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Elemental chalcogens as a minimal model for combined charge and orbital order
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Helices of increased electron density emerging spontaneously in materials containing multiple, interacting
density waves, are an example of how orbital and charge degrees of freedom may combine to form a single
ordered phase. Although a macroscopic order parameter theory describing this behavior has been proposed
and experimentally tested, a microscopic understanding of such simultaneous orbital and electronic order in
specific materials is still lacking. Here we present the elemental chalcogens selenium and tellurium as model
materials for the development of combined charge and orbital order. We formulate minimal models capturing
the formation of spiral structures consisting of ordered occupied orbitals and increased charge density, both in
terms of a macroscopic Landau theory and a microscopic Hamiltonian. Both reproduce the known chiral crystal
structure and are consistent with its observed thermal evolution and behavior under pressure. The combination
of microscopic and macroscopic frameworks allows us to distill the essential ingredients in the emergence of
combined orbital and charge order, and may serve as a general guide to predicting and understanding spontaneous
chirality as well as other, more general, types of combined charge and orbital order in other materials.
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I. INTRODUCTION

The bulk transition metal dichalcogenide 1T-TiSe2 has been
shown, uniquely, to harbor a charge density wave transition that
breaks inversion symmetry in a chiral way [1–5]. In contrast
to the well-known chirality of spins in helical magnets, the
formation of spirals within the scalar electronic density cannot
occur by itself, and is necessarily accompanied by the onset of
simultaneous orbital order [3,6,7]. The result is an example of
a novel type of order, in which the orbital and charge degrees
of freedom are combined into a single order parameter. Similar
chiral order has been theoretically suggested to determine
material properties of various transition metal dichalcogenides
[8–10], and even cuprate high-temperature superconductors
[11–13]. But the cooperation between charge and orbital de-
grees of freedom is not restricted to chiral phases. The two de-
grees of freedom have, for example, also already been proposed
to combine into a polar order parameter [10], and there is no
reason to believe this exhausts the list of possible novel phases.

Focusing first on the chiral combination of charge and
orbitals, indirect evidence for the presence of spiral charge or-
der was found in scanning-tunneling microscopy experiments
on 1T-TiSe2 [1,5]. In addition, several predictions arising
from a Ginzburg-Landau theory of the chiral phase transition
were experimentally confirmed [3–5]. Nevertheless, it has
proven difficult to obtain direct experimental confirmation of
the broken inversion symmetry. The main reason for this is
believed to be the presence of small, nanometer wide, domains
of varying handedness [5], averaged over by almost all direct
bulk probes. A microscopic understanding, going beyond the
predictions of the macroscopic order parameter theory, is thus
essential in the search for further experiments able to directly
probe this novel type of combined charge and orbital order.

A microscopic theory for the chiral state of 1T-TiSe2 would
necessarily involve all 22 orbitals in its unit cell. Even if such a
model were constructed, its inherent complexity would obscure

a general understanding of how charge and orbital degrees of
freedom cooperate to form a single ordered phase, and would
likely not be useful as a guide to identifying other possible
materials that can harbor electronic spirals or other types of
combined charge and orbital order. We therefore take an alter-
native approach, and formulate a minimal microscopic model
for the appearance of spiral chains in the atomic structure of
the elemental chalcogens Se and Te, which we propose to be
prototype materials for combined orbital and charge order in
general. These materials are well known to have a chiral crystal
structure at ambient conditions. The handedness of a given
sample is evidenced by both its diffraction pattern and optical
activity [14]. The crystal structure can be viewed as short bonds
arranged along helices in a simple cubic lattice, as shown
schematically in Fig. 1(a) [14]. Although Se and Te do not ex-
hibit a charge ordering transition at any temperature, the spiral
bond order is understood as an instability of a simple cubic
parent lattice structure [2,6,7]. The charge ordering transition
from the hypothetic simple cubic to the actual chiral phase is
known to be of the same type as the chiral transition in 1T-TiSe2

[3]. Owing to the simple lattice structure however, an explicit
and easily accessible microscopic model can be formulated for
Te and Se, elucidating how different types of electron-phonon
coupling and Coulomb interactions conspire to form the spiral
structure. This model is presented here as a minimal description
for combined charge and orbital order in general.

