layer depth.

We adopt the supervised learning approach described in
Eq. (12). The EFL algorithm is implemented [94] on the
TENSORFLOW [95] system using ADAM [96] optimizer. We
use the interval-weighted scheme to sample the entanglement
regions and prepare the training data for this study. As shown in
Fig. 7(a), the (relative) loss L decreases with the training steps
and converges to ∼10−3 eventually. Although the learning
algorithm is deterministic, noise is still introduced by the
randomly batched training data, leading to the fluctuations of

FIG. 7. Typical training curves of (a) the objective functionL and
(b) the edge weight Iz in each layer.

L. Nevertheless, the noise in the training data will not wash
out the gradient signals in deep layers, thus the deep network
is still trained efficiently.

Driven by the training data, the edge weight Iz develops
one layer after another as shown in Fig. 7(b). Apart from the
first layer weight I1, the rest of the weights all converge to
the same value controlled by the regularization Eq. (21). If the
regularization condition is lifted, we observe that the machine
has the tendency to develop unphysical weights to overfit the
data.

We take the final values of the weights Iz and plot them in
Fig. 8(a). As we tune the central charge c of the fermion chain,
the behavior of Iz undergoes a transition around c = 2. When
the central charge is smaller than that (e.g., c = 1/2,1), the
deep layers will not be trained. This corresponds to an order-
disorder transition of the Boltzmann machine. Smaller central
charge means weaker entanglement and smaller edge mutual
information in the RTN. Since the edge mutual information I

maps to the Ising coupling J = I/4, decreasing the coupling
J could drive the system into the paramagnetic phase. Then
the original assumption on the large edge mutual information
fails and the physical picture of representing the entanglement
entropy by the domain wall energy in the holographic bulk
no longer holds. To estimate the critical coupling Jc on the
hyperbolic network, we first pin the boundary spins to the same
direction and then measure the magnetization of the spin at
the deepest layer to see if the magnetization can propagate
through the system all the way from the boundary to the
deepest layer in the bulk. As shown in Fig. 8(b), we found an
activation behavior in the magnetization curve, which roughly
divides the coupling J into paramagneticlike or ferromagnet-
iclike regimes. Although the transition is smeared out in the

FIG. 8. (a) Final values of the edge weights Iz on different central
charges. The dashed line marks the level of the critical weight Ic 

0.6. (b) The IR spin magnetization under UV pinning vs the Ising
coupling J . The critical Jc 
 0.15 is estimated from extrapolation
the activation slope.
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FIG. 9. Fitting the single-interval second Renyi entropy using the
machine trained on (a) the hyperbolic and (b) the cylindrical network
architecture. The lattice contains 32 unit cells and interval length LA

is measured in unit cells.

finite-sized system, we can still give an estimate of the critical
Jc 
 0.15 (or Ic 
 0.6) from the extrapolation of the activation
slope. Figure 8(a), indeed, shows that as Iz drops below the
level of Ic, the training signal disappears and the deep layer
weights cease to develop.

In the AdS/CFT duality, the central charge c of a holo-
graphic CFT2 is universally given by c = 3
/2GN [4,97],
where 
 is the AdS radius and GN is the Newton constant
in three dimensional gravity. Our approach of fixing the tensor
network architecture and training the edge weights corresponds
to fixing the AdS radius. Then changing the central charge
c effectively changes the gravitational constant GN . Large c

corresponds to small GN and hence weakly coupled classical
gravity. The classical holographic geometry can be represented
by the classical network geometry that can be trained by the
EFL. As the central charge c gets small, the gravity crosses
over from classical to quantum and the EFL ceases to produce
a sensible result. Therefore, in the following, we will fix the
central charge at c = 4 on the classical side.

