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Finite-temperature dynamics of the Mott insulating Hubbard chain
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We study the dynamical response of the half-filled one-dimensional Hubbard model for a range of interaction
strengths U and temperatures T by a combination of numerical and analytical techniques. Using time-dependent
density matrix renormalization group computations we find that the single-particle spectral function undergoes
a crossover to a spin-incoherent Luttinger liquid regime at temperatures T ∼ J = 4t2/U for sufficiently large
U > 4t . At smaller values of U and elevated temperatures the spectral function is found to exhibit two thermally
broadened bands of excitations, reminiscent of what is found in the Hubbard-I approximation. The dynamical
density-density response function is shown to exhibit a finite-temperature resonance at low frequencies inside the
Mott gap, with a physical origin similar to the Villain mode in gapped quantum spin chains. We complement our
numerical computations by developing an analytic strong-coupling approach to the low-temperature dynamics in
the spin-incoherent regime.
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I. INTRODUCTION

The physics of one-dimensional metals can generally be
described in terms of Luttinger liquid theory. In a Luttinger
liquid (LL) [1–3], the natural excitations are collective density
fluctuations, that carry either spin (“spinons”), or charge
(“holons”). This leads to the spin-charge separation picture,
in which a fermion injected into the system breaks down into
excitations carrying different quantum numbers, each with a
characteristic energy scale and velocity (one for the charge,
one for the spin). A key paradigm for this kind of behavior is
provided by the one-dimensional Hubbard model:

H = −t

L∑
i=1,σ

(c†iσ ci+1σ + H.c.)

+U

L∑
i=1

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
. (1)

Here, c
†
iσ creates an electron of spin σ on the ith site along a

chain of length L. The Coulomb repulsion is parametrized by
U , and we take the interatomic distance as unity. We express
all energies in units of the hopping parameter t .

A remarkable aspect of this model is that it is integrable: it
contains an extensive number of local integrals of motion that
allow one to exactly solve it with the Bethe ansatz [4]. Whereas
the low-energy physics of the one-dimensional (1d) Hubbard
model below half filling is described in terms of LL theory
[5], at half filling (density of particles n = 1, or number of
particles N = L) the model has a Mott insulating ground state,
with a charge gap that grows exponentially with U for weak
interactions. The spin excitations, however, remain gapless
and the system exhibits algebraically decaying antiferromag-
netic spin-spin correlations. Mott insulators defy conventional

paradigms, since the rigid band picture underlying the physics
of semiconductors does not apply [6,7]: in strongly interacting
systems, the “bands” change with doping, giving rise to a
complex phenomenology that includes hole pockets, Fermi
arcs, and kinks [8,9].

The zero-temperature dynamical properties of the Hubbard
model have been studied in great detail by a variety of analytic
and numerical methods both in the metallic [5,10–29] and
the Mott insulating [30–34] phases. The finite-temperature
dynamics is less well understood. The single-particle spectral
function below half filling has been previously studied by
quantum Monte Carlo [35] and density matrix renormaliza-
tion group (DMRG) [36] methods. The half-filled case was
considered in Ref. [37] in the small to intermediate temperature
regime, T � t , using the quantum Monte Carlo (QMC) method
with maximum-entropy analytic continuation procedures. The
low-temperature regime for small Mott gaps T � � � t was
analyzed by field theory methods in Ref. [38]. As a result of
spin-charge separation one-dimensional metals and Mott insu-
lators can display very unusual behavior at finite temperatures.
An example is the so-called “spin-incoherent” Luttinger liquid
regime [39–45], which occurs in the metallic case if the spinon
bandwidth is much smaller than the holon bandwidth, which
corresponds to U � t in the case of the Hubbard chain. In this
regime a small temperature makes the spin degrees of freedom
completely incoherent, while the charge degrees of freedom
remain close to the ground state. In this situation, excitations
effectively behave as “spinless fermions” and this has dramatic
effects on the spectral functions [46,47].