II. INTUITIVE PICTURE

Before presenting both macroscopic and microscopic mod-
els of the chiral charge order, we first give an intuitive picture
showcasing their basic ingredients. The starting point is the
simple cubic lattice structure. Both Se and Te crystals possess
the chiral structure shown in Fig. 1(a) for any temperature at
ambient pressure. Upon melting Te however, the short-ranged
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FIG. 1. (a) The chiral crystal structure of Se and Te can be
understood as a spiral arrangement of short bonds in a simple cubic
parent lattice. Atoms with different colors indicate the three possible
local configurations of short bonds. The chiral unit cell is indicated in
pink. (b) The short bonds involve charge transfer between specific
orbitals only, causing the chiral crystal lattice to also be orbital
ordered. Note that since the electronic system is 2/3 filled, the
orbital order shown consists of the least occupied orbitals. The shaded
planes, included as a guide to the eye, connect like orbitals and are
perpendicular to the spiral axis.

chiral order in the fluid turns into a more cubic, metallic
phase at a crossover temperature not much above the melting
point [15–17]. This observation can be understood as a latent
structural phase transition, which is preempted by the material
melting before the transition temperature can be reached. In
fact, in the element Po, which is isoelectronic to Se and Te
and sits just below them in the periodic table, strong spin-orbit
coupling prevents the formation of chiral order and allows the
underlying simple cubic lattice structure to remain visible even
at low temperatures [18,19].

Within a simple cubic lattice, the four valence electrons
(2/3 filling) of elemental chalcogens are distributed among p

orbitals that may be chosen to point along the crystallographic
x, y, and z axes. The overlap between neighboring px orbitals
on the x axis is significantly larger than that between neigh-
boring px orbitals on the y or z axes, or between p orbitals
of different type. Taking this difference to the extreme limit,
we consider a minimal model in which only overlaps between
orbitals aligned in a head-to-toe manner are nonzero. Although
quantitatively unrealistic, it captures all qualitative aspects of
the chiral phase transition.

In that limit, an electron in for example a px orbital can only
hop in the x direction, onto a neighboring px orbital. The sim-
ple cubic lattice is thus filled with interwoven but independent
one-dimensional chains running in all three lattice directions.
The electronic structure consists of three one-dimensional
bands, each producing a pair of parallel planar Fermi surfaces
in the first Brillouin zone. The Fermi surface is extremely well
nested, and a Peierls-type charge density wave is expected to
emerge [20]. In fact, a single nesting vector Q, corresponding
to a body diagonal of the cube of intersecting Fermi surfaces,
connects each point on any of the Fermi surface sheets to a
point within a parallel sheet. The dominant instability will
therefore be towards the formation of charge density waves
ρj (x) = ρ0 + A cos(Q · x) in each of the three orbital sectors
(labeled by j ), who all share the same propagation direction
Q. Here ρ0 is the average charge density in the normal state,
and A is the amplitude of the charge modulation.

The atomic displacement waves uj (x) = ũej sin(Q · x),
forming in response to the charge modulations, have polariza-
tions ej whose direction is determined by the anisotropy of the
local electron-phonon coupling matrix elements [3]. In a chain
of px orbitals with overlaps only along x, the electron-phonon
coupling is maximally anisotropic, and the displacement di-
rection e will be purely along x. The three orthogonal chains
running through each atom act independently, and the actual
atomic displacement is the sum of the three contributions uj .

The charge density wave in each orbital chain can be
shifted along its propagation direction by the addition of
a phase: ρj (x) ∝ cos(Q · x + ϕj ). A Coulomb interaction
between charges in orthogonal orbitals on the same site,
will cause the charge maxima along one chain to prefer to
avoid those of other chains, effectively coupling the phases
in different orbital sectors. The lowest energy configuration
then produces precisely the charge redistribution and lattice
deformations shown in Fig. 1(a), which agree with the ex-
perimentally observed crystal structure of Se and Te [2,6].
Each atom in this final structure has a single least occupied
p orbital. The chiral charge ordered structure is therefore also
automatically an orbital ordered phase, as shown in Fig. 1(b).

