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Width of the charge-transfer peak in the SU(N) impurity Anderson model and its relevance to
nonequilibrium transport
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We calculate the width 2Acr and intensity of the charge-transfer peak (the one lying at the on-site energy E,) in
the impurity spectral density of states as a function of E, in the SU(N) impurity Anderson model (IAM). We use
the dynamical density-matrix renormalization group (DDMRG) and the noncrossing approximation (NCA) for
N =4 and a 1/N variational approximation in the general case. In particular, while for E; > A, where A is the
resonant level half-width, Acr = A as expected in the noninteracting case, for —E,; >> N A one has Acr = NA.
In the N = 2 case, some effects of the variation of Acr with E,; were observed in the conductance through a
quantum dot connected asymmetrically to conducting leads at finite bias [J. Kénemann e al., Phys. Rev. B 73,
033313 (2006)]. More dramatic effects are expected in similar experiments that can be carried out in systems of
two quantum dots, carbon nanotubes or other, realizing the SU(4) IAM.
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I. INTRODUCTION

The discovery of the Kondo effect [1] in semiconducting
quantum dots (QDs) [2—10] has spurred the study of electronic
transport through QDs. Later molecular QDs [11-21], and QDs
in carbon nanotubes [22-24], were also studied. Molecular
QDs in general have large asymmetric coupling to source
and drain leads. Semiconducting QDs are characterized by
the enormous possibilities for tuning the different parameters.
In all these systems, several physical effects are generically
observed when the system is cooled at cryogenic temperatures
due to the large Coulomb repulsion in these nanoscopic QDs,
such as Coulomb blockade and the Kondo effect, which implies
a resonance at the Fermi energy in the spectral density of the
dot state that leads to an anomalous peak in the differential
conductance G(V) = d1/dV atzerobias voltage V, where [ is
the current through the QD. These physical effects are usually
well described by an impurity Anderson model (IAM).

While intense research has been devoted to the Kondo effect,
also important effects of the interactions take place at finite
V that are unexpected for independent electrons. In particular,
Coulomb blockade peaks were shown to present a strong width
renormalization in the situation of large tunnel asymmetries
between source and drain electrodes [25]. Specifically, K
Oonemann et al. started from an equilibrium situation in which
the dot level E; > 0. Then they applied a bias voltage, which
shifts the chemical potential 1, of one of the leads (we call
it the left lead) in eV > 0 and also E; by about eV /2 due
to capacitance effects. A peak in G(V) is observed when
ur ~ E4. When instead a bias voltage such that eV < 0 is
applied, another peak in G(V) was observed (when E; ~ ug,
the chemical potential of the right lead). In a noninteracting
picture, one would expect that both peaks have nearly the
same width and the same height [26,27]. However, the latter
turns out to be about two times wider and with a maximum
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nearly five times smaller [25]. The reason is that the QD has a
much stronger coupling to the right lead, and then for eV > 0
the QD is empty, while for eV < 0 it is in an intermediate
valence situation, and one knows that the half width at half
maximum Act of the spectral density of the charge-transfer
(CT) peak in the IAM increases with the occupancy [27-29].
An explanation of the experiment in the framework of the
SU(2) IAM, including the effects of capacitance and tunneling
asymmetries and the Kondo effect is provided in Ref. [27].

Several tunable systems of the kind discussed above in
which there is an orbital, dot, or valley degeneracy, in addition
to the spin one, are described by the SU(4) IAM, like those
of carbon nanotubes [22-24], a nanoscale Si transistor [30],
an As dopant in a Si nanostructure [31], and systems of two
QDs where the occupation of one or the other QD plays
the role of the orbital degeneracy [9,10]. In the latter case,
the tunneling coupling of both dots are in general different,
reducing the symmetry to SU(2), but tuning other parameters
the SU(4) symmetry can be recovered as an emergent one at
low temperatures [32,33]. Crossovers [30,34—40] and abrupt
transitions [41] between SU(2) and SU(4) symmetry were also
studied.

In the noninteracting case, for a flat very wide conduction
band as we assume, the spectral density of the localized level
for each of the N components in the SU(N) impurity Anderson
model is a Lorentzian with half width at half maximum A [de-
fined by Eq. (2) in terms of the microscopic parameters of the
model]. Thus in this case, Actr = A independently of on-site
energy E,. As we show in this paper, the effect of correlations
on Acrt increases with N and one expects a width Act = NA
for the SU(N) model in the Kondoregime —E;,E; + U > A,
where U is the Coulomb repulsion. Therefore if the experi-
ments like those of Kénemann et al. are performed for any of
the above realizations of the SU(4) IAM, this effect would be
more evident. Furthermore for the experiments with the setup
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of two QDs in which each QD is connected to its own pair
of conducting leads and the tunneling matrix elements and
the voltages at the four leads can be controlled independently
with high precision [8,10], the spectral density can be read out
directly from the differential conductance through one of the
QD under appropriate conditions [39].