The finite-temperature dynamics of quasi-one-dimensional
Mott insulators has been investigated in a number of cases.
Spin-charge separation was observed in photoemission exper-
iments on the chain cuprates SrCuO2 [48–50] and Sr2CuO3

[51]. In these materials the characteristic energy scales for
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spin and charge degrees of freedom are very large, so that the
achievable temperatures are always small compared to the Mott
gap. The experimental findings could not be accounted for by a
simple t-J model at zero temperature. ARPES measurements
on the one-dimensional Mott insulator Na0.96V2O5 show that
the spectral density of the lower Hubbard band is strongly
dependent on the temperature [52]. Simple broadening and
charging effects could not explain the dramatic spectral weight
redistribution as a function of temperature, which was at-
tributed to strong correlation effects in the material. Exact
diagonalization studies of a t-J model presented discrepancies
with the experimental results. In particular, while theory and
experiment agreed well for small momentum transfers and at
low energy, a long tail of excitations at high energies for inter-
mediate to large momentum transfers (up to the Brillouin zone
boundary) was observed and not accounted for by the theory.
Some of the experimentally observed effects are expected to be
due to the fact that the appropriate effective Hamiltonians for
the various materials will contain longer-range hoppings and
interactions, while others will be due to finite temperatures. To
get a qualitative understanding of the latter it is clearly useful
to investigate the dynamics of the one-dimensional Hubbard
model in a range of temperatures.

Experimentally probing the high-temperature dynamics at
a fixed density has remained a challenge, since the Mott gap
is on the order of or higher than the melting point of some
materials. However, several ongoing efforts in the cold-atom
community are focused on studying the excitations of spinful
fermionic systems [53], particularly in one dimension [54].

The paper is structured as follows: In Sec. II we briefly
describe the computational methods; in Sec. III we present the
results of our finite-temperature simulations. Section IV de-
scribes an analytical approach for the spin-incoherent regime.
We close with a summary and discussion.

II. NUMERICAL APPROACH

In this work we would like to explore the entire temperature
regime at half filling. For this purpose we resort to finite-
temperature time-dependent DMRG calculations (tDMRG)
[55–58]. Even though the method has been extensively dis-
cussed in the literature [59], particularly in a recent review
[58], we proceed to describe it in a condensed form.

The calculation relies on ideas from thermofield dynamics
[60–66]. This construction allows one to represent a mixed
state of a quantum system as a pure state in an enlarged
Hilbert space. Consider the energy eigenstates of the system
in question {n}, described by a Hamiltonian H , and introduce
an auxiliary set of fictitious states {ñ} in one-to-one correspon-
dence with {n}. We can then define the unnormalized pure
quantum state,

|ψ(β)〉 = e−βH/2|ψ(0)〉 =
∑

n

e−βEn/2|nñ〉, (2)

where ñ is a copy of n in the auxiliary Hilbert space, β = 1/T is
the inverse temperature, and |ψ(0)〉 = ∑

n |nñ〉 is our thermal
vacuum. Then the exact thermodynamic average of an operator
Ô (acting only on the real states) is given by

〈Ô〉 = Z(β)−1〈ψ(β)|Ô|ψ(β)〉. (3)

Here, the partition function is the norm of the thermal state
Z(β) = 〈ψ(β)|ψ(β)〉. Hence, a thermodynamic average re-
duces to a conventional expectation value in a pure quantum
state.

At β = 0, the state |ψ(0)〉 is the maximally entangled state
between the real system and the fictitious system. We can
see that this is independent of the representation, and we can
choose any arbitrary basis.

The most technical aspect concerns the choice of initial state
at β = 0. One can pick to work in either the grand canonical
or the canonical ensemble [36,67,68], and this will determine
the method to initialize the simulations. In order to work in the
canonical ensemble we need to start from a thermal vacuum
where the physical states |n〉 and their copies |ñ〉 have each a
fixed number of particles. This requires one to construct a state
that is a sum of all possible states of charge and spin, with the
constraint that the total number of particles on the chain has
to be equal to N , and that the charge state of the ancillas is an
exact copy of the charge state of the physical chain. In order
to generate this state, we use the conventional ground-state
DMRG algorithm with a very peculiar Hamiltonian (we can
call it the “entangler Hamiltonian”):

Hent = −
∑
i 	=j σ

(�†
iσ�jσ + H.c.). (4)

The operator �†(�) is given by

�
†
iσ = c

†
iσ c̃

†
iσ , (5)

where the “tilde” operators act on the ancillas on site i.
The ground state of this Hamiltonian is precisely the equal
superposition of all possible configurations of N “physical
site-ancilla” pairs on L sites.