C. Single-interval entanglement entropy

For the critical fermion chain m = 0, it is known that
the single-interval Renyi entanglement entropy (i.e., the en-
tanglement region A is a single continuous interval) follows
the logarithmic law S(LA) ∼ ln LA in the thermodynamic
limit [98]. To see how well the RTN can reproduce this
logarithmic entropy scaling after training, for this study we
serve the machine with only the single-interval second Renyi
entanglement entropies taken from a critical fermion chain
of 32 unit cells [calculated from Eq. (23) using the lattice
model]. After the training, we ask the machine to reproduce the
entanglement entropies over the trained intervals and compare
the predictions with the actual values. The result is shown in
Fig. 9.

On the hyperbolic architecture, the trained model provides
a good fitting as in Fig. 9(a). However, on the cylindrical
architecture, the fitting gets worse and the regression error is
larger as in Fig. 9(b). This is because the expression power
of the cylindrical network is not strong enough to capture
the logarithmic entropy scaling. Naively, one may imagine to
mimic the hyperbolic geometry on the cylindrical network with
the weights that gradually decay with the layer depth. However,
the problem is that as the edge weight (Ising coupling) gets
smaller than the critical value, the deeper layers will enter

FIG. 10. Predicted vs actual entropy over multi-interval entangle-
ment regions. Each pair is classified by the interval number in color.
Only the single-interval data were trained.

the paramagnetic phase and lose the learning signal. As a
consequence, only the first several layers will be trained in
the cylindrical network typically, which results in an area law
entangled RTN structure (similar to MPS) [99]. Therefore,
when the CFT entanglement feature is fed to the cylindrical
Boltzmann machine, the machine will try to fit the entropy
data with an area law curve, which can be seen from the flat
top behavior of the prediction curve in Fig. 9(b). Thus, for CFT
states, the hyperbolic network generally provides a better fit to
the logarithmic entropy scaling compares to the cylindrical
network. It is conceivable that if the machine is allowed to
adjust its architecture during the training, the EFL will generate
a training signal to drive the cylindrical network towards the
hyperbolic network for the CFT states. However, dynamically
updating network architectures in the training process is still
technically challenging, we will leave this possibility for future
study.

D. Multi-interval entanglement entropy

To test the prediction power of the RTN model, we train a hy-
perbolic network using single-interval entanglement entropies
and ask if the network can predict multi-interval entanglement
entropies. Let us use different colors to label the entanglement
entropies over different numbers of intervals, and plot the
predicted entropy against the actual entropy in Fig. 10. In the
training phase, only the single-interval data are presented to the
machine. After the training, the machine was able to predict
multi-interval entanglement entropies, which was not in the
training set. If the prediction is perfect, then all the points
should fall along the diagonal line in Fig. 10. We can see
the points do line up nicely, especially when the number of
intervals is small. The overall prediction accuracy is ∼95%.

This demonstrates the prediction power of the RTN model.
However, this may not be very surprising since the multi-
interval entanglement entropy is related to the single-interval
ones:

S(A ∪ B) = S(A) + S(B) − I (A,B). (24)

If the mutual information I (A,B) is small, the multi-interval
entropy is dominated by the additive part S(A ∪ B) 
 S(A) +
S(B), which is relatively easy to capture. So we will turn to the
sub-additive part (i.e., the mutual information) in the following.
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FIG. 11. Fitting the mutual information of (a) two adjacent equal-
length intervals and (b) two separated equal-length intervals with the
separation region of the same length as the interval length.

E. Mutual information

We found that for adjacent intervals, the RTN model can still
fit the mutual information well, as shown in Fig. 11(a). There
is a geometric interpretation of this type of mutual information
in the holographic bulk. According to the Ryu-Takayanagi
formula [4], the entanglement entropy S(A) of the interval A

is proportional to the area of the minimal surface γA, which,
in the AdS3 space, is also the geodesic line connecting the
two boundary points of the interval A. Therefore the mutual
information of adjacent intervals A and B corresponds to

I (A,B) = S(A) + S(B) − S(AB)

= 1

4GN

(|γA| + |γB | − |γAB |). (25)

γA, γB , and γAB form the three sides of a triangle in the
holographic bulk. The mutual information measures how much
is the sum of the two sides greater than the third side. This indi-
cates that the machine gets a grasp of the holographic geometry
in its neural network, so it can provide a good prediction of the
mutual information that has classical geometric interpretations.