III. MACROSCOPIC ORDER PARAMETER THEORY

A Landau free energy may be written in terms of the
dimensionless order parameters αj (x) representing the peri-
odic modulation of the charge density within a given chain
of head-to-toe orbitals: ρj (x) = ρ0[1 + αj (x)]. If the orbital
sectors are noninteracting, their free energies are independent:
Fj = ∫

d3x a(x)α2
j + b(x)α3

j + c(x)α4
j . Notice that the pres-

ence of the lattice is taken into account by expanding the
coefficients in terms of reciprocal lattice vectors, so that for
example a(x) = a0 + a1

∑
n eiGn·x + · · · [21]. Here Gn denote

the shortest reciprocal lattice vectors. Terms aj with j > 0 in
this sum arise from the electron-phonon coupling in a more
microscopic model.

The on-site Coulomb interaction provides the interaction
terms FCoul = ∑

j

∫
d3x A0αjαj+1. The periodic charge dis-

tributions can be written as αj (x) = ψ0 cos(Q · x + ϕj ), with
the amplitude ψ0 equal for all three order parameters, and ϕj is
a spatial shift of the charge density wave along j . Performing
the integration over x, the full free energy, per volume, becomes

F = 3

2
a0ψ

2
0 + 9

8
c0ψ

4
0 + 1

4
b1ψ

3
0

∑

j

cos(3ϕj )

+ 1

2
A0ψ

2
0

∑

j

cos(ϕj − ϕj+1). (1)

As usual, the temperature dependence is considered by expand-
ing a0 as a function of T − Tc, near the critical temperature. In
this way, a0 determines when the free energy has a minimum
at nonzero values of ψ0, and charge order sets in. The final
two terms, arising from the electron-phonon coupling and the
Coulomb interaction, respectively, determine the values of the
phases ϕj . They can be simultaneously minimized by taking
ϕ1 = nπ/3, where n is an odd or even integer depending on
the sign of b1. Physically, this corresponds to the charge order
being either site or bond centered. Additionally, the relative
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phase differences should be chosen as ϕj − ϕj+1 = ±2π/3.
These solutions are then precisely the left- and right-handed
chiral configurations, one of which is shown in Fig. 1(a).

Comparing the free energy of Eq. (1) to the one given for
1T-TiSe2 in Ref. [3], it appears that in spite of the different
underlying atomic and electronic configurations, the routes
to chiral charge and orbital order are largely the same. The
onset of charge order from a disordered state is determined by
amplitude terms only. Electron-phonon coupling then favors
locking of the different charge density wave contributions to the
lattice. The on-site Coulomb interaction finally couples density
waves in distinct orbital sectors, leading to relative phase shifts
and the emergence of chiral charge and orbital order.

Upon applying uniform pressure, Se and Te undergo a
series of structural transitions into nonchiral phases [22,23].
This can be understood within the free energy expansion as
a pressure dependence of the critical temperature, which we

write as a0(T ,P ) = 3b2
1

32c0
+ A0

2 + α[ T

T 0
C

+ P

P 0
C

− 1]. Here P 0
C is

the critical pressure at zero temperature, while T 0
C is the critical

temperature at zero applied pressure. The constant term in a0

is needed to guarantee that, after minimizing F with respect
to the phase variables, the total prefactor of ψ2

0 becomes
negative, and a nonzero ψ0 develops, when T decreases
below T 0

C (1 − P/P 0
C). Notice that the relation between critical

temperature and pressure is thus assumed to be linear, and
that the high-pressure, nonchiral phase is assumed to always
be simple cubic. In spite of these simplifications, the free
energy expansion captures the suppression of combined charge
and orbital order by pressure, and may be straightforwardly
extended to describe uniaxial as well as uniform pressure.

The amplitudes ψj in different orbital sectors may be
allowed to each have their own critical temperature, depending
on the amount of pressure applied along a particular axis. The
free energy then becomes

F =
∑

j

1

2
a0(T ,Pj )ψ2

j + 3

8
c0ψ

4
j + 1

4
b1ψ

3
j cos(3ϕj )

+ 1

2
A0ψjψj+1 cos(ϕj − ϕj+1). (2)

Applying uniaxial pressure suppresses only one of the charge
density wave components. As T is now decreased from high
temperatures, one of the a0(T ,Pj ) terms will remain positive
while the others already cause order to set in their associated
orbital sectors. There is thus a range of temperatures for which
the charge order is confined to two orbital sectors only. This
results in stacked planes, each containing zigzag charge order,
as indicated in Fig. 2, which also shows the phase diagram
resulting from this minimal model. The anisotropic structure
agrees both with the predictions of an earlier semiclassical
approach in terms of so-called vector charge density waves [6],
and with the experimental observation of layered structures in
Se under pressure [22,23].