The Green’s function at time t and inverse temperature β is
obtained as

G(x − x0,t,β) = 〈ψ(β)|eiĤ t Ô†(x)e−iĤ t Ô(x0)|ψ(β)〉, (6)

where the generic operators of interest Ô(x), Ô†(x) act on
the system at site x. The time evolution is dictated by the
Hamiltonian Ĥ = H − H̃ ; H governs the physics of the actual
physical chain, not including the ancillas, while H̃ is an exact
copy of H acting on the ancillas [69].

The calculation proceeds as follows: First, we evolve the
maximally entangled state in imaginary time to the desired
value of β (measured in units of the hopping t). Then, an
operator Ô(x0 = L/2) is applied in the center of the chain. The
resulting state is evolved in real time, and at every step we mea-
sure the overlap with the state Ô(x)e−i(H−H̃ )t |ψ(β)〉. We obtain
the desired Green’s function in frequency and momentum by
Fourier-transforming the results in real space and time. In this
work we use a third-order Suzuki-Trotter decomposition with
a typical time step τβ = 0.05 and τ = 0.05 for the real-time
and imaginary-time parts of the simulation, and keeping 800
DMRG states, enough to maintain the truncation error below
10−5. The chain length is fixed to L = 40 sites, and the
real-time window has a range tmax = 15.
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FIG. 1. Photoemission spectrum for the 1d Hubbard model with
U/t = 8 calculated with tDMRG at four different temperatures.

III. RESULTS

A. Single-particle spectral function

The electronic spectrum of the Hubbard model can be
qualitatively understood in the U → ∞ limit [70,71], where
spin-charge separation is exact. In this regime, all eigenstates
factorize into a product of a fermionic wave function and a spin
wave function. This leads to a simple and elegant description
[72,73]: assuming that the dispersion of holons is given by
εh(qh) = −2t cos qh, and the one for spinons by εs(qs) =
J cos qh, with J = 4t2/U , one can construct all possible
energies with momentum k as ε(k) = εh(qh) + εs(qs), with k =
qh + qs . Clearly, this construction will yield a continuum of
energies with momentum k: the Fermi liquid description breaks
down, and there is no fermionic quasiparticle in the Landau
sense. The elementary excitations of the Hubbard model can
then be summarized as spinons, and holons below the Fermi
energy. Holons are defined between qh = ±2kF , and removing
a particle from the system corresponds to creating deconfined
spinon-holon pairs. The excitations for adding a particle lead to
the creation of spinon-antiholon pairs above the Fermi energy.
Antiholons are defined in the intervals [−π,−2kF ] and [2kF ,π ]
and usually refer to empty states as shown in Fig. 3(a). Notice
that this picture also applies to the upper Hubbard band, but in
this case we name the particle excitations “doublons.”

In Fig. 1 we show the photoemission part of the spectral
function for U/t = 8 and four different temperatures, obtained
with a choice of operators Ô = c (the annihilation operator);

FIG. 2. Integrated photoemission spectrum (occupied fraction of
the total density of states) for the 1d Hubbard model at half filling
with U/t = 4 obtained with tDMRG at different temperatures.