In contrast, for separated intervals, the predicted mutual
information is obviously less than the actual value by quite
a large amount, as shown in Fig. 11(b). This is actually not
a problem of our algorithm, but has a deep physical origin.
States with semiclassical dual which satisfies RT formula are
necessarily strongly correlated and contain a lot of multipartite
entanglement. For example, it is known that holographic states
have large and negative tripartite information [31,100], in
contrast from the free fermion theory. RTN is designed to
describe holographic states, which have much smaller mutual
information between separated intervals compared to that in
the free fermions. The free fermion conformal field theory
has many low-dimension operators, which corresponds to light
matter fields in the dual gravity theory. In our approach, these
matter field fluctuations are not taken into account, which par-
tially explains the deficit of mutual information in Fig. 11(b).
Also, our approach only captures the optical classical geometry
and does not include the quantum fluctuation of geometries
around the classical saddle points. How to go beyond the planar
graph EFL and include the fluctuation effect of both matter
fields and geometries is an interesting topic for future research.

FIG. 12. (a) The edge weight Iz in each layer, trained from the
fermion model with different mass m. (b) Color plot of the edge weight
Iz as a function of mass m and the layer depth z. The dashed line is
the curve of log2 ξ with ξ taken from Eq. (26).

F. Emergent holographic geometry

Finally, we turn on the fermion mass m. The fermion
correlation length ξ becomes finite and is given by

ξ−1 = 1

2
ln

1 + |m|
1 − |m| . (26)

In the holographic bulk, the fermion mass caps off the IR region
at the scale zIR ∼ ln ξ . Because the entanglements are resolved
in the UV layers of the RTN at this scale, the network ceases
to grow deeper and the holographic space ends. As the mass m

is turned on, the edge weight will start to fade away from the
deepest layer, as shown in Fig. 12(a). With increasing mass, the
fade-off scale zIR moves from IR (large z) toward UV (small
z), see Fig. 12(a).

We scan over a range of mass m ∈ [0,0.5]. At each m,
we train the machine and obtain the edge weight Iz. The
result is shown in Fig. 12(b). There is a clear boundary where
the holographic space terminates. This boundary matches
the theoretical expectation zIR = log2 ξ nicely (we take log2
here because of each deeper layer halves the number of unit
in the hyperbolic network architecture). This demonstrates how
the AdS3 spacial geometry emerges as we gradually decrease
the mass m and drive the boundary system toward the CFT2.

V. DISCUSSIONS AND SUMMARY

In this work, we have restricted the entanglement feature
to the second Renyi entropies. It is actually conceptually more
natural to include all orders of Renyi entropies over all regions
in the entanglement feature [101]. Reference [31] shows that
the nth Renyi entropy of the RTN state can be mapped to
the free energy difference of an Sn model in the large bond
dimension limit. In the Sn model, each vertex v ∈ V hosts a
permutation group element σv ∈ Sn, coupled together via the
energy functional

EG[σ,τ ] = −
∑
e∈E

χe

(∏
v∈∂e

σv

)
−

∑
v∈V∂

χ∂

(
τ−1
v σv

)
, (27)

where χe(g) and χ∂ (g) are class functions that only depend on
the cycle type lαg of the permutation g (i.e., lαg is the length of
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the αth cycle in g). More specifically, we have

χe(g) = 1

2

∑
α

(
lαg − 1

)
I

(lαg )
e ,

χ∂ (g) =
∑

α

(
lαg − 1

)
ln D∂.