In this paper we use a 1/N expansion based on variational
wave functions [42,43], to show that one expects in general
that Acr ~ NA for —E; > NA in the SU(N) IAM. We
also calculate Acr as a function of E; for N =4 using
dynamical density-matrix renormalization group (DDMRG)
and the noncrossing approximation (NCA). In this case Acr
changes rather abruptly from 4A to A as the effective E,
(including renormalization due to effects of the hybridization
[44]) changes sign from negative to positive. We also discuss
the possible experimental relevance of these results.

The paper is organized as follows. In Sec. II, we describe the
SU(N) IAM and the methods used. In Sec. III we discuss the
CT peak for general N at zero temperature in the Kondo regime
—E; > NA using a variational approximation. Section IV
contains NCA and DDMRG results for N = 4. In Sec. V
we show the results for the occupancy as a function of on-site
energy level and compare them with the noninteracting case
and with exact Bethe ansatz results. In Sec. VI we discuss the
relevance of our results to possible experimental realizations.
Section VII contains a summary and a discussion.

II. MODEL AND METHODS

We consider the one-level SU(N) IAM with infinite on-site
repulsion U. The impurity states involve a singlet configuration
|s) together with a degenerate configuration |m), m =1 to
N, corresponding to one additional electron (or hole) in the
“impurity,” which can be a QD, a system of two QDs, a
part of a carbon nanotube, or an atom with degenerate levels
as discussed in the introduction. When discussing transport
experiments, for simplicity we assume that the “impurity” is
connected to a left (L) and a right (R) conducting lead. An
extension to the case of the system of two QDs in which
both are connected to a pair of independent leads [8—10] is
straightforward [39]. The Hamiltonian reads:

H = Z Eqlm)(m| + Zévkcikmcvkm
m

vkm

+ D (VIm) (sl + Hee), e

vkm

where the constraint |s)(s| + Y, |m){m| = 1is imposed (this
is equivalent to the assumption of infinite Coulomb repulsion
U). Here cikm create conduction states in the lead v with
projection m and wave vector k. The tunnel couplings of the

quantum dot to the leads and the total resonant level widths are
2
A, =1 Z [VY]"8(0 — €n),
k

A=AL+Ag @

taken in general independent of energy w [45]. For the
discussion of the impurity spectral density p,,(w), only A is
relevant.

To obtain p,,(w) we use three different methods. The
variational one, based on Refs. [42,43] is the simplest one and
is described in detail in the next section. It is limited to the
Kondo regime —E; > N A and zero temperature. We also use
NCA and DDMRG.

The NCA is equivalent to a sum of an infinite series of
diagrams in perturbations in the hybridization [1,46,47]. In
the Kondo regime, it is known to reproduce correctly the
relevant energy scale Tk and its dependence of parameters. An
advantage for our purpose over the numerical-renormalization
group in which finite-energy features are artificially broadened
due to the logarithmic discretization of the conducting band
[48,49], NCA correctly describes these features. For instance,
the NCA works satisfactorily in cases in which the conduction
density of states is not smooth [47], including in particular
a step in the conduction band [50]. Furthermore, it has a
natural extension to nonequilibrium conditions [51], and it
is specially suitable for describing satellite peaks of the
Kondo resonance, as those observed in Ce systems [52,53],
or away from zero bias voltage in nonequilibrium transport
due to phonons [54,55] or magnetic and orbital excitations
[32,56,57]. Alternatives to NCA for nonequilibrium problems
are renormalized perturbation theory (but limited to small w, V
and temperature 7') [S8—60] or the equation of motion method
[61,62], although it does not reproduce correctly the functional
dependence of Tx on E; [62,63].

However, the NCA has important limitations out of the
Kondo regime. In particular for moderate positive E,, the
impurity self energy has an unphysical positive imaginary
part (this means that the Green function violates causality)
and the impurity spectral density presents a spurious peak at
the Fermi energy. As a consequence, the NCA results in this
region of E,; are unreliable. For this reason, we also use the
DDMRG in its correction-vector-method approach. Since it
was introduced by Kuehner and White [64], the correction
vector has shown to be a reliable way to do dynamical
calculations with DMRG in different low-dimensional strongly
correlated models. Different strategies were done to include
the correction vector in the target states of a standard DDMRG
[65-67]. We choose a recently presented version introduced
by Nocera and Alvarez [68], which based on a Krylov-space
approach has been shown to be more accurate and efficient
than conjugate gradient [67].