this corresponds to the occupied electronic states. At low
temperatures (upper panels) we can clearly resolve both holon
and spinon bands. Even at small temperatures relative to the
gap, we see that there is a finite occupation of the upper
Hubbard band. Most remarkably, for increasing temperatures,
we find spectral weight leaking into the gap. As doublons are
created, holes are left behind in the lower Hubbard band and
thermally excited quasiparticles can now occupy these states.
This gives rise to weight in the gap due to anomalous spectral
transfer [6]. Near the Fermi level, high-energy electrons can
now occupy states that are attributed to antiholons, which
at zero temperature are always empty states. The antiholon-
spinon continuum leaks into the gap near the Mott transition
[74], as we see in Fig. 3. The thermal excitations can be traced
back to the antiholon-spinon continuum that appears in the gap,
and their particle-hole conjugates in the upper Hubbard band.
This leads to a melting of the gap which is even more dramatic
at smaller values of U/t , as seen in Fig. 2 where we display
the photoemission spectrum integrated over momentum: for
U/t = 4 the gap is gone altogether at small temperatures.
In addition, while the Mott gap is melting, spectral weight
is redistributed to large and negative energies, in qualitative
agreement with the experimental results in Ref. [52]. The origin
of the in-gap states can be traced back to the zero-temperature
spectra of the doped Mott insulator. For illustration, in Fig. 3
we show the zero-temperature spectrum of the chain with 2
holes and 2 electrons. The states below (above) the Fermi level
are occupied (empty) and the spinon-antiholon branches are
responsible for the leakage of spectral weight into the gap. We
clearly see that the mere addition/subtraction of a particle can
completely melt the Mott gap in the finite system considered.
In the thermodynamic limit, a finite density of holes would
be required to make this effect observable. However, a finite
temperature induces similar effects. An important issue to
address is the behavior of the spin excitations with temper-
ature [35]. As we see in our results for U/t = 8, the “two-
branch” spectrum characteristic of a Luttinger liquid survives
to temperatures on the order of T ∼ J . That is when the
crossover to the spin-incoherent regime takes place: at higher
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FIG. 3. Zero-temperature spectral function of the 1d Hubbard
model with U/t = 4 calculated with tDMRG at three different densi-
ties: (a) half filling, (b) 2-hole doping, and (c) 2 additional electrons.
The dashed line indicates the position of the chemical potential. The
mere addition/subtraction of a single particle immediately destroys
the Mott gap.

temperatures the spinons are effectively thermalized, and the
spectrum resembles that of spinless fermions with a single
branch ε(k) = −2t cos(k). This is remarkable considering that
the excitations are completely determined by the Hamiltonian,
and do not change with temperature: what changes is the
distribution of spectral weight. We need to recall that the
electronic Green’s function is a convolution of the charge
and spin Green’s functions. At large values of U the spinon
band is less dispersive than the charge excitations and the
spectral weights will respond differently for each kind of
excitation. The charge will behave as though in the ground
state, but the redistribution of spectral weight in the spin
Green’s function will lead to a bandlike feature that shifts in
momentum. We refer the reader to Refs. [46,47] for a detailed
description of the phenomenon. Notice that our results are
in qualitative agreement with those obtained in Ref. [37],
where the authors used QMC with maximum-entropy analytic
continuation procedures in the low-temperature regime.

For smaller values of U/t we do not find spin-incoherent
behavior. In this case the spin and charge dispersions have
broad bandwidths, and all degrees of freedom will get similarly
excited. At temperatures larger than the hopping T > t , we find
completely incoherent upper and lower Hubbard bands. This
regime can be qualitatively described in terms of a Hubbard-I
mean-field approximation [75,76], with interacting doublon
and holon excitations that ignore the magnetic correlations. In
this case the two bands are given by

E±(k) = ε(k) ±
√

ε(k)2 +
(

Ueff

2

)2

, (7)

FIG. 4. (a)–(c) Photoemission spectrum for the 1d Hubbard
model with U/t = 4,6,8 and T = 1 calculated with tDMRG. In panel
(d) we show results for U = 4 and T = 5. We have included the
dispersion obtained from the Hubbard-I approximation (see text), with
a renormalized Ueff .

where ε(k) = −2teff cos(k) is once again the noninteracting
dispersion but with a renormalized hopping. In the original
formulation, the excitations are expected to be twice as heavy
(teff = t/2) because, due to the spin-incoherent background, a
hole or doublon has half the probability to hop to a neighboring
site. This approach works very well in 2d at high temperatures,
but as we see in Fig. 4(d), in one dimension the bandwidth
remains unaffected, with teff = t and an effective Ueff � U .
This is attributed once again to spin-charge separation: in one
dimension the holon and doublon excitations can be assumed
to be spinless quasiparticles with hopping t , regardless of the
spin background.

