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Optical signatures of exciton polarons from diagrammatic Monte Carlo

A. S. Mishchenko,1,2 G. De Filippis,3 V. Cataudella,3 N. Nagaosa,1,4 and H. Fehske5

1RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
2NRC “Kurchatov Institute”, 123182 Moscow, Russia

3SPIN-CNR and Dept. of Physics, University of Napoli “Federico II” I-80126 Napoli, Italy
4Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan

5Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald, Germany

(Received 6 April 2017; revised manuscript received 5 January 2018; published 22 January 2018)

We study the interplay of electron-electron and electron-phonon interactions in the course of electron-hole
bound-state formation for gapped solid-state systems. Adapting the essentially approximation-free diagrammatic
Monte Carlo method for the calculation of the optical response, we discuss the absorption of light in correlated
electron-phonon systems for the whole interaction and phonon frequency regimes. The spectral function obtained
by analytical continuation from the imaginary-time current-current correlation function demonstrates the dressing
of excitons by a phonon cloud when the coupling the lattice degrees of freedom becomes increasingly important,
where notable differences show up between the adiabatic and antiadiabatic cases.
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I. INTRODUCTION

Optical properties of semiconductors and insulators are con-
nected with interband transitions between the highest occupied
and lowest unoccupied bands, which can be probed by standard
light absorption measurements [1,2]. On the theoretical side, a
full many-particle treatment of the resulting electron-hole sys-
tems is difficult, in particular if the (excitation) gap originates
from strong electronic correlations or coupling to the lattice
degrees of freedom. The situation greatly simplifies in the low-
excitation regime, where an extremely small density of elec-
trons and holes exists, and one can concentrate on the analysis
of electron-hole pairing effects. Here the Coulomb interaction
between conduction-band electrons and valence-band holes
mainly triggers the formation of in-gap excitonic bound states
in various materials ranging from one-dimensional (1D) to
three-dimensional (3D) ones [3–7]. Since the electron-hole
pairs are electrically neutral and the coupling between carriers
and optical phonons in polar compounds is electrical in nature,
one naively would expect that the exciton-phonon interaction is
weak. However, the coupling of carriers to phonons in nonpolar
solids is governed by deformation potential. It was clear from
the initial concept [8] and then confirmed by numerous studies,
e.g., [9,10], that there is no fixed relation between the signs of
the deformation potentials of valence and conduction bands.
Thus, the exciton-phonon interaction can be significant.

One prominent example is robust exciton polarons in
(quasi-zero-dimensional) semiconductor quantum dots which
strongly modify the photoluminescence (optical response)
because the exciton and phonon states are entangled [11,12].
Phonon-assisted electron-hole bound-state formation also
quite often takes place in quasi-one-dimensional solids, such
as polydiacethylene crystals [13]. Particularly fascinating, the
lattice seems to be involved in the phase transition to an
excitonic insulator state which recently has been discussed
for a number of interesting materials at large exciton densi-
ties [14–17]. For example, in semiconducting Ta2NiSe5, the

lattice structure changes from orthorhombic to monoclinic
at the suggested excitonic instability [18]. A combination of
excitonic and lattice instabilities has been made responsible
for the observed (possibly chiral) charge-density wave in the
layered transition-metal dichalcogenide 1T −TiSe2 [19]. Fi-
nally, in the intermediate-valent TmSe0.45Te0.55 compound the
(thermo)transport seems to be indicative of exciton polarons
as well [20,21].

Attempts to tackle theoretically the underlying tricky
exciton-polaron formation problem consider the exciton as a
preformed structureless quasiparticle object [22,23]. In addi-
tion, the frozen-phonon approximation was frequently used
[4], or simple variational approaches were exploited [24].
The recently developed diagrammatic Monte Carlo (DMC)
technique [25–27] seems to be especially suitable to address
the long-standing exciton-polaron issue more seriously [28].
Therefore, in the present paper, we generalize and apply the
DMC to the calculation of light absorption by a coupled
electron-hole-lattice system described by a generic micro-
scopic model. In this way we are able to provide exact nu-
merical results for the optical response in the whole parameter
range of Coulomb interaction, fermion-phonon coupling, and
phonon frequency.

