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We investigate the Kondo effect of the Fermi arcs in a time-reversal-invariant Weyl semimetal with the
variational method. To show the consequence brought out by the nontrivial spin texture, we calculate the
spatial spin-spin correlation functions. The correlation functions exhibit high anisotropy. The diagonal correlation
functions are dominated by the antiferromagnetic correlation while the off-diagonal part has a more complicated
pattern. The correlation functions obey the same symmetry as the spin texture. Tuning chemical potential changes
the pattern of the correlation functions and the correlation length. The correlation functions of the Weyl semimetal
Fermi arcs and that from a Dirac semimetal show a discrepancy.
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I. INTRODUCTION

In recent years, Weyl semimetals have attracted a lot of
attention [1–3]. Weyl semimetals are semimetals whose touch-
ing bands can be described by the Weyl equation around the
touching points. By either breaking the time-reversal symmetry
or the inversion symmetry of a Dirac semimetal, a Weyl
semimetal is obtained. To date, inversion-symmetry-breaking
Weyl semimetals have been found in the transition metal
monopnictides [4–7], while time-reversal-symmetry-breaking
ones remain elusive [8–13]. Besides hosting Weyl fermions
[14], Weyl semimetals have many interesting features such as
nontrivial surface states called Fermi arcs [2,4,5,7,15], chiral
anomaly [16–20], unusual quantum oscillations originated
from Fermi arcs [21,22]. Other proposed phenomena include
possible emergent supersymmetry [23], Imbert-Federov shift
[24,25], and disorder-induced novel phase transitions [26,27].

When interacting with magnetic impurities, Weyl semimet-
als bring out new physics. The Kondo effect of the Weyl
semimetal bulk states has been studied. While time-reversal-
invariant Weyl semimetals as well as Dirac semimetals belong
to the pseudogapped Kondo case, numerical renormalization
group calculation reveals that the perturbed system shows
unconventional Kondo physics [28]. The interplay of Kondo ef-
fect and long-range scalar disorder results in non-Fermi liquid
behavior [29]. A variational study calculated the spatial spin-
spin correlation functions and distinguished a Dirac semimetal
from a Weyl semimetal [30]. For a multi-impurity case,
the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction has
also been discussed [31–33]. However, those works mainly
concentrate on the bulk states of the topological semimetals.
The Kondo effect of the surface states in the Weyl and Dirac
semimetals, Fermi arcs, has not been studied. Connecting Weyl
points of opposite chirality, Fermi arcs are disjoint Fermi
surfaces and have rich spin texture. As a result of inversion
symmetry breaking, the shape and the spin texture of surface
states in Weyl semimetals is more complicated than that of
topological insulators and Dirac semimetals [34–36]. The

unique spin texture of Fermi arcs has its special impact on
the Kondo effect.

Here we focus on the Kondo effect of the Fermi arcs in a
time-reversal-invariant Weyl semimetal. Specifically, we study
the influence of the spin texture on the Kondo effect. We solve
the Anderson model with the variational method to calcul-
ate the spatial spin-spin correlation functions. We take a trial
wave function where the impurity spin is fully compensated
and find that it has lower energy than the noninteracting
ground state, i.e., the impurity tends to be screened by the
conducting electrons in the Fermi arcs. The spatial spin-spin
correlation functions are highly anisotropic and they have the
same symmetry as the Fermi arcs. Tuning chemical potential
and changing the length of the Fermi arcs, the evolution of the
correlation functions reveals how they are related to the details
of the Fermi arcs. We also compare the spin-spin correlation
functions of the Fermi arcs in the Weyl semimetal with that
of the Fermi arcs in the Dirac semimetal Na3Bi. It turns out
that the relatively simpler spin texture and the shape of the
Fermi arcs in the Dirac semimetal results in less anisotropy in
the spatial spin-spin correlation functions with less structure,
which makes it possible to distinguish the Fermi arc in a Dirac
semimetal from that in a Weyl semimetal.

This paper is organized as follows: In Sec. II, the model
Hamiltonian is presented, which describes a magnetic impurity
on the surface of a Weyl semimetal. The variational method
is introduced in Sec. III and the binding energy is calculated
there. In Sec. IV, the spatial spin-spin correlation functions
are studied based on the trial wave function. Comparison to
Dirac semimetal Fermi arcs is made in Sec. V. Finally, Sec. VI
contains the conclusion and discussion part.