B. Villain-like mode

An interesting feature in the dynamical response of gapped
many-particle systems is finite-temperature resonances at low
frequencies. The paradigm for this kind of behavior is the
so-called Villain mode [77] in the spin-1/2 Heisenberg chain.
The mechanism underlying this feature is straightforward: at
temperatures of the order of the gap, a thermal population of
spin excitations will result in a dynamical spin response at low
energies ω ∼ 0 due to transitions between thermally occupied
states. The weight of these contributions to the dynamical
spin structure factor increases with temperature at low T < �,
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FIG. 5. Charge dynamical structure factor for U = 8, T = 1. The
finite spectral weight at low frequencies is a result of intraband
transitions. Notice that color density is in a logarithmic scale.

where � is the T = 0 gap. Interestingly, the spectral weight
is strongly concentrated around some “dispersion” E(Q)
[77–79].

The charge excitations in the U > 0 Hubbard chain are
in one-to-one correspondence with the spin excitations of its
U < 0 counterpart via a particle-hole transformation, such that
the Mott charge gap translates into a spin gap. Therefore, one
may expect a Villain-like mode to emerge in the dynamical
density-density correlation function in the repulsive case.
Figure 5 illustrates this for U = 8 and T = 1, where we plot
results for the operator Ô(x) = n(x) − 1 (n = n↑ + n↓ is the
density operator). The offset allows us to resolve the density
fluctuations and eliminates large contributions at k = 0 [67].
The low-energy features can be understood in the frame-
work of the analytical strong-coupling approach developed
in Sec. IV.

IV. ANALYTIC APPROACH TO THE SPIN-INCOHERENT
REGIME AT LARGE U

In this section we develop an analytic approach to the
dynamics in the spin-incoherent regime in the U → ∞ limit
of the Hubbard model. Our starting point is the Hamiltonian
for the repulsive half-filled Hubbard chain with open boundary
conditions, Eq. (1). The rationale for choosing open boundary
conditions is that this will make the following analysis simpler.

It is known from the exact solution that the energy eigenval-
ues of the open half-filled Hubbard model are equal to those
of a tight-binding model of spinless fermions and that the
degeneracies in the spectrum are due to the spin degrees of
freedom [4]. Following Ref. [80] we now construct a unitary
transformation to spinless fermion and spin degrees of free-
dom, that simplifies in the U → ∞ limit and reproduces these
features. We first express the fermion creation and annihilation
operators in terms of new spinless fermion operators aj and

Pauli matrices σα
j as

c
†
j,↑ = [a†

j − (−1)j aj ]σ+
j ,

c
†
j,↓ = a

†
j

1 − σ z
j

2
+ (−1)j aj

1 + σ z
j

2
. (8)

The correspondence between the original spinful fermions and
the spin and spinless fermion degrees of freedom is [80]

|0〉j = |−〉j ⊗ |◦〉j , |↑〉j = |+〉j ⊗ |•〉j ,
|↓〉j = |−〉j ⊗ |•〉j , |↑↓〉j = |+〉j ⊗ |◦〉j , (9)

where σ z
j |±〉j = ±|±〉j and aj |◦〉j = 0, |•〉j = a

†
j |◦〉j . In

terms of the operators (8) the Hamiltonian reads H =H∞+H1,
where

H∞ = −t

L−1∑
j=1

Pj [a†
j aj+1 + H.c.] + U

2

L∑
j=1

[
1

2
− a

†
j aj

]
,

H1 = −t

L−1∑
j=1

(−1)j [a†
j a

†
j+1 + H.c.]

σ j · σ j+1 − 1

2
. (10)

Here we have defined

Pj = 1 + �σj · �σj+1

2
. (11)

The pairing term H1 changes the number of doubly occupied
sites, which incurs a very large energy cost for U � t . As we
are interested in the infinite-U limit we carry out a Schrieffer-
Wolf transformation to remove the pairing term in (10):

eiSHe−iS = H∞ + O

(
t2

U

)
. (12)

Here the generator S is taken in the form of a t/U expansion
[81]

S =
∑
n=1

(
t

U

)n

S(n). (13)

In order to obtain (12) we choose the leading term to be

S(1) = −i

L−1∑
j=1

(−1)j [a†
j a

†
j+1 − H.c.]