(28)

The χe function is parameterized by the edge mutual informa-
tion I (l)

e for Renyi index l = 2, . . . ,n. The χ∂ term describes
the boundary pinning field that pins the boundary configuration
to another set of permutation group elements τv ∈ Sn. By
defining e−FG [τ ] = ∑

[σ ] e
−EG [σ,τ ], we can consider SG[τ ] =

FG[τ ] − FG[τ = 1]. If we allow τv to take all group elements
in Sn (not limited to the cyclic permutations), the function
SG[τ ] actually includes the RTN entanglement entropies over
all regions for all Renyi index up to n. In principle, using the Sn

model, entanglement entropies of different Renyi indices (up
to n) can all be put together as the training data for the EFL,
and the edge mutual information of all Renyi indices (up to n)
will be trained simultaneously. However, the efficient training
method for Boltzmann machines on Sn models is still lacking,
so the above idea is still not practical yet.

Despite the technical difficulties, the philosophy behind
EFL is clear. For a quantum many-body state with a given
tensor factorization of the Hilbert space (which specify the
“real space basis”), one can forget about operator-specific
information such as particular correlation functions, and focus
on the local unitary invariant information. All local unitary
invariant properties of the wave function can be considered
as entanglement features of the wave function, which include
the bipartite entanglement properties and also many more
multipartite entanglement properties. From the point of view
of gravitational dual, it is interesting to make an analog with
the black hole no-hair theorem [102–105]. The noninvariant
features are removed and the geometry only encodes the local
unitary invariant features, in the same way how the area of the
black hole is proportional to its entropy and is independent
from details of the initial state. The random average in RTN
serves as a technical tool to remove “hairs” of a many-body
state, where the operator specific information is erased by the
random tensor, leaving only the entanglement features encoded
in the network structure. Consequently, RTN can be potentially
a useful framework for characterizing other phenomena in
which entanglement features play an essential role, such as the
many-body localization-thermalization transition [68], which
is essentially a transition about entanglement structures. The
EFL provides us an approach to construct the RTN and to op-
timize its structures, which could be a useful tool for the study
of quantum chaotic dynamics and localization/thermalization.

In summary, the goal of the EFL is to construct an optimal
RTN state that best fits the entanglement properties of a
given quantum many-body state. A problem similar to the
task of feature learning, which extracts the features hidden
in the training data and encode them into the structure of the
neural network. This analogy is made concrete by mapping
the RTN to the Boltzmann machine and train the machine
with the entanglement entropies over all subregions. As the
entanglement feature is learned, the machine develops a neural
network, whose network geometry can be interpreted as the

emergent holographic geometry of the given quantum many-
body state.
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APPENDIX A: ENTANGLEMENT ENTROPY OF RTN
STATES

The RTN entanglement entropy defined in Eq. (5) can be
equivalently expressed as

e−SG (A) = E
Tr(|G〉〈G|)⊗2τ̂ (A)

Tr(|G〉〈G|)⊗2
, (A1)

whereE denotes the average over the RTN ensemble, and τ̂ (A)
is the swap operator in the subregion A. It can be factorized to
each boundary vertex as

τ̂(A) = τ̂v, τ̂v = v ∈ A,

v Ā.
(A2)

The operator τ̂v swaps the replicated local Hilbert space
(Hphy

v )⊗2 on the vertex v ∈ A, otherwise it is an identity
operator acting on the vertex v ∈ Ā.