II. MODEL HAMILTONIAN

To study the interaction between the Fermi arcs and the
magnetic impurity, we consider the Anderson model,

H = Hc + Hmix + Hd. (1)
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Hc describes the Fermi arcs in the Weyl semimetal, with c
†
k

creating a state of momentum (kx,ky),

Hc =
∑

(ε(k) − μ)c†kck, (2)

where μ is the chemical potential. Note that the states in the
Fermi arcs are fully spin polarized. Namely, c

†
k creates a state

with a certain spin polarization. Hmix describes the interaction
between the impurity and the surface states,

Hmix =
∑

Vkc
†
kdσ (k) + H.c. (3)

In practice, a momentum-independent value is taken as the
coupling strength Vk. We suppose the hopping conserves spin,
i.e., the state created by d

†
σ (k) has the same spin polarization as

c
†
k. We will show that the spin is polarized on the x-y plane in

the following Fermi arcs model. As a result,

d
†
σ (k) = 1√

2

(
e−i

φk
2 d

†
↑ − ei

φk
2 d

†
↓
)
, (4)

where φk is the polar angle of the in-plane spin polarization
with respect to the x axis such that tan φk = Dy (k)

Dx (k) . Here [37],

Dx(k) = λ

[
−2 sin

kxa

2
− sin

a(kx + ky)

2
− sin

a(kx−ky)

2

]
,

(5)

and

Dy(k) = λ

[
2 sin

kya

2
+ sin

a(kx + ky)

2
+ sin

a(ky − kx)

2

]
.

(6)

λ is the spin-orbit coupling strength of next-nearest neighbors,
and a is the lattice constant. The last term in the Hamiltonian
describes the impurity with an on-site Hubbard repulsion,

Hd =
∑

σ

(εd − μ)d†
σ dσ + Un↑n↓, (7)

where we take εd = −0.3t . For the dispersion and spin texture
of the Weyl semimetal Fermi arcs, we use the result from a
tight-binding model in a zinc-blende lattice [37]. The model
contains a Weyl semimetal phase which has 12 inequivalent
Weyl points in the first Brillouin zone. All 12 Weyl points
locate at ε(k) = 0. The Weyl semimetal breaks the inversion
symmetry but preserves time-reversal symmetry. On the (001)
plane, it is shown that the dispersion of the surface states
is [37]

ε(k) = 4t sin
kxa

4
sin

kya

4
, (8)

while kx,ky satisfy

D(k) > ε0 > 0, (9)

where

D(k) =
√

D2
x(k) + D2

y(k). (10)

In the original model Hamiltonian of the Weyl semimetal,
t is the nearest hopping strength, and ε0 is the on-site potential
which serves as the inversion symmetry breaking term [37].
The surface states are spin-momentum locked. The spin po-
larization of the surface state with momentum k = (kx,ky) is
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FIG. 1. (a) Surface states for | ε0
4λ

| = 0.92. The black arrows show
the spin polarization. The surface states have four branches and are
spin-momentum locked. Twofold rotation symmetry is obeyed. The
black and white circles show the Weyl points of opposite chirality.
(b) Filled surface states for μ = −0.1t . The color indicates the energy
of the surface states. The corresponding spatial spin-spin correlation
functions are shown in Fig. 2. (c) Same as (b), but μ = 0.7t . Spin-spin
correlation functions shown in Fig. 3.

(−Dx, − Dy,0). In the model, the spin of the surface states
lies in-plane. The surface states obey a twofold rotational
symmetry, see Fig. 1(a).

III. VARIATIONAL METHOD

To solve the Kondo screening problem in the Fermi arcs
above, we apply the variational approach [38,39]. The varia-
tional approach has been used as a nonperturbative way to study
the Kondo screening in topological insulators [40], Dirac/Weyl
semimetals [30], and other systems [41]. Following the stan-
dard procedure, first we take the ground state without the
impurity as

|�0〉 =
∏

ε(k)<μ

c
†
k|0〉, (11)

where the product runs over all occupied states below Fermi
energy. Then we construct a trial wave function when the
impurity is present. Here we consider the case where the
impurity state is singly occupied. The chemical potential μ lies
between the two energy levels εd and εd + U . We suppose the
impurity moment is fully compensated as we use the following
ansatz

|�〉 = (a0 +
∑

ε(k)<μ

akd
†
σ (k)ck)|�0〉 (12)

as the trial wave function. d
†
σ (k) creates an electron in the

impurity atom with the same spin polarization as the electron
annihilated by ck, see Eq. (4). The energy for this trial wave
function satisfies:

E=
∑

ε(k)<μ

[
(ε(k)−μ)a2

0+(E0−ε(k)+μ)a2
k+2Vka0ak

]
a2

0 + ∑
ε(k)<μ a2

k

,

(13)

045148-2



KONDO EFFECT WITH WEYL SEMIMETAL FERMI ARCS PHYSICAL REVIEW B 97, 045148 (2018)

where E0 denotes the energy for the ground state in Eq. (11)
with the impurity state singly occupied, i.e.,

E0 = εd − μ +
∑

ε(k)<μ

(ε(k) − μ). (14)

The binding energy is defined as � = E0 − E. When the
binding energy is positive, our trial wave function is preferred
against |�0〉. Variational principle dictates ∂E

∂a0
= 0 and ∂E

∂ak
=

0. These yield∑
ε(k)<μ

akVk = (E −
∑

ε(k)<μ

(ε(k) − μ))a0, (15)

and

(E0 − E − ε(k) + μ)ak = −Vka0. (16)

The two equations above combine to give an equation for
binding energy �:

∑
ε(k)<μ

V 2
k

ε(k) − μ − �
= εd − μ − �. (17)

Replacing the summation with an integral, we get a self-
consistent integral equation. Numerical calculation shows that
the binding energy has a positive solution for arbitrary finite
coupling strength Vk, which justifies the trial wave function.
Note that for the bulk states there is a critical coupling
strength when the Fermi energy is at the Dirac/Weyl point
[28]. However, for the surface states there is no critical Vk.
The Kondo temperature TK can be estimated through kBTK ∼
De−1/Jρ(EF ), where kB is the Boltzmann constant, D is the
bandwidth, J is the antiferromagnetic coupling strength, and
ρ(EF ) is the density of states at the Fermi level [42]. For
an estimation with TaAs, we can take D = 0.5 eV, ρ(EF ) =
0.9 eV−1, and a typical coupling strength J = 0.2 eV. The
resultant Kondo temperature is about 22 K, comparable with
the graphene case.

IV. SCREENING CLOUD

The trial wave function in the last section contains a lot of
information about the behavior of a magnetic impurity on the
surface of a Weyl semimetal. Since we are most interested in the
effect originating from the nontrivial spin texture, we will focus
on the screening cloud here and calculate the spatial spin-spin
correlation functions between the conducting electrons in the
Fermi arcs and the impurity using the trial wave function. At the
presence of translational invariance, we can take the impurity
site as the origin and define the spin-spin correlation function
as follows:

Juv(r) = 〈
Su

c (r)Sv
d (0)

〉
. (18)

Here c stands for conducting electrons in the Fermi arcs, d for
the impurity electrons, u,v = x,y,z. In this case,

Juv(r) = −1

4

∑
ε(k1)<μ

ε(k2)<μ

ak1ak2e
i(k1−k2)·rγ †

k1
σuγk2γ

†
k2

σvγk1 , (19)

where γk = 1√
2
( e−i

φk
2 , − ei

φk
2 )

T
. Other off-diagonal corre-

lation functions obey Jyx(r) = Jxy(r), Jzx(r) = −Jxz(r), and
Jzy(r) = −Jyz(r). Note that a minus sign appears when we
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FIG. 2. Spin-spin correlation functions (a) Jxx , (b) Jyy , (c) Jzz,
(d) Jxy , (e) Jxz, and (f) Jyz with the chemical potential set near
the Weyl points. | ε0

4λ
| = 0.92,μ = −0.1t,� = 1.36t,Vk = 2.5t, and

εd = −0.3t . X and Y are spatial coordinates in units of lattice
constant a. Other off-diagonal terms are Jyx(r) = Jxy(r), Jzx(r) =
−Jxz(r), and Jzy(r) = −Jyz(r). The spin-spin correlation function
shows anisotropy. All correlation spots are distributed from left top
to right bottom, similar to the distribution of the filled surface states
ε(k) < μ [See Fig. 1(b)].

interchange the spin indices u and v for off-diagonal terms
containing z spin. This can be seen from Eq. (19) as a direct
consequence of the in-plane polarization. This feature provides
a way to test if the spin of the Fermi arcs lies in a plane.

A set of typical spatial spin-spin correlation functions is
shown in Fig. 2, where the chemical potential is set slightly
below the Weyl points. The correlation functions are highly
anisotropic, since the six correlation functions shown are all
different and none of the six graphs is of circular shape. This
reflects the anisotropy in the shape and the spin texture of the
Fermi arcs.