σ j · σ j+1 − 1

2
. (14)

The main utility of the representation (12) is that the spin
degrees of freedom can now be removed from the Hamiltonian
by a unitary transformation [80]

U =
L−1∏
�=1

[(1 − n�+1) + n�+1P�P�−1 . . . P1]. (15)

This step makes use of the open boundary conditions and is
more involved in the periodic case. One has

H̃∞ = U†H∞U

= −t

L−1∑
j=1

[a†
j aj+1 + H.c.] − U

2

[
N̂ − L

2

]
, (16)
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where N̂ = ∑L
j=1 a

†
j aj . The Hamiltonian (16) is straightfor-

wardly diagonalized by going to Fourier space

a(kn) =
√

2

L + 1

L∑
j=1

sin(knj ) aj , (17)

where

kn = πn

L + 1
, n = 1, . . . ,L. (18)

In terms of the Fourier modes the Hamiltonian is diagonal:

H̃∞ =
∑
kn

ε(kn)a†(kn)a(kn) + UL

4
, (19)

where the single-particle dispersion is

ε(p) = −U

2
− 2t cos(p). (20)

This shows, in accordance with the exact solution [4], that
in the infinite-U limit the dynamics of the half-filled open
Hubbard model is determined by the noninteracting spinless
fermion Hamiltonian (16). For future reference we note that the
ground state of (16) corresponds to a completely filled band:

|GS〉 =
L∏

j=1

a
†
j |0〉. (21)

We now want to use the strong-coupling formalism developed
above to determine dynamical correlation functions at finite
temperatures. For simplicity we begin by considering the
density-density correlator.

A. Density correlations at finite temperature

We can use the above setup for determining density cor-
relations in a particular parameter regime of the half-filled
Hubbard model as follows. For strong interactions the Mott
gap is proportional to the Hubbard interaction U , while the
characteristic energy scale in the spin sector of the theory is
t2/U . The “charge-sector only” theory then applies (as the
leading approximation in t/U ) in the window

t2

U
� T ,ω,t. (22)

At T = 0 the density-density response function vanishes for
frequencies below twice the Mott gap, but at T > 0 a nonzero
response develops and can be determined in the framework
of the model (16). As the density of double-occupied sites
is very small in the regime (22), we may apply the low-
density approach of Refs. [78,79,82,83] to finite-temperature
dynamical correlation functions. The correlator of interest is

C�,m(t) = 1

Z
Tr{e−βH [ρ�(t),ρm(0)]}, (23)

where

ρj =
∑

σ=↑,↓
c
†
j,σ cj,σ = 1 + σ z

j (1 − a
†
j aj ). (24)

In the transformed basis we have

ρ̃� = U†ρ�U + O(t/U )

= 1 + (1 − n�)
L−�∑
j=0

σ z
L−j P

(�+1)
j + O(t/U ), (25)

where P
(�+1)
k projects onto states with k unoccupied sites (in

the spinless fermion variables) in the interval [� + 1,L]

P
(�+1)
k =

∑
�<p1<···<pk�L

k∏
j=1

(1 − npj
)

L∏
l=�+1
l 	=ps

nl. (26)

Here we have defined P
(L+1)
0 = 1. The leading contribution to

(23) in the framework of a t/U expansion is given by

C�,m(t) � 1

Z
Tr{e−βH̃∞ [ρ̃�(t),ρ̃m(0)]}, (27)

where

ρ̃�(t) = eiH̃∞t ρ̃�e
−iH̃∞t . (28)

We note that at zero temperature the dynamical correlator (27)
is of order O(t2/U 2); see, e.g., Ref. [13]. This is beyond the
accuracy in t/U we are working in here. The trace in (27) is
over both charge and spin degrees of freedom. As these are
uncoupled in the leading order in the t/U expansion we have

1

Z
Tr(e−βH̃∞OcOs) = Trc(e−βH̃∞Oc)

Zc

Trs(Os)

2L
, (29)

where Oc,s are any operators that act nontrivially only on the
charge and spin degrees of freedom, respectively. As the spin
degrees of freedom do not have any dynamics at leading order
in the t/U expansion we have

σ z
� (t) = σ z

� , 2−LTrs

(
σ z

� σ z
n

) = δ�,n. (30)