However, the two major difficulties of the correction-vector
method persist. First, the need to be computed in small fre-
quency intervals which is unavoidable but with parallelization
strategies becomes affordable. Second the artificial broadening
n that is necessarily introduced in the calculation (calcula-
tions cannot be done at n = 0). Therefore one is computing
G(w + in), and the resulting impurity density spectral func-
tion p™(w) = —LImG(w + in) can be visualized as the real
spectral density p(w) convoluted by the Lorentzian p,(w) =
(n/m) /(@ — wo)? + n?) of width 7. Since we are interested in
the real spectral density for n — 0%, this compels to a decon-
volution of the spectrum, and many proposals have been pre-
sented to do this difficult task successfully [69—75] and resolve
structures with small width in the real spectrum. Fortunately,
as it was mentioned above, we are interested in the line shapes
of the CT peak for the IAM which as it has been very well
described in Ref. [74], the deconvolution becomes easiest, par-
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FIG. 1. DDMRG correction vector data of the CT at n = 10A.
Open circles (crosses) for Ny, = 40 (N; = 80), for E; = 40A (see
Fig. 3). In legends we indicate the 75y obtained from a fit with a
Lorentzian K /(@ — w,p)* + %) (thin line) for each size.

ticularly for large U . The authors have also shown that the non-
interacting case U = 0 is well described by the DDMRG [74].

Assuming that the original CT peak is a Lorentzian, then
the data obtained with DDMRG will be the convolution of
two Lorentzians of half width at half maximum Acr and 7,
respectively. This convolution will result in a new Lorentzian
whose half width is the sum of the two original ones, so that
the half width at half maximum of the peak obtained by fitting
the DDMRG calculations will be neis = Act + 1. The strategy
works fine while the CT peak does not merge with the Kondo
peak, obtaining reliable results in the range E; > 10A. When
both peaks overlap, we still can distinguish the left part of the
CT (at lower frequencies) and we fit just the left half part of
CT peak using the DDMRG data. Calculations were done with
up to 1000 states keeping the truncation error less than 1078,
assuring a numerical error in DDMRG data much smaller than
the size of the symbols in Fig. 1.

In order to visualize the procedure, we show in Fig. 1 the
DDMRG correction vector results, for E; = 40A with n =
10A, and for two sizes (N; = 40, 80). As is apparent in the
figure, there are no significant finite-size effects. Then we fit
the peaks with Lorentzians to obtain the half width nes and
the position ES for each lattice size, allowing us to take the
estimation 1 = (10.9 £ 0.1)A. Finally we can calculate the
values presented in Fig. 3 doing the subtraction of the width
obtained with the n = 10A used in the correction vector. We
derive in our example Act = (0.9 £ 0.1)A.

III. WIDTH AND WEIGHT OF THE CHARGE-TRANSFER
PEAK FOR LARGE NEGATIVE ON-SITE ENERGY

In this section we calculate Acr well inside the Kondo
regime —FE; > NA, using a variational procedure [42,43].
The ground-state wave function of the Hamiltonian Eq. (1) is

approximated as
g) = AIF) + Y Byd,com|F), 3)
qm

where |F) = IT/ ch,u|0) ® |s) is the state with the filled Fermi
sea in the band and the impurity in the singlet state, the
subscript g refers to both lead and wave vector index [v and
k in Eq. (1)], the prime over the product symbol means that
only ¢ for which €; < € are included, where €f is the Fermi

energy. We denote dl, = |m)(s|. The variational parameters
A and B, are determined minimizing the energy. The B,
are independent of m as a consequence of SU(N) symmetry.
Normalization of |g) implies

AP+ N Y B =1. 4)
q

In the following we take the origin of energies at the Fermi en-
ergy e = 0. We define the energy gain due to hybridization as

Tx = E — E,, )

where E is the ground-state energy and Eg = E; + (F|H|F),
the ground-state energy for V, = 0. Minimizing the energy
one obtains

VA

B, = —1—,
1 TK—Eq

(6)
and the equation for the ground-state energy, which can be
written in the form
Tx —Eq— N Val? =0. 7)
p TK — €

The sum can be evaluated assuming A = Ap + Ap =
Ty, g 2 128(w — €;) independent of « in the range
—D <w< D and gives (A/m)In[(D + Tx)/Tk]. In the
Kondo limit —E; > N A, one can neglect Tx in comparison
with D and | E,;| obtaining

E
Tx = Dexp (—7\/;), (®)

which has the correct exponential dependence on E; (although
the correct prefactor is smaller [1,76]).
At zero temperature, the impurity spectral density is

(@) = piy(@) + p5, (),
(@) =Y eldnlg)*8(w + E, — E),

P (@) =" (eld},|8)*8(w — E, + E), )

where E, is the energy of the excited state |e). Since we are
interested in w near E,; and in this section E; is well below the
Fermi energy, we can neglect the creation part p;,(w) of the
spectral density. Using Eq. (3) we can write

1
Pin(@) = =— 3 1By PImG g g (E = ),
q

Gymgn(2) = (qm|Glgm), |gm) = cgn|F),
1
z+in—H’

where n — 07 is a positive infinitesimal.