The diagonal spatial spin-spin correlation functions consist
of a series of antiferromagnetic peaks, in accordance with the
spin screening picture. However, there are also some small
regions of ferromagnetic correlation. For the off-diagonal part,
both parallel and antiparallel correlation are present, as the
result of the complex spin texture for Fermi arcs.

The spin texture in our Fermi arcs model has C2 symme-
try. The symmetry is also reflected in the spatial spin-spin
correlation functions. Jxx , Jyy , Jzz, and Jxy are unchanged
after the rotation, while Jxz and Jyz get a minus sign due to
different representation. The reason is that our system respects
the time-reversal symmetry and the z-spin axis has to be flipped
after a rotation by angle π .
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FIG. 3. Spin-spin correlation functions (a) Jxx , (b) Jyy , (c) Jzz,
(d) Jxy , (e) Jxz, and (f) Jyz, with a higher chemical potential than Fig. 2
and more states filled [See Fig. 1(c)]. | ε0

4λ
| = 0.92,μ = 0.7t,� =

1.37t,Vk = 2.5t, and εd = −0.3t . X and Y are spatial coordinates in
units of lattice constant a. Compared to the μ = −0.1t , the chemical
potential is raised and most E > 0 surface states are filled. As a result,
the correlation spots are no longer restricted along the line from left
top to right bottom.

Raising the chemical potential changes the correlation
functions in two ways. Compare Fig. 2 with Fig. 3 where
the chemical potential is higher. One change is about the
correlation length. As the chemical potential rises, more states
in the Fermi arcs take part in the Kondo screening and the
screening cloud turns less extended in space. Another change
reflects the influence of the shape of the Fermi arcs. From
Eq. (16) we know that ak = − Vk

�−(ε(k)−μ)a0, which indicates
that the major contribution to the correlation function is made
by the states near the Fermi level. In Fig. 2, the correlation
pattern in all the spin-spin correlation functions is distributed
mainly from left top to the right bottom, as the Fermi arcs below
the chemical potential sit along the same direction in k space,
see Fig. 1(b). In Fig. 3, the chemical potential is raised and
most of the E > 0 sector is filled in addition to the filled E < 0
sector [see Fig. 1(c)]. As a result, the surface states are now
not restricted to the second quadrant and the fourth quadrant
in k space. The diagonal spin-spin correlation functions show
four smaller spots at the four corners of the central spot. The
off-diagonal part is also freed from that restriction. Tuning
| ε0

4λ
|, the length of the surface states is varied. When we set

| ε0
4λ

| = 0.6, smaller than the previous value 0.92, the Fermi
arcs grow longer and two pieces of surface states connect
below a certain energy level, see Fig. 4(a). For comparison, we
choose a similar chemical potential and binding energy where

(b)(a)
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FIG. 4. (a) Surface states for | ε0
4λ

| = 0.6. The black arrows show
the spin polarization. The black and white circles show the Weyl
points of opposite chirality. Smaller | ε0

4λ
| brings the model deeper into

the Weyl semimetal phase, and the Fermi arcs grow longer. The four
pieces of surface states merge into two above (below) a certain energy
for the E > 0 (E < 0) sector. (b) The spin-spin correlation function
Jxx along X = −Y for different Fermi arcs length. We compare
the arcs in Fig. 2 (with the same parameter there) with the arcs in
(a) (parameters: | ε0

4λ
| = 0.6,μ = −0.1t,� = 1.1t,Vk = 2.5t). As the

Fermi arcs grow longer, the Kondo screening cloud tends to be less
spatially extended. For better comparison, we have set the highest
value to 1 in this figure.

the E < 0 part is filled and makes the major contribution.
The pattern of the correlation functions changes little, and the
major difference comes in the correlation length, see Fig. 4(b).
Similar to the situation above, the longer Fermi arcs have more
states participating in the Kondo screening process, which
makes the correlation length shorter.

V. COMPARISON TO DIRAC SEMIMETALS

Comparing to Dirac semimetals which also host topological
nontrivial surface Fermi arcs [43], the spin texture of Weyl
semimetal Fermi arcs is more complex and results in more
anisotropic spin-spin correlation functions. As an example, we
make use of the effective model for the Fermi arcs on the (100)
surface in Dirac semimetal Na3Bi [44,45]. Following the same
procedure, the Kondo screening cloud there is calculated. In
our approximation, the small parameter α in the k · p model is
omitted, so that the one sheet of Fermi arcs is spin polarized in
the +z direction while another is polarized in −z. Both of the
two Dirac points sit on the kz axis, see Fig. 5(d). The Fermi arcs
there consist of two branches of parabolas inside an ellipse.