This allows us to reduce the calculation of (27) to the charge
sector only:

C�,m(t) �
L−min(�,m)∑

j=0

1

Zc

Trc{e−βH̃∞ [A�,j (t),Am,j ]}, (31)

where

A�,j (t) = [1 − n�(t)]P (�+1)
j (t). (32)

As the charge sector is a free theory (31) can now in principle be
calculated using Wick’s theorem and a determinant represen-
tation can be obtained. As this is somewhat involved we focus
on low temperatures and proceed by applying the formalism
of Refs. [78,79,82,83], which is possible as in the window (22)
the density of thermally excited spinless fermions is small. To
proceed, we express (31) in a Lehmann representation and then
cast it in the form of a linked cluster expansion. The leading
contribution in our window (22) is

C�,n(t) �
∑

p

eβε(p)〈p|[A�,0(t),An,0]|p〉 + O(e−βU ). (33)

Here |p〉 is a one-hole state

|p〉 =
√

2

L + 1

∑
j

sin(pj )aj |GS〉, (34)
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with energy −ε(p) relative to the ground state, and the mo-
menta are quantized according to (18). We note that one-hole
states have to be taken into account as we are working in the
grand canonical ensemble, where the total number of spinless
fermions is not fixed. Evaluating the expectation value in (33)
gives

C�,n(t) � 4i

L + 1
Im

∑
p

e(β−it)ε(p) sin(p�) sin(pn)

×G(�,n,t), (35)

where G(�,n,t) is the zero-temperature Green’s function of our
spinless fermions:

G(�,n,t) = 2

L + 1

∑
k

sin(k�) sin(kn)eiε(k)t . (36)

We now focus on �,n in the middle of our open chain,
where the correlation functions are translationally invariant for
sufficiently large system sizes, so that C�,n(t) → C(� − n,t).
Taking the L → ∞ limit we have

C(m,t) = 2iIm
∫ π

−π

dk dp

(2π )2
eβε(p)+i(p+k)m+it[ε(k)−ε(p)]. (37)

We are interested in the real part of the Fourier transform of
C(m,t):

χ (ω,Q) = Re

[∫ ∞

0
dt

∞∑
m=−∞

eiωt−iQm C(m,t)

]

� 1 − e−βω

2
θ (|4t sin(Q/2)| − |ω|)

× eβε(P+Q/2) + eβε(P−Q/2−π)√
[4t sin(Q/2)]2 − ω2

, (38)

where θ (x) is the Heaviside function and P is given by

P = arcsin

(
ω

4t sin(Q/2)

)
. (39)

We see that in the window (22) a finite-temperature resonance
develops as the temperature is increased, which follows the
“dispersion”

ωQ = 4t | sin(Q/2)|. (40)

This is very reminiscent of the Villain mode in the spin-
1/2 Heisenberg chain [77,78]. We note that the square root
singularity in (38) is an artifact of the low-density expansion
and will be smoothed by higher order contributions [78,79]. In
Fig. 6 we plot χ (ω,Q) for U/t = 20 and βt = 2. The results
of the strong-coupling expansion can be compared to those
obtained by tDMRG; cf. Fig. 5. As the numerical simulations
were carried out at intermediate interaction strengths U = 8t

only a qualitative comparison is possible. The dominant feature
in the charge dynamical structure factor at U = 8t occurs at
frequencies above approximately twice the T = 0 Mott gap.
This feature evolves smoothly with temperature and as we have
remarked before corresponds to the O(t2/U 2) contribution in
the strong-coupling expansion. This is beyond the accuracy of

FIG. 6. Density-density correlator at low frequencies for U/t =
20 and βt = 2. The spectral weight increases with temperature in our
window (22) and is concentrated around the “dispersion” (40).

the analytical calculation presented above. At low frequencies
within the T = 0 Mott gap the charge dynamical structure fac-
tor shown in Fig. 5 displays a weak feature that is qualitatively
quite similar to the Villain-like mode obtained in the framework
of the strong-coupling expansion; cf. Fig. 6.