G(z) = (10)
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Defining the operators G°(z) = z + in — Hy, where Hy =
H—V,and V=Y, (Vydhcyn + H.c.) is the hybridization
part of H, one has the Dyson equation

G=G6"4+G"Vé. an
Taking matrix elements of both members Eq. (11) between

states |gm) and/or |¢'m'qm) = d;,cq«mﬂqm), we obtain after
some algebra

qu,qm(z)
0
_ qu,qm(z)
1= GY, i@ Xy WV PG ramarmqm @)
1
G 2)= - ’
gm.qn (@) +in+e, —Eo+ Ey
GY @) 1 (12)
I~ i~ Z)= .
am'qm.q'm'qm z+in+e, +ey—Ep

The sum over m’ above is just a factor N due to SU(N)
symmetry. As we shall see, this factor enters into the width
of the charge-transfer (CT) peak Act. The sum over g’ can be
evaluated using the density of conduction states [as we have
done to obtain Eq. (8)], leading to

~NA
(0+ Tk — €y — Eq — A)" + (NAY
NA D+w+Tk —¢

A=—In
T w+Tx — ¢

Iqum,qm(E —w) =

13)

Inserting this in the first Eq. (10) and using Egs. (4) and (6)
one obtains the desired spectral density.

In the limit —E; > NA, Tk becomes exponentially small
[see Eq. (8)]. Furthermore, from Eq. (6), one realizes that the
values of €, which lead to the larger values of B, ~ A/Tk
are of the order of T . From Egs. (4) and (6) one sees that for
Tx — 0,also A — Oand Zq |Bq|2 — 1/N.Thus in this limit
Tx — 0, for any function F(e,), we can use

1
> 1By F(eg) — ~FO. (14)
q
Furthermore since A has a weak logarithmic dependence and

we are interested in w ~ E,4, we can evaluate it at E;. Then
Egs. (13), the first (10) and (14) lead to

A/m
pm(a)) =~ ff 2 E) (]5)
(w— ES™) 4+ (NAY
NA |D+E
E;fszd+—ln‘ + o) (16)
T Ed

well inside the Kondo limit —E; > NA.

This simple result reflects three important physical effects
of the correlations on the CT peak: (i) The position is shifted
upwards. The origin of this shift was explained by Haldane
for the SU(2) case [44], and extensions to the SU(4) case
and the SU(2) <> SU(4) crossover were discussed [32,76].
Depending on details different but similar estimations for the
shift were given. This point is discussed in more detail in
Sec. IV A (see Fig. 4). (i1) The half width at half maximum

0.1
pd B ~10 |
— N=2,T,=7.6x10"
0.08} \ A
. — N=4,T,=22x10
1 K
L i B _ S
| N=6,T,=20x10
0.06 |- 1_ s
0.04} s
0.02} s
— A\
o :
30 20 10 0 @ 10

FIG. 2. Impurity spectral density calculated with the NCA (full
lines) and variational wave function (dashed lines) for E; = —15A.

of the peak is Acy = NA. This is a factor N with respect to
the noninteracting case. (iii) The total weight of the peak is
1/N. The maximum intensity is thus reduced in a factor 1/N?
compared to the noninteracting case.

IV. WIDTH OF THE CHARGE-TRANSFER PEAK
IN THE SU4) IAM

In this section we show our results for Act as a function of
E; in the SU(4) case using NCA and DDMRG. For the NCA
we used a constant density of unperturbed conduction states
extending from —D to D with D = 100A. The assumptions
made in DDMRG imply a semielliptical density of conduction
states [45,77].

A. Temperature T — 0

We discuss first the results at low temperature (T = Tk /10).
Here Tx was chosen such that G(Tx) = G(/2, where Gy is
the conductance of the system at 7 = 0 in the extreme Kondo
limit in which the total occupancy is 1 (the maximum possible
conductance of the system). Using Friedel sum rule [78,79]
one has

Go= N& inz(”) 17)
=N )

In Fig. 2 we show the spectral density p,,(w) obtained with
the NCA in the Kondo regime (—E; > NA). It shows two
peaks. The broad CT peak (which is the focus of this work) at
ECT (slightly larger than E,) and the very narrow Kondo peak
at the Fermi energy. Instead, for positive E; (not shown) only
the CT peak is present. We also show in the figure the result
for p,fq(a)) obtained using Egs. (10), (4), and (6). One can see
that there is a very good agreement between the NCA and
variational calculations for the CT peak. We have verified that
the CT peak in the empty orbital regime (not shown) looks
identical to the noninteracting spectral density, as expected
from the discussion of the previous section. Instead, in the
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FIG. 3. Half width at half maximum of the charge transfer peak
as a function of the effective on site energy using NCA (green circles)
and DDMRG (blue squares). Dashed line is a fit of the filled symbols
using Eq. (18).