IV. MICROSCOPIC MODEL

To see how the terms in the Landau free energy emerge
from the interplay of microscopic degrees of freedom, we start
again from a 2/3-filled p shell within the simple cubic lattice.
Including hopping only between head-to-toe orbitals, the

FIG. 2. Schematic phase diagram indicating the relative stability
of the chiral and zigzag phases within the free energy of Eq. (2). The
zigzag chains occur in planes perpendicular to the strain direction. The
applied pressure along the (x, y, z) axes is parametrized as (P + Px ,
P , P ). Notice that the linearity of the critical lines and planes results
from the linear thermal and pressure dependencies assumed in a0.

tight-binding Hamiltonian can be written as

Ĥ = ĤTB + ĤCoul + +Ĥe-ph + Hboson,

ĤTB = t
∑

x,j

ĉ
†
j (x)ĉj (x + aj ) + H.c.,

ĤCoul = V
∑

x,j

ĉ
†
j (x)ĉj (x)ĉ†j+1(x)ĉj+1(x),

Ĥboson = h̄ω
∑

q,j

b̂
†
j (q)b̂j (q).

Here ĉ
†
j (x) creates an electron in orbital j on position x,

and aj is the simple cubic lattice vector in direction j . The
hopping amplitude t is positive, since overlapping orbital
lobes on neighboring sites have opposite signs. The Coulomb
interaction acts on-site only, and the displacement ûj (x) of the
atom on position x in the direction of j is written in terms
of the phonon operator b̂

†
j (x), taken to be a dispersionless

Einstein mode. The electron-phonon coupling Ĥe-ph consists
of two contributions:

Ĥ
(1)
e-ph = α(1)

∑

x,j

(ûj (x) − ûj (x + aj ))

× (ĉ†j (x)ĉj (x + aj ) + ĉ
†
j (x + aj )ĉj (x)),

Ĥ
(2)
e-ph = α(2)

∑

x,j

(ûj (x + aj ) − ûj (x − aj ))ĉ†j (x)ĉj (x).

The first type of electron-phonon coupling affects the kinetic
energy of electrons, by increasing the hopping amplitude if
the interatomic distance decreases. The second process lowers
the electronic potential energy in regions of increased ionic
density.

The full Hamiltonian can be diagonalized in the mean field
approximation, using ansatz averages that reflect the ordered
states found in the Landau theory analysis:

〈ĉ†j (x)ĉj (x)〉 = ρ0 + A cos(Q · x + ϕj ),

〈ĉ†j (x)ĉj (x + aj )〉 = σ0 + B cos[Q · (x + aj )/2 + χj ],

〈ûj (x)〉 = ũ sin(Q · x + φj ).
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FIG. 3. The ground state phase diagram as a function of the two
contributions to the electron-phonon coupling. The vertical axis shows
the order parameter B, while the colors indicate the normalized atomic
displacement. Two possible types of chiral charge and orbital ordered
state are shown schematically in the insets. Increased bond density is
indicated by double lines, while curved arrows indicate charge transfer
from or onto atomic sites.

Here A is the mean field for modulations of the on-site charge
density, B is for the bond density, and ũ is for the atomic posi-
tions. Course graining of the mean fields A and B would yield
the Landau order parameter α, while the values of coefficients
appearing in the Landau theory can in principle be obtained
from the microscopic model by calculating loop diagrams [24].

The bosonic part of the mean field Hamiltonian can be
diagonalized by introducing a new set of operators defined
as γ̂j (q) = b̂j (q) + vq,j δ(q − Q) + wq,j δ(q + Q) [25]. Re-
quiring this transformation to bring the bosonic Hamiltonian
into diagonal form determines the values of vq,j and wq,j .
The expectation values of the of the displacement opera-
tors ûj can then be computed in the diagonal basis, which
yields the relation between atomic displacements and the
electronic order parameters: ũ = 2

√
3/h̄ω(2Bα(1)e(χj −φj ) −

Aα(2)ei(ϕj −φj )). Demanding the displacement to be real restricts
the phase differences to be integer multiples of π .