B. Single-particle spectral function

We now turn to the single-particle Green’s function:

G(m,�,t) = 1

Z
Tr[e−βH∞{cm,↑,c

†
�,↑(t)}]. (41)

At leading order in t/U this becomes

G(m,�,t) � 1

ZcZs

Tr[e−βH̃∞{c̃m,↑,c̃
†
�,↑(t)}], (42)

where

c̃m,↑ = U†cm,↑U . (43)

A complication compared to the case of the density operator
considered above is that the fermion operators are very com-
plicated in the transformed basis. However, it is possible to
isolate the terms required for the purposes of a low-temperature
expansion. We find for 1 < � < L

c̃
†
�,↑ = a

†
�

L∏
j=�+1

njσ
+
L−�+1S

†
L−�+1,L

− (−1)�a�

L∏
j=�+1

nj SL−�+1,L σ+
L−�+1 + · · · , (44)

where we have defined

Sn,L|σ1, . . . ,σL〉 = |σ1, . . . ,σn−1,σn+1, . . . ,σL,σn〉. (45)
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FIG. 7. Hole part of the spectral function at U = 20t .

The leading term in the low-temperature expansion of the
single-particle Green’s function is then

G(m,�,t) ≈ (−1)�−m[G(�,m,t) + G(m,�,−t)]

× Trs[σ
−
L−m+1S

†
L−m+1,LSL−�+1,Lσ+

L−�+1]

2L

= (−1)�−m[G(�,m,t) + G(m,�,−t)]

2|�−m|+1
, (46)

where G(m,�,t) is given by (36). Focusing again on the center
of the chain where the Green’s function is translationally
invariant, Fourier transforming, and then taking the real part,
we obtain the single-particle spectral function:

A(ω,Q) ≈ 3θ (2t − |ω + U/2|)
8t | sin(k0)|

[
1

5 + 4 cos(Q − k0)

+ 1

5 + 4 cos(Q + k0)

]
+ {ω → −ω},

k0 = arccos

(
−ω + U/2

2t

)
. (47)

The expression (47) has threshold singularities at

|ω ± U/2| = 2t. (48)

These are an artifact of working at lowest order in the low-
density expansion and a summation of higher order contri-
butions will smooth out these singularities. In Fig. 7 we plot
A(ω,Q) for U/t = 20.

The results of the strong-coupling low-temperature expan-
sion can again be compared qualitatively to those obtained by

tDMRG. The hole part of the spectral function for U =8t , T = t

shown in Fig. 4(c) looks very similar to the result displayed in
Fig. 7. The main differences are due to the finite bandwidth of
the spin degrees of freedom atU = 8t , which leads to a bending
of the straight-line features at ω = −U/2 ± 2t in the strong-
coupling expansion. The general “V-shaped” structure of the
response and the concentration of spectral weight around the
points ω = −U/2−2t, Q = 0 and ω = −U/2+2t, Q=±π

is already clearly visible in the U = 8t data.

V. CONCLUSIONS

We have investigated the finite-temperature behavior of
the photoemission spectrum of one-dimensional Mott insu-
lators with spin-charge separation. We considered the one-
dimensional half-filled Hubbard chain and determined dynam-
ical response functions by a combination of finite-temperature
tDMRG methods and an analytic strong-coupling approach
in the spin-incoherent regime. The single-particle spectral
function displays an interesting evolution with temperature.
The spinon and holon branches in the photoemission spectrum
evolve into a broad dispersive band, while at higher frequen-
cies a second broad band of excitation emerges. At elevated
temperatures these features can be described in terms of a
picture reminiscent of the Hubbard-I approximation, where
spin correlations are completely washed out. Interestingly,
unlike the two-dimensional counterpart, in one-dimension
the hopping amplitude (effective mass) is not renormalized.
In the window 4t2/U � T � U a spin-incoherent regime
emerges. This can be described by an analytic strong-coupling
expansion. The single-particle spectral function in this regime
displays a characteristic “V-shaped” structure.

In the density-density correlation function the “melting”
of the Mott gap is accompanied by the emergence of a
temperature-induced resonance at low frequencies. This fea-
ture can be understood in terms of transitions between ther-
mally occupied levels and is akin to the celebrated Villain mode
in gapped antiferromagnets.
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