Kondo regime it is nearly four times broader and its maximum
is sixteen times smaller.

We have repeated these calculations for several values of
E,. In the empty orbital regime, the peak has been fit with
a Lorentzian with three parameters: the width identified with
AcT, the position El‘jff and its weight w, which is the integral
in energy of the Lorentzian. In the Kondo regime we used a
similar fit with two Lorentzians, one for the CT peak and one
for the Kondo peak. In the intermediate valence (IV) regime
|ESH| ~ A, this procedure failed because in addition to the
fact that the CT peak merges with a Kondo peak that becomes
increasingly wider, the NCA fails and gives a self energy with
a positive imaginary part. Thus, in this region, the DDMRG
results are particularly useful.

In Fig. 3 we show the resulting Acr as a function of Ejff
using both techniques. The filled symbols denote the most
reliable result between both. Due to the fact that the band is flat
in the NCA and semielliptical in DDMRG (with a total width
2D = 200A), the resonant level width 2 Appprg(@) is energy
dependent in DDMRG and smaller than the corresponding
width 2A within NCA, except for « = 0 where both widths
are equal [45]. As a consequence for large | E;|, a smaller Act
is expected in the DDMRG calculation, as can be seen in the
figure. In spite of the lack of NCA results near EST = 0, the
results of both techniques indicate a rather sudden crossover
from Acr ~4A to Acr = A at a slightly positive Eflff. In
addition, there is an unexpected increase in Act for small
negative Efff. This might be due to the fact that the CT peak is
deformed as it merges with the Kondo peak in this region.

For later use (Sec. VI), we also show in the figure a fit with
the following function, which is an extension of that used in
the SU(2) case

A Eeff_ E
2T g —btanh [ 4 — V) (18)
A cA

0 ! | ! | ! | !
-40 -20 0 20 E 40

FIG. 4. Shift of the position of the CT peak as a function of on-site
energy calculated with NCA for different temperatures 7.

For general N one expectsa + b >~ N,a — b =~ 1, so that this
expression interpolates between the Kondo regime (Act =~
NA for —E; > NA) and the empty orbital one (Act = A
for E; > A) passing through the intermediate valence (IV)
regime. From the fit we obtain a = 2.61, b = 1.68, ¢ = 2.90,
and Epy = 1.58A for the effective level in the intermediate
valence regime.

In Fig. 4 we show the shift § = EST — E, as a function of
E,. Approximate expressions of this shift were given based
on functional renormalization group [32,44,76]. Generalizing
Haldane’s treatment to the SU(N) case [32] one obtains

N-1 D
5 = Aln (E) (19)

g

where C is a low-energy cutoff. Haldane in his study of the
SU(2) model used C = A, while Filipone et al. have taken
C = |E;|/a with o of the order of 1 in the SU(4) case [76]. The
NCA results in Fig. 4 seem to agree with a cutoff C of the order
of the maximum between A and | E,|. In the present paper the
shift § is larger than in similar calculations of Ref. [32] because
of the larger value of D chosen (D = 100 here and D = 10 in
Ref. [32]).

B. Finite temperatures

As the temperature increases, the above mentioned short-
comings of the NCA tend to disappear. For T = 2A the Kondo
peak has disappeared (although some weak structure persists
near w = 0 for small negative Ejff). Thus we have fit the CT
peak using one Lorentzian. The results for Act as a function
of EST are plotted in Fig. 5. For T = 2A still an upturn for
slight negative Ejff is present, as for T near to O (see Fig. 3).
For T = 2A this structure is greatly reduced and the fit using
Eq. (18) improves. The parameters of the fit are for 7 = 2A:
a=281,b=1.74,¢c =251, and Ery = —0.99A. For T =
A4A:a =2.82,b =1.73,¢c = 6.26, and E;y = —1.64A. Note
that between T = 2A and T = 4 A, a broadening of crossover
region between Acr ~ 4A and Acr ~ A by a factor larger
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FIG. 5. Half width at half maximum of the charge transfer peak as
a function of the effective on site energy using NCA at two different
temperatures 7. Dashed lines are fits using Eq. (18).

than two takes place. In addition, between very low T and
T = 2A, this region moves from slightly positive to slightly
negative ES.