The spin-spin correlation functions are shown in Figs. 5(a)–
5(c), with a much simpler pattern. Jzz has an oval-shaped
antiferromagnetic correlation core, while Jxx appears antifer-
romagnetic near the impurity site with small ferromagnetic
oscillation some distance away. Off-diagonal correlation func-
tions are also simplified. Note that all off-diagonal correlation
functions containing z are zero, i.e., Jxz = Jzx = Jyz = Jzy =
0, since we have taken a rough approximation in which the
Fermi arcs are fully polarized in the z direction so that the z-spin
component has no correlation with other spin components.
In addition, Jyx = −Jxy . Higher symmetry is displayed, as
Jxx = Jyy . The reason is that the spin is fully polarized in the
z direction and it has no preference in the xy plane.

The comparison shows that the pattern and the symmetry of
the correlation functions reflects different spin texture of Fermi
arcs. As Fermi arcs in Dirac semimetals usually have simpler
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FIG. 5. Spatial spin-spin correlation functions (a) Jzz, (b) Jxx ,
and (c) Jxy for (d) Dirac semimetal Fermi arcs in Na3Bi, where
the chemical potential is set at the Dirac points. Parameters are
μ = 0 eV, � = 0.3 eV, εd = −0.5 eV, and Vk = 0.8 eV. We take
the (100) plane and both Dirac points (shown as circles) sit on the kz

axis. The Fermi arcs consist of two sets of parabolas inside the el-
lipse. One set of parabola is spin polarized along kz direction, the
other along −kz (shown by the blue arrows). The Fermi arcs of the
Dirac semimetal Na3Bi have a higher symmetry so that Jxx = Jyy

and Jxz = Jzx = Jyz = Jzy = 0. The shape and the spin texture of the
Fermi arcs in Na3Bi is simpler than that in the Weyl semimetal model.
So are the spin-spin correlation functions, which have less structure.
In (a), (b), and (c), Y and Z are spatial coordinates and are in units of

Å. In (d), kz and ky are in units of Å
−1

.

spin texture, this may help to distinguish Fermi arcs in Dirac
semimetals from that in Weyl semimetals.

VI. CONCLUSION AND DISCUSSION

With the variational method, we have studied the Kondo
effect of the Fermi arcs in a Weyl semimetal. The influence
of the nontrivial spin texture is manifested in the spatial
spin-spin correlation functions. We find that the correlation
functions are highly anisotropic, in both real and spin space.
The diagonal correlation functions feature regions of antiferro-
magnetic correlation near the impurity site while small regions
of ferromagnetic correlation also exist. The complex pattern
of off-diagonal correlation functions reflects the nontrivial
spin texture. Jxx , Jyy , Jzz, and Jxy all obey the C2 rotational
symmetry as the spin texture does, while the Jxz and Jyz get
a minus sign when rotated by π angle to respect time-reversal
symmetry. When chemical potential is raised, the spin-spin
correlation decays faster as more states in the Fermi arcs come
to screen the impurity out. At the same time, the pattern of the
correlation function changes according to the distribution of
the filled Fermi arcs states. The screening cloud of the Weyl
semimetal Fermi arcs and that of the Dirac semimetal Na3Bi
is distinguishable, since the latter has higher symmetry and
simpler spin texture.

We have made some approximation throughout the cal-
culation. In our calculation, the contribution from the bulk
states in the Weyl semimetals is omitted. On one hand, we

are considering the situation where the magnetic impurity is
on the surface and it is expected that the interaction between the
impurity and the surface states is much stronger. On the other
hand, for the bulk states μ = 0 is a quantum critical point and
a critical coupling strength exists below which the impurity
remains unscreened. When the chemical potential is set at the
Dirac/Weyl point, the Kondo screening comes only from the
surface part.
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APPENDIX: ABOUT THE MODEL HAMILTONIAN

The original tight-binding Hamiltonian on a zinc-blende
lattice reads as follows [37]:

H =
∑
〈i,j〉

t(c†i cj + H.c.) +
∑

i

Eic
†
i ci

+ iλ
∑
〈〈i,j〉〉

(c†i ei j · scj − H.c.), (A1)

where 〈i,j 〉 and 〈〈i,j 〉〉 denote the nearest and next-nearest
neighbors, respectively. Here, Ei = ±ε with plus or minus
signs for lattice sites on different sublattices, ei j = ei ×e j

|ei ×e j | ,
where ei and e j are two bond vectors connecting the next-
nearest neighbors, and s = (sx,sy,sz) where sx,sy , and sz are
Pauli matrices acting on the spin space [37].