The fermionic part of the Hamiltonian can be diagonal-
ized numerically. The values of the order parameter phases
and amplitudes are determined self-consistently, by requiring
that the expectation values computed using particular ansatz
averages match the ansatz values. With zero on-site Coulomb
interaction, the orbital sectors independently develop charge
density waves. The phases are ϕj = njπ/3, with nj integer,
which includes both nonchiral solutions in which the nj are
all equal, and chiral ones. For any nonzero value of the
Coulomb interaction, this degeneracy is lifted, and the left-
and right-handed chiral charge ordered configurations with
nj − nj+1 = ±2π/3 become the lowest energy states.

For each handedness, the nj may be odd or even multiples
of π/3. These solutions correspond to either bond-centered or
site-centered charge density waves, as indicated in the insets
of Fig. 3. The bond-centered solution dominates for large
α(1)/α(2), while the site-centered one is consistent with the
opposite regime. The atomic structure observed in elemental

Se and Te corresponds to the bond-centered charge order [14],
with α(1) prevailing.

Within the chiral phase, the short bonds in the three orbital
chain directions connect to form a spiral, in agreement with
the experimentally observed structure shown schematically
in Fig. 1(a). The displacements in the x, y, and z directions
arise from charge order in chains of px , py , and pz orbitals,
respectively. The modulation of charge density can thus also
be seen as a spatial modulation of orbital occupation, as shown
explicitly in Fig. 1(b). The emergence of orbital order in con-
junction with chiral charge order is inevitable, since both arise
from the same relative phase shifts between charge density
waves in distinct orbital sectors. The presence of an interaction
between charge density wave components leading to relative
phase shifts, can thus be interpreted as a generic route to com-
bined charge and orbital order, which should be applicable to a
wide range of materials hosting multicomponent charge order.

V. DISCUSSION

Although a phase of combined charge and orbital order
has been proposed to exist in the low-temperature phase of
1T-TiSe2 [1,3,4], the broken inversion symmetry is yet to be
observed directly. In addition, the interplay between the great
number of atoms within the unit cell of TiSe2 complicate
the extraction of physical insight from microscopic models
[26,27]. Having a model material, which harbors a similar
charge and orbital ordered state but is structurally simple and
well understood, is therefore crucial to aid in building a general
understanding of this novel state of matter, and in allowing the
identification of related novel types of order in other materials.
We argue that the elemental chalcogens tellurium and selenium
constitute precisely such model materials.

In both the elemental chalcogens and 1T-TiSe2 multiple
density wave instabilities occur in distinct orbital sectors.
These give rise to multiple, differently polarized, displacement
waves in both materials. The on-site Coulomb repulsion then
causes maxima of different density waves to repel each other.
This results in shifting of the density waves, thus breaking
inversion symmetry and yielding a chiral crystal structure (as
long as no mirror symmetries in the parent lattice reduce the
chiral order to polar [8–10]). The density waves originating in
distinct orbital sectors, necessarily implies that orbital order
accompanies the charge modulations, creating a combined
charge and orbital ordered phase.

In contrast to the chalcogens, the propagation vectors for
different density waves in TiSe2 are all distinct. The order is
also site centered in Se and Te, but bond centered in TiSe2.
Finally, the on-site Coulomb repulsion coupling different
density waves, yields only an indirect interaction between
bond-centered charges in the case of TiSe2. Despite these
and other differences, including for example the different
driving mechanisms underlying the density wave formation
[25,28], a common general mechanism for combining charge
and orbital order is identified: as long as multiple density
wave instabilities occur in distinct sections of the Fermi
surface, which correspond to distinct orbital textures, any local
interaction between orbital sections will cause the combination
of charge and orbital order into a single ordered phase. We thus
predict that a type of combined order can be found in any charge
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ordered material involving multiple orbital sectors, including
(families of) materials with much more complicated structures
than the elemental chalcogens. The theoretical understanding
developed here for Se and Te can be used as a guiding principle
in looking for such novel states of matter.
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