V. OCCUPANCY FOR SU(2) AND SU(4)

To illustrate some of the effects of correlations, we show in
Fig. 6 the total occupancy n = ), (n,,) as a function of the
energy level calculated from the integral of the pseudofermion
density of states in the NCA [46]. This procedure is superior
to the integral of the spectral density of the dot level and is
free from the shortcomings of this density for positive E,, like

1*_ ‘ T - T
~—~— -
"o ‘\R s m N=2 ]
T e N=4
0.8~ ° \ D - gA N
L \ i
[
0.6~ ® v\ m
I Vi |
e W -
LA T
021 Ne -, .
o ...
i \1.,__: POER
= -
| | | ‘
%% 5 0 5 g, 10

FIG. 6. Total occupancy as a function of on-site energy level
calculated with NCA for the SU(N) IAM with N = 2 and 4. Dashed
blue line corresponds to the Bethe ansatz (BA) result for N = 2 (see
text). Dotted lines are the noninteracting results.

a spurious peak at the Fermi energy. This technical point is
discussed in Ref. [80].

For N = 2 we include in the figure results obtained using
the Bethe ansatz (BA) as described in Ref. [81]. These results
were shifted to the left by a constant energy C to compensate
by the Haldane shift and possible uncertainties in the position
of E; in the BA treatment. We have used C = 1.67. We also
include in the figure the noninteracting results.

For N = 2 one can observe a very good agreement between
NCA and BA results for all E;. For positive E; both results
agree also with the U = 0 (noninteracting) case. However, for
negative E,, the effects of correlations become apparent. In
particular for U = 0 and large negative E;,n = N for the
SU(N) model, while for U, — E; — 0o, n = 1. This is due to
the decreasing weight of the charge-transfer peak, discussed
in Sec. III [see also Eq. (23) below].

The deviations from the noninteracting case are stronger
in the SU(4) case. They are significant even for positive E,;.
This is due in part to the larger Haldane shift in the SU(4)
case. The fact that the increase in n with decreasing E; is
smoother than for the N = 2 case is due to the larger width of
the charge-transfer peaks in the region of negative E;.

VI. POSSIBLE EXPERIMENTS

A. Two dots independently connected to its own pair of leads

In the setup with two dots studied in Refs. [8—10], thedoti =
1,2 is connected to left and right (v = L, R) leads by couplings
A,; and all applied voltages and couplings can be controlled
with high accuracy, For large enough repulsion between the
dots [38], if Ap; 4+ Ag1 = Ay + Ago, and equal energy
levels E » = E41,the system is in the SU(4) regime [10]. Even
if the equality is not satisfied exactly, the SU(4) symmetry can
be restored at low energies adjusting the difference E;» — E 4
[32,33]. In these conditions, if in addition the couplings of one
dot are very asymmetric (say Ay < Ag;), moving the bias
voltage V;; of the L1 lead, the resulting differential current
through dot 1, d1;/d V. just maps the spectral density of this
dot (as in scanning tunneling spectroscopy) [39]. In this case,
a marked asymmetry in the dI;/dV; response for positive
and negative E,;; should be measured, as in Fig. (3). Previous
nonequilibrium calculations show that if Ap; < Ag;/9, the
resulting d1;/dVy is very similar to the equilibrium spectral
density for coupling Ay ; + Ag; and chemical potential corre-
sponding to the right lead of dot 1.

B. Conductance through an SU(4) “impurity” including
capacitance effects

Here we discuss an experiment like that of Kénemann et al.
[25] introduced in Sec. I, in which asymmetries with the sign
of bias voltage V were observed in the widths and intensities
of conductance peaks, but here we assume the QD or impurity
described by the SU(4) IAM instead of the SU(2) one discussed
previously [25,27]. Specifically, the interacting system, which
we call impurity is coupled to two SU(4) interacting leads
(left L and right R) with chemical potentials 1, and tunnel
couplings A, (v =L, R), as described by the Hamiltonian
Eq. (D).
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FIG. 7. Scheme of the Fermi level of both leads and the dis-
placement of the dot level E — d due to capacitance effects. The top
(bottom) figures represent different situations for positive (negative)
EY. When the Fermi level of one of the leads coincides with E, a peak
in the conductance is observed. Assuming that the right lead is more
strongly coupled to the dot, the system can be in Kondo, intermediate
valence (IV), or empty orbital regime (EOR) as indicated.

We take the sign of the bias voltage in such a way that
ur — g = eV. Note that the interchange of right and left
leads or electrons by holes is equivalent to a change of sign of
V. In this section, we take the origin of energies at gz = 0.
The capacitance effects modify the energy necessary to add
an electron to the dot with the lever arm parameter o (which
depends on the source, drain, and gate capacitances) [25,26].
Usually E; = ES + aeV is assumed, where o ~ 1/2, so that
E, is displaced in approximately half the magnitude of u; —
wr- Since the experimentally accessible quantity is EST and
not £, we assume

ES" = ES +aev, (20)

where Eg is the effective dot level (the position of the CT peak)
when V = 0 and a with < o < 1 describes how the effective
level is modified by the bias voltage. A scheme of how E; is
modified applying a bias voltage is presented in Fig. 7.