To explicitly keep track of the sublattices, we denote the
creation operators for the electron states on different sublattices
as a

†
k,σ and b

†
k,σ , where k is a lattice momentum and σ is a spin

index. Also, we use Pauli matricesσx,y,z acting on the sublattice
space. Therefore, the Hamiltonian above can be written as [37]

H = �
†
k{d1(k)σx + d2(k)σy + εσz

+ σz[Dx(k)sx + Dy(k)sy + Dz(k)sz]}�k, (A2)

where �
†
k = (a†

k,↑,a
†
k,↓,b

†
k,↑,b

†
k,↓),

d1(k) = t(1 + cos k · a1 + cos k · a2 + cos k · a3),

d2(k) = t(sin k · a1 + sin k · a2 + sin k · a3),

Dx(k) = λ[sin k · a2 − sin k · a3 − sin k · (a2 − a1)

+ sin k · (a3 − a1)], (A3)

Dy(k) and Dz(k) can be obtained by permuting lattice vectors
a1,a2,a3 cyclically in the expression for Dx(k), and a1 =
a
2 (0,1,1),a2 = a

2 (1,0,1),a3 = a
2 (1,1,0) are primitive vectors

of the fcc lattice [37].
Without loss of generality, we assume the hybridization

between the magnetic impurity and the electrons on the
different sublattice as Vk,a and Vk,b. Hence, the mixing term
in the Anderson model reads:

Hmix =
∑
k,σ

(Vk,aa
†
k,σ + Vk,bb

†
k,σ )dσ + H.c. (A4)
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To get the Hamiltonian for the Fermi arcs, we need to
expand the Hamiltonian above to the first order of kz

around kz = 2π
a

. We denote q = (kx,ky,
2π
a

) and q̃z = kz − 2π
a

and introduce a unitary transformation U = e−iθσz/2 where

sin θk = d ′
2

d ′ , d ′
i(k) = ∂di (k)

∂kz
|kz= 2π

a
, d ′(k) =

√
d ′2

1 (k) + d ′2
2 (k).

For a positive ε, the Weyl semimetal phase is possible
only for the D · s| − D〉 = −| − D〉. We denote D(q) =√

D2
x(q) + D2

y(q) + D2
z (q) [37],

H = �†
qU{q̃zd

′(q)σx + d(q)σy + [ε − D(q)]σz}U †�q .

(A5)

Taking the z = 0 plane as the boundary, and the z < 0 as the
semimetal region, we can find the surface states satisfying [37]

�(kx,ky,z) = Ae
z

ξ− | + y〉| − D〉, (A6)

where σy | + y〉 = | + y〉, and ξ− = − d ′(q)
−D(q)+ε

. Based on the

results, it is easy to see that the creation operator c
†
k of a surface

state with a momentum k satisfies

c
†
k = 1

2

(
ie−i

θk+φk
2 a

†
k,↑ − ie−i

θk−φk
2 a

†
k,↓

− ei
θk−φk

2 b
†
k,↑ + ei

θk+φk
2 b

†
k,↓

)
, (A7)

where tan φk = Dy (k)
Dx (k) . The mixing term related to the surface

states is as follows:

Hmix = 1√
2

∑
k

Vkc
†
k

(
ei

φk
2 d↑ − e−i

φk
2 d↓

) + H.c. (A8)

Generally a surface state here couples to both the spin-up state
and the spin-down state in the magnetic impurity. As for the
sublattices, we assume that the impurity interacts with both the
sublattices and Vk,b = −Vk,a . Thus we have

Vk = − 1√
2

(
iei

θk
2 − e−i

θk
2
)
Vk,a. (A9)

Since Vk does not change much as k varies, we can take it to
be k independent. With a redefined operator

dσ (k) = 1√
2

(
ei

φk
2 d↑ − e−i

φk
2 d↓

)
, (A10)

where dσ (k) annihilates the state in the magnetic impurity
coupling to the surface states with lattice momentum k. Then
we have the form in the main text,

Hmix =
∑

k

Vkc
†
kdσ (k) + H.c. (A11)
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