To evaluate Eq. (A1), we first introduce the rules for the
ensemble average of the random state. Suppose |ψ〉 is a
random state in an N -dimensional Hilbert space, because the
random state ensemble is SU(N ) symmetric, due to the Schur’s
lama, the ensemble average of |ψ〉〈ψ | must be proportional
to the identity matrix in respect of the SU(N ) symmetry.
Under appropriate normalization, we can set E|ψ〉〈ψ | = 1.
Introducing the graphical representation of the random state,

ψ = , ψ = , (A3)

the formula E|ψ〉〈ψ | = 1 can be represented as

E = . (A4)

For duplicated case, the formula is generalized to

E

⊗2

= E = + = , (A5)

or E(|ψ〉〈ψ |)⊗2 = ∑
σ∈S2

σ̂ , as a result of the SU(N ) × S2

symmetry.
Consider a RTN state on a graph with two vertices, each

connected to an external edge (physical leg):

|G〉 =
A A

. (A6)
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Assuming the left and the right external edges are ascribed
to the entanglement regions A and Ā, respectively and using
Eq. (A5), one can evaluate

(A7)

where σ̂i ∈ S2 arise from the ensemble average of the random
states in the bulk. The weight function w(σ̂1,σ̂2) is actually
a function of σ̂−1

1 σ̂2, which can be expressed in terms of the
second Renyi mutual information Ie of the entangled pair state
along the edge:

w(σ̂1, σ̂2) = 1 if σ−1
1 σ̂2 = ,

e−Ie/2 if σ̂−1
1 σ̂2 = .

ˆ
(A8)

If we represent the S2 variable σ̂i by the Ising variable σi =
±1, the weight function has a more compact form w(σ1,σ2) ∝
e−Jeσ

−1
1 σ2 where Je = Ie/4. For external edges, Je is replaced

by h = 1
2 ln D∂ where D∂ is the boundary bond dimension. So

Eq. (A7) can be mapped to the partition function of an Ising
model with fixed boundary condition τ (A),

ETr(|G〉〈G|)⊗2τ̂ (A) = e−FG [τ (A)], (A9)

where e−FG [τ ] = ∑
[σ ] e

−EG [σ,τ ] and

EG[σ,τ ] = −hτ1σ1 − J12σ1σ2 − hτ2σ2. (A10)

It is straightforward to generalize the energy functional to
generic graphs, given in Eq. (6). Correspondingly, Eq. (7) is
just a rewritten of Eq. (A2) in terms of the Ising variables.

In the large bond dimension limit (large Ie), the ensemble
average of the fraction in Eq. (A1) can be approximated by
average of the numerator and the denominator separately:

e−SG (A) 
ETr(|G〉〈G|)⊗2τ̂ (A)

ETr(|G〉〈G|)⊗2

=e−F [τ (A)]+F [τ (∅)].

(A11)

Hence we have arrived at SG(A) 
 F [τ (A)] − F [τ (∅)], veri-
fying the result in Eq. (9). Reference [31] has shown that the
approximation of distributing the ensemble average into the
fraction is valid in the large Ie limit by analyzing the fluctuation.
A more careful treatment away from the that limit is provided
in Ref. [68].

APPENDIX B: PLANAR GRAPH ISING MODEL

In this Appendix, we will review the systematic approach
to calculate the free energy F of the Ising model on a planar

FIG. 13. (a) The original graph (in orange) and its dual graph (in
green). Each edge e in the original graph is dual to a unique edge ẽ

in the dual graph, such that e and ẽ intersect. (b) The extended graph
(star lattice) by expanding each site to a three sites in a triangle.

graph G = (V,E), following Ref. [85,86]:

Z = e−F =
∑
[σ ]

e−E[σ ], E[σ ] = −
∑
e∈E

Je

∏
v∈∂e

σv. (B1)

First of all, every planar graph can be triangulated by adding
virtual edges, across with the Ising coupling Je = 0 is simple
zero. If the boundary spins are also coupled to external Zeeman
field hv , one can consider introducing a fictitious spin at infinity
and coupling all the boundary spins to the fictitious spin with
the coupling strength set by hv . This effective doubles the
system by its Z2 symmetry (the Ising spin flip symmetry)
counterpart, which only brings a factor 2 to the partition
function but does not affect the free energy calculation. With
the tricks of virtual edges and the fictitious spin, we only need
to consider the Z2 symmetric Ising model on the triangulated
planar graph.