The current through the impurity is given by [82]

I=C/wwM&V£Mﬁm0—hWE

AdNmeA L A R
C=_—"°°R 21
hA

where N = 4 in this section, f,(w) = f(w — u,) is the Fermi
distribution in each lead, with f(w) = 1/(e®/*T + 1), and
pm(@,V,E;) is the nonequilibrium spectral density of the
impurity level with symmetry m, which depends on the voltage
V explicitly and also implicitly through the voltage dependence

of E; [Eq. (20)]. The conductance is G = d1/dV.
As shown before [27], to observe the asymmetry in the
peaks in G(V) one needs asymmetric coupling to the leads.
Therefore we assume Az > A;. It has been shown before

1 ‘ T m
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FIG. 8. Weight of the CT peak obtained from the fit of the NCA
CT peak (circles and squares) and from Eqs. (23) and (24) (dashed
lines) with N =4 as a function of the effective impurity level for
several temperatures 7. Blue dashed line corresponds to 7' = 0.

[39] that for Ap < Ar/9, the spectral density at the dot
practically coincides with the corresponding one with the dot at
equilibrium with the right lead at chemical potential wg. This
allows us to avoid a cumbersome nonequilibrium calculation.

To simplify the calculation further, we extend a phenomeno-
logical approach used before [27] to the present case and
assume that the impurity spectral density near the CT peak
can be approximated by

(wAcr)/7

Pm(@) = , (22)
(0— E§H)2 + A%
w=1- Z (M), (23)
m'#m

where (n,,) = f dwppy () fr(w) is the occupation of the dot for
symmetry m. The weight w is the probability that the site of
the impurity is not occupied by electrons of symmetry different
than m. This weight appears naturally in the atomic limit
V, — 0 and was used in Hubbard-III [83] and similar [84,85]
approximations to Hubbard and intermediate-valence models.
Integrating Eq. (22), using Eq. (23) and SU(N) symmetry so
that (n,,) is independent of m, one obtains a linear equation for
(n,). Solving it we obtain in general

1 —2Wp
(N +1)—2(N — HWg’

<nm> =

1
v, = —Imy (o),
b4

1 Acr+i(EST — )
= -+ 24
X =73 2w T ; (24)

where 1/ (x) is the digamma function.

In Fig. 8 we compare the weight obtained fitting the NCA
results with those of the phenomenological approach given
here. With the exception of the region in which both 7 and
E;:ff are near zero, we see that Eq. (22) reproduces well the
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FIG. 9. Differential conductance for an SU(4) impurity as a func-
tion of bias voltage for asymmetric couplings Ag > A, capacitance
ratio @ = 1/2, EY = 15A and several temperatures T. The constant
Cl=eC/Q2rA).

NCA result. In particular for | EST| > A, Eq. (22) reproduces
accurately the spectral density at the CT peak.
Replacing Eq. (22) in Eq. (21) gives the current

I'=C[l = (N = Dnm))(Wr — Wp). (25)

Differentiating this expression with respect to the voltage,
using Egs. (18), (20), and (24), we obtain for N = 4

G(V) = C[(1 = 3(nu) (Vg — V)

2% g, )
(5= 6Wg) R Ll
1
W) = S Im{y ()i — D = ),
1
Yy = ZJT—ZTIm{W(XR)(iOl - &)},
eff 2
;;: = b_asech[u] , (26)
c c

and v/'(x) is the derivative of the digamma function.

The weak point in this approach is the use of the fit
Eq. (18), which as can be seen in Figs. 3 and 5 fails near
the intermediate valence regime (Ejff ~ 0). However, this
equation is accurate enough in the Kondo (—EST > N A) and
empty orbital (EST 3> A) regimes.

In Fig. 9 we show the resulting conductance for EY slightly
smaller than EST of the dotted line in Fig. 2. At V = 0, ES
lies 15A at higher energy than u; = pug = 0. as V increases,
a peak develops which reaches its maximum at eV = 30A,
for which uy = ES™ = eV. This configuration is similar to
a scanning tunneling microscope (STM), for which the tip
is very weakly coupled to the impurity. However, due to
capacitance effects, the peak is broader by a factor 1/(1 — «)
(two in the figure) [27], and the intensity at the maximum
is near (1 — a)eC/(wr A) as can be seen in the figure. This
peak, which corresponds to the empty orbital regime, is

‘ \
-40 -20 0 20 oy 40

FIG. 10. Same as Fig. 9 for E) = —15A. The constant C, =
eC/(32m A).

accurately reproduced by our phenomenological approach.
When a negative voltage is applied, ES" decreases until for
eV = —30A it reaches the value of ;g = 0. In this case, the
system is in the intermediate-valence regime and for 7 = 0 our
approach is not accurate because of the uncertainty in the width
and weight of the CT in this region. From the spectral density,
one would expect a peak nearly two times wider and a total
weight reduced by a factor 2/5, but also the strong dependence
of Act on V (through EST) affects the shape. As expected,
increasing the temperature has the effect of broadening both
peaks, with more dramatic effects on the narrower one.