II. MODELING APPROACH

A. Exciton-polaron Hamiltonian

The two-band model under consideration is

H =
∑

k

εc(k) e
†
kek +

∑
k

εv(k) hk h
†
k +

∑
q

ωq b†qbq

−
∑
kq

[
ge(q)√

N
e
†
k−qek + gh(q)√

N
h
†
k−qhk

]
(b†q + b−q)

−
∑
pkk′

U (p,k,k′)
N

e
†
kh

†
p−khp−k′ek′ , (1)
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where e
†
k [h†

k] creates an electron [a hole] in the conduction
[valence] band εc(k) [εv(k)]. These electrons and holes feel
an interband Coulomb attraction U (p,k,k′) that may cause
the formation of excitonic quasiparticles (electron-hole bound
states) located in the gap between valence and conduction band.
The coupling of the electrons [holes] to phonons created by b

†
q

is parametrized by ge(q) [gh(q)], where ωq is the energy of
lattice vibrations in the harmonic approximation (h̄ = 1). In
Eq. (1), N is the number of lattice sites; q, p, k, and k′ are
momenta.

In a simplified model, preserving essential features of the
phenomenon, we consider two tight-binding bands of a simple
cubic lattice,

εc,v(k) = Êc,v ± (Wc,v/6)
∑

α=x,y,z

(1 − cos kα), (2)

having bandwidths Wc,v , where the energy of the valence-
band top is set to zero (Êv = 0), i.e., the bottom of the
conduction band gives the the direct band gap Eg at k = 0,
Êc = Eg . Furthermore, we assume momentum independent
Coulomb and electron-phonon interactions, U (p,k,k′) ≡ U,

and ge,h(q) ≡ ge,h, respectively, as well as dispersionless
optical phonons ωq ≡ �. Then a dimensionless fermion-
phonon coupling constant can be defined in the usual way as
λe,h = 2g2

e,h/(We,h�), and we consider the case Wc,v = 3Eg .
The ground-state properties of the model (1) and (2) were
previously analyzed [28].

B. Parameter regimes and material classes

Besides the ground state also the spectral properties of
the exciton-polaron model (1) are determined by the complex
interplay between (i) the Coulomb U/Eg attraction, (ii) the
electron/hole-phonon coupling λe,h, and degree of adiabaticity.
The latter reflects the retarded nature of the coupling of the
fermions to the lattice vibrations and can be characterized by
the following parameter ratios: (a1) �/Eg or �/Wc,v and (a2)
�/Eb which basically place the the phonon frequency into
relationship to one-particle (band gap or bandwidth) energies
and many-particle (binding) energies, respectively. Thereby
different material classes cover almost the whole range of
physical parameters with respect to (i), (ii), (a1), and (a2),
where small (large) ratios of (a1) and (a2) indicate an adiabatic
(non-to-antiadiabatic) situation.

In several 3D materials a strong exciton-phonon interaction
is realized. For example, the optical response of ZnO, having
hexagonal wurtzite or cubic zinc-blende structure, exhibits a
pronounced exciton (polaron) peak (pointing towards a binding
energy of about 60 meV), which is accompanied by at least
three sidebands related to a phonon frequency of about 70
meV [29–31]. Other examples are alkali halides [32] and
thallous halides [33], where one can observe from three to
five phonon sidebands. The alkali halides are clearly in the
adiabatic regime with respect to (a2) because the typical
binding energy of the exciton is about 1 eV [34,35], which is
much larger than the frequencies of lattice vibrations (16–40
meV [32]) that participate in the exciton-polaron formation. On
the other hand the binding energy of the exciton is about 12
(10) meV in the thallous halides TlCl (TlBr) and therefore are

considerably smaller than the corresponding phonon frequency
22 (15) meV [33]. Hence, these materials are in the (a2)
non-to-antiadiabatic regime. From this point of view, ZnO
is in an intermediate adiabaticity regime because the exciton
binding energy (∼60 meV) is comparable to the relevant
phonon frequency (∼70 meV) [29–31].

We note that the ratio of the phonon frequency and the
exciton binding energy of the exciton in a bulk material and
its low-dimensional counterpart might differ. In a sense, this
allows us tune the (a2) adiabaticity ratio by reducing the
effective electronic dimensionality. Especially in monolayer
systems the exciton binding energy can exceed those of the bulk
system by an order of magnitude. Prominent examples are the
transition-metal dichalcogenides WS2 and WSe2 with binding
energies (phonon frequencies) ranging from 0.7 to 0.8 eV
(30 to 100 meV) [36–38], whereas Eb of the bulk materials
(∼55 meV) is comparable to the characteristic phonon fre-
quencies. Another example is molybdenum disulfide MoS2.
Here the monolayer Eb � 400 meV is considerably larger than
the Eb bulk value of about 85 meV [39,40]. Since the phonon
frequency in this material is in the order of 50 meV [39,40],
monolayer and bulk systems typify different (a2) adiabaticity
regimes.

Special caution is required when examining the (a1)
adiabaticity in organic compounds. Here typical electronic
bandwidths are in the range from 4 to 60 meV whereby
the typical frequencies of intermolecular vibrations range
from 3 to 25 meV [41–43]. Hence, the energy of the lattice
vibrations can be either greater or less than the electronic
bandwidth. In this regard, it has been known for a long time
that manifestation of phonon sidebands strongly depends on
the ratio between the electronic bandwidth and the phonon
frequency [44]. Let us finally point out the rather exotic case of
body-centered-orthorhombic sodium nitrite NaNO2 which is in
the profound nonadiabatic electron-phonon coupling regime:
Here the phonon energy (∼12 meV) notably exceeds the
exciton dispersion (∼0.4–0.6 meV) [45].

Analyzing in what follows the different parameter regimes
(i), (ii), (a1), and (a2) for the 3D model (1), we can give
an at least qualitatively correct picture of exciton-polaron
formation also for electronically low-dimensional materials,
simply by using the corresponding parameter ratios. This is
also supported by the experimental indications that the decisive
control parameter for exciton-polaron formation is mainly the
ratio between electronic and phononic energy scales and not so
much the effective spatial dimensionality of the problem [44].

III. ABSORPTION SPECTRA AT PARTICULAR
PHYSICAL REGIMES

Discussing the optical properties of exciton polarons, we
look at the photon-absorption transition rate, which is propor-
tional to the spectral function A(ω) that itself is related to the
real part of the optical conductivity σ (ω) by

Re[σ (ω)] = A(ω)/ω,

Ref. [46]. To figure out polaronic effects, we impose
the normalization

∫ ∞
0 dωA(ω) = 1. In order to disentangle

to some extent the complex interplay between Coulomb
and electron/hole-phonon-coupling effects in the process

045141-2



OPTICAL SIGNATURES OF EXCITON POLARONS FROM … PHYSICAL REVIEW B 97, 045141 (2018)

0 1 2

0.1

1

10

1.5

1.9
2

2.1

2.3
2.5

3

A
(ω
)

ω/Eg

3.5

0.8 1.0 1.2 1.4
0

10

20

A
(ω
)

ω/Eg

U=2.1

FIG. 1. Spectral function A(ω) for the pure excitonic model
(λe = λh = 0) at different U/Eg . Inset in the left shows A(ω) at
U/Eg = 2.1 in linear scale.

of (exciton-polaron) bound-state formation, we analyze in
what follows different characteristic situations for the three-
dimensional case.

A. Pure Coulomb attraction

Our starting point is the optical response of the Coulomb-
only interacting electron-hole system. From Fig. 1 one clearly
sees (i) the optical-absorption threshold ω � Eg for small
U/Eg , (ii) how spectral weight accumulates at the bottom of
the optical spectra as U/Eg increases, (iii) that an excitonic
peak splits off at the critical value Uc/Eg � 1.98, which (iv)
separates more and more from the broad absorption band until
it requires zero excitation energy for very large Coulomb attrac-
tions when the exciton level approaches the valence-band top.

B. Coupling to the lattice: Adiabatic case

Here we first neglect the Coulomb interaction between
electrons and holes (U = 0). Results are inserted in Fig. 2(a).
Working in the (a1) adiabatic regime, we observe (i) the
lowering of the optical-absorption threshold as the fermion-
phonon coupling ge = gh increases and (ii), at larger values
of λ, an undulated absorption signal related to multi-phonon-
involved processes when polaron formation sets in. Adding
the coupling to the lattice degrees of freedom to the Coulomb
attraction, in comparison to Fig. 1, electron-hole bound states
develop at substantially lower values of U [note that U < Uc in
Fig. 2(b)]. Now the quasiparticle formed is largely dressed by
phonons however, and therefore can be viewed as an exciton
polaron. The polaron exciton is characterized by a low spectral
weight of the electronic part of the optical response because
the electron-hole bound state is entangled with a many-phonon
(cloud) state. Then the small low-energy peak at λ = 0.18
in Fig. 2(b), separated from the rest of the spectra, is what
is left projecting the exciton-polaron signal to a zero-phonon
state. In accordance with that, the preexisting strong excitonic
peak drawn for U/Eg = 3 and λ = 0 [see Fig. 2(c)] is not
only shifted to lower energies but lowered in intensity when
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FIG. 2. Optical response depending on the fermion-phonon inter-
action strength (given at spectra) in the adiabatic regime �/Eg = 0.1,
where U = 0 (a), U/Eg = 1.9 (b), and U/Eg = 3.0 (c). Results for
λe = λh are given by solid lines; dashed magenta lines indicate the
typical behavior when λe > 0 and λh = 0.

the fermion-phonon coupling comes in to play. Intensity of
low-energy peaks in Figs. 2(b) and 2(c) is lost to a series of
phonon sidebands higher in energy, separated by the phonon
frequency � = 0.1Eg . This can be taken as a signature for
exciton-polaron formation due to the constructive interplay
of Coulomb and fermion-phonon interaction. Hence notable
polaronic effects are observed even in the weak fermion-
phonon coupling regime. We exemplarily included in Fig. 2
the case where the coupling to phonons takes place in the
conduction band only (see dashed lines). Despite that the
fermion-phonon interaction has to be approximately twice
(four times) as large to form exciton polarons for U = 0
(U � Uc), i.e., when a conduction-band polaron catches the
hole in the valence band developing a bound state, the spectra
do not change much qualitatively.

Let us emphasize that the pattern of phonon sidebands
appearing in Fig. 2 is observed in the optical spectra in a whole
range of different materials; see, e.g., Refs. [22,44,47–49].
Note that the pattern of the phonon sidebands in the (a1)
adiabatic regime strongly depends on the (a2) adiabaticity
parameter �/Eb. In the case of (a2) nonadiabaticity �/Eb > 1
[see Fig. 2(b) for λ = 0.06 and λ = 0.12], the energy separa-
tion of the first phonon sideband from the main exciton peak is
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FIG. 3. Spectral function A(ω) in the nonadiabatic regime
�/Eg = 1 at various λ = λe,h (given at spectra) for (a) U = 0, (b)
U/Eg = 1.9, and (c) U/Eg = 3.0.

less than � whereas the distance between the higher sidebands
corresponds more or less exactly with �. This is in accordance
with the experimental data for MgO, BeO, TlCl, and TlBr
which are in the (a2) nonadiabatic regime [33,50–54]. On the
other hand, all sidebands are separated by � when �/Eb � 1;
see Figs. 2(c) and 2(b) for λ = 0.18. This is in agreement with
the experimental data on (a2)-type adiabatic exciton polarons
in alkali halides [32,34,35], as well as for the intermediate
case—regarding the adiabaticity ratio—of ZnO [29–31].

C. Coupling to the lattice: Nonadiabatic case

Let us now take a closer look at the (a1) antiadiabatic
regime. Figure 3 presents the optical response for �/Eg = 1,
i.e., the energy for bridging the band gap by photon absorption
is the same as exciting one phonon. Recall that the polaron
crossover is much smoother in the (a1) antiadiabatic regime
than in the adiabatic one, and a stronger fermion-phonon
coupling ge,h is necessary because now the ratio between the
polaron binding energy and the large frequency of the phonons
matters [55,56]. Large � is reflected in Fig. 3(a) for U = 0 in
modulation of the spectral weight at the large phonon scale
(� = 1). Due to resonance � = Eg condition the low-energy
peak, which can be attributed to an “bipolaronic” (electron-
hole) quasiparticle bound by fermion-phonon interaction only
[28,57], becomes separated from the rest of the spectrum not

at λ = 0.5, as predicted in [28,57], but only when λ = 0.6.
For λ = 0.5, the lowest bump consists of three overlapping
absorption signatures, separated by energies less than the
phonon frequency. This is because calculating A(ω) we have
to integrate over the momenta and, in the transition region, the
bipolaron splits off from two (conduction and valence) bands
having a renormalized (but still finite) bandwidth each, which
leads to a central peak and a lower (upper) satellites when
the bipolaron band develops. By contrast, when the fermion-
phonon interaction is present in only one of bands, we observed
only a two-peak structure in the crossover regime (not shown).
Figures 3(b) and 3(c) with U/Eg = 1.9 and U/Eg = 3.0, re-
spectively, illustrate the development of exciton polarons in the
(a1) antiadiabatic regime. Here the fermion-phonon coupling
λ again triggers the formation of a bound state for U < Uc

[see the curves for λ = 0.18, 0.24, and 0.28 in (b)], and a
notable shift of the excitonic level towards the top of the valence
band for U > Uc [compare, in particular, Figs. 1 and 3(c)]. A
similar scenario is observed when only the electrons in the
conduction band couple to phonons whereby, in this case, a
larger (one-band) electron-phonon interaction is necessary.

Obviously, the dependence of the sideband pattern on the
(a2) adiabatic parameter �/Eb is now very similar in both
the (a1) adiabatic and (a1) nonadiabatic regimes. Thereby the
separation of the first phonon sideband from the main exciton
peak is less than the phonon energy � in the case of (a2)
nonadiabaticity, whereas it is approximately equal to � when
�/Eb � 1. This trend can be clearly seen in the evolution of
the absorption spectra when going from λ = 0.06 to 0.28 in
Fig. 3(b), and going from λ = 0.013 to 0.093 in Fig. 3(c).
The conclusive role of the (a2) adiabaticity parameter �/Eb

is confirmed by experiments on the “nonadiabatic” MgO,
BeO, TlCl, and TlBr [33,50–54] compounds, the “adiabatic”
alkali halides [32,34,35], and the “intermediate” case of ZnO
[29–31].

IV. DIAGRAMMATICS FOR THE CURRENT-CURRENT
CORRELATION FUNCTION

The spectral function A(ω) is obtained by analytic contin-
uation of the imaginary time current-current correlation func-
tion �(τ ) = 〈vac|Tτ j(τ )j(0)|vac〉 to real frequencies, solving
the equation �(τ ) = ∫ ∞

0 dω exp(−τω)A(ω) by the stochastic
optimization consistent constraint method [26,58–60]. The
current operator, in real space, is defined as j = i[H,P] with the
polarization operator P = −eD

∑
j e

†
jh

†
j + H.c., where D =∫

drφ∗
e (r)rφh(r) is the interband electron-hole dipole matrix

element [46]. For the model (1) and (2) under study, we obtain
(e.g., in the x direction): jx = j

(f )
x + j

(p)
x , i.e., a sum of a purely

fermionic contribution,

j (f )
x = ieDx

∑
k

f (k)Xk + H.c., (3)

and a polaronic contribution,

j (p)
x = ieDx√

N
(ge + gh)

∑
kq

Yk,q + H.c., (4)

where Xk = c
†
kh

†
−k, Yk,q = c

†
kh

†
−k−q(b†q + b−q), and f (k) =

−(Wc + Wv)/6
∑

α[1 − cos(kα)] − Eg + U . For the limiting
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FIG. 4. Typical diagrams in the Feynman expansion of the
current-current correlations function. Here solid (dashed) horizontal
black lines represent electron (hole) propagators, dotted magenta lines
denote phonon propagators, and wiggled blue lines symbolize the
Coulomb attraction between electrons and holes. According to the
absence (presence) of zero, one, or two phonon propagators attached
at imaginary times 0 or τ (red dotted line marked by “g”), we obtain
four different topologies of the left diagram. Presence (absence) of g

propagator means that the correlation function is terminated by the
operator Xk (Yk,q).

case of a wide-gap semiconductor (Eg → ∞) f (k) = fc is
a constant whose absolute value |fc| is larger than all other
characteristic energies Wc, Wv , and the maximum ωq. The
detailed functional form of f (k) only marginally affects the
results for the spectral function and f (k) = fc is set to unity
(as well as electron charge, matrix element |Dx |, and Planck
constant h̄) for the calculations presented above. Also, we
will first neglect the polaronic contribution to the current and
discuss its influence separately below.

Adapting the DMC method to the calculation of the optical
spectrum A(ω), we rewrite the current-current correlation
function in interaction representation and expand it with
respect to both Coulomb attraction (U ) and fermion-phonon
coupling (ge,h) strengths. Typical phonon-dressed ladder-type
Feynman diagrams [61], which contribute in such a series
expansion, are depicted in Fig. 4. The weight attributed to
a given diagram is the product of the interaction vertices
[U (p,k,k′), ge(q), and gh(q)] and Matsubara Green functions
(for electrons, holes, and phonons) at imaginary times (τ ),
where momentum conservation is imposed by the Hamiltonian
(1). We point out that the DMC updates of Coulomb vertices
and phonon propagators are similar to those used for the
pure exciton [27,28] and polaron [26] problem, respectively.
The main difference between the previous and present DMC
implementations is due to the two distinct current operator
contributions, (3) and (4). Accordingly, the DMC now has to
switch between four topological different classes of Feynman
diagrams, namely XX, XY , YX, and YY , depending on
whether the beginning or end of the current-current correlation
function is terminated by X or Y operators; see Fig. 4. The new
DMC approach was validated, for the one-dimensional case,
using