Every triangulated planar graph has a dual trivalent graph
G̃ = (Ṽ,Ẽ), as shown in Fig. 13(a), on which the Ising model is
mapped to a loop model. Each Ising domain wall is interpreted
as a loop on the dual lattice. Introduce the Z2 variable lẽ on the
dual edges ẽ, such that lẽ = 1 corresponds to a loop through
the edge ẽ and lẽ = 0 corresponds to no loop. The partition
function (B1) can be mapped to [81]

Z =
∑
[σ ]

∏
e∈E

eJe

∏
v∈∂e σv

= Z0

∑
[l]

∏
ẽ∈Ẽ

w
1−lẽ
ẽ

∏
ṽ∈Ṽ

δZ2

(∑
ẽ∈dṽ

lẽ

)
, (B2)

where the weight is wẽ = e2Je (where e the edge in the original
graph that is dual to the edge ẽ in the dual graph) and the factor
Z0 = e−F0 is given by F0 = ∑

e∈E Je. The delta function δZ2

over the Z2 group imposes the close loop constraint. Unlike
conventional loop models, here each segment of the loop (the
domain wall) is given a trivial weight 1, while the edge without
the loop is given a greater weight wẽ � 1 (for Je � 0) instead.
In this way, the domain wall is still relatively suppressed in the
partition function. The overall factors generated in this weight
rescaling are all absorbed into Z0.

Further expanding each trivalent site into a triangle, as
shown in Fig. 13(b), the loop model can be mapped to a dimmer
model [81], where the loop configuration is replaced by the
transition graph of dimmer configurations. Let � be the set
of all dimmer coverings (perfect matchings) of the extended
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graph G ′ in Fig. 13(b), the partition function Eq. (B2) becomes

Z = Z0

∑
M∈�

∏
e′∈M

we′ . (B3)

In the dimmer model, each thick edge covered by the dimmer
is weighted by we′ = e2Je . The remaining thin edges all share
we′ = 1.

The partition function of the dimmer model Eq. (B3) can
be formulated as a path integral of free Majorana fermions,
with fermion spin structure specified by the Kasteleyn ori-
entation [86,106]. The insight is that every nonzero term in
the Majorana fermion path integral corresponds to a perfect
matching on the graph G ′ (on which the dimmer model is
defined). To place the fermion system on the graph G ′, each
edge must be assigned an orientation, such that for every face
(except possibly the external face) the number of edges on its
perimeter oriented in a clockwise manner is odd, known as the
clockwise-odd rule. Any orientation satisfying the clockwise-
odd rule is a Kasteleyn orientation, which ensures all dimmer
configurations to be mapped to even fermion parity states. The
Kasteleyn orientation can be assigned systematically on planar
graphs by first choosing an arbitrary vertex in the graph and
build a spanning tree from that vertex, then closing the loops
respecting the clockwise-odd rule, as demonstrated in Fig. 14.

With the Kasteleyn orientation assigned, we can construct
the weighted adjacency matrix A of the graph G ′ = (V ′,E ′),

(b)(a)

FIG. 14. Systematic assignment of the Kasteleyn orientation on
planar graph. (a) Start from an arbitrary vertex (mark by the red dot)
and build a spanning tree. (b) Close the loops respecting the clockwise-
odd rule.

such that ∀i,j ∈ V ′: Aij = 0 if 〈ij 〉 is not an edge in E ′, Aij =
wij if the orientation on edge 〈ij 〉 runs from i to j , and Aij =
−wij otherwise. The partition function can then be shown to
be

Z = Z0

∫
D[χ ]e− 1

2 χᵀAχ = Z0 pf A. (B4)

So the free energy of the Ising model can be calculated from

F = F0 − ln pf A, (B5)

where F0 = ∑
e∈E Je and A is the adjacency matrix of the

Kasteleyn oriented extended dual graph G ′.
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