If the system is instead prepared starting from the Kondo
regime E) = —15A (Fig. 10), at low temperatures one has
the well known Kondo peak near zero bias [27]. Applying a
positive V one reaches again the intermediate-valence regime
for eV = 30A for which Eflff = pur = 0. Applying instead a
negative voltage eV ~ —30A, u;, = eV again coincides with
Efjff and a peak corresponding to a configuration similar to an
STM one, but with a width increased by a factor 1 /(1 — o) with
respect to the spectral density, is obtained. Due to the increase
of the width by a factor N and a decrease in the total weight
of the peak by a factor ~1/N, the intensity at this relative
maximum in G(V) is near (1 — a)eC/(N?A), as seen in the
figure.

This peak corresponds to the Kondo regime and is well
reproduced by our approach. Then we can anticipate that if an
experiment with symmetric values of EY (with the same | EY|
can be achieved, applying a gate voltage to the less coupled
lead with the sign such that |E2| increases, in the case of
negative Eg (Kondo regime) the peak will be four times wider
and nearly sixteen times less intense than for positive E))
(empty orbital regime).

VII. SUMMARY AND DISCUSSION

We have calculated the width of the charge transfer peak
in the infinite-U SU(4) Anderson model as a function of the
impurity level E; and for the general SU(V) case in the Kondo
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regime —E; > N A, where A is half the resonant level width.
While it is clear that in the empty orbital regime E; > A, the
half width at half maximum of the charge transfer peak Act =
A, we obtain that in the Kondo regime Act = N A extending
previous results for the SU(2) case [28,29]. The weight of
the peak in the Kondo regime is reduced by a factor ~1/N
due to correlation effects, so that the maximum intensity is
reduced by a factor 1/N?2. The variational calculation presented
in Sec. III provides a simple physical picture of the nontrivial
effect of correlations in broadening the charge transfer peak in
the Kondo regime.

The variational calculation of Sec. III suggests a simple
interpretation of the width Act. For a peak below the Fermi
level ep = 0, the shape of the spectral density is defined by
the spectral distribution of the state |[v > (not an eigenstate)
obtained after annihilating one d,, electron [see the Eq. (9)
for pffl (w)]. The hybridization term mixes this state with other
states in which a d,, electron is created again. The number of
ways M of adding this electron gives the number of bands that
hybridize with |v > and the width would be Act = M A. For
peaks above the Fermi energy the same argument would apply
interchanging creation and annihilation. To check this idea and
investigate the effects of finite U, we have run the DDMRG
code for E; = —30, and U = 20. We obtain peaks at E; + U
and E; + 2U of width ~3.2A consistent with the expected
M = 3. However, there is also an intense central peak which
overlaps with the charge-transfer peak and renders it dangerous
to draw definite conclusions.

To analyze general values of Ey, it is more useful to discuss
it in terms of the position of the charge-transfer peak EST
which incorporates a shift in the effective E; discussed first

by Haldane for the SU(2) case and more recently for the
SU(4) case [32,76]. Our results for SU(4) symmetry suggest
a rather abrupt decrease of Acr as E;ff increases from ~ — A
to ~A, but our analysis at low temperature for small | EST| is
complicated by the merge of the charge-transfer and Kondo
peaks and limitations of our approaches.

The strong contrast between the charge-transfer peaks in
the Kondo and empty-orbital regimes should be observable in
experiment. This is discussed in Sec. VI. One possibility is
a setup of two quantum dots [8—10], which can be tuned to
prepare the system in a similar way as in scanning tunneling
spectroscopies, with one quantum dot very weakly coupled to a
lead to which a bias voltage is applied. Another possibility is to
extend to an SU(4) system the experiment of Kénemann et al.,
in which strong asymmetries were observed in the width and
magnitude of conductance peaks as a function of gate voltage
for a quantum dot described by the SU(2) impurity Anderson
model [25]. These experiments, in which also capacitance
effects play a role [27], would display stronger asymmetries in
the SU(4) case.

We hope that these results will encourage experimental
work along these lines and be useful for the interpretation of
Coulomb blockade peaks in conductance experiments. On the
theoretical side, a deeper analysis of the change in Act at zero
temperature as EST crosses zero would be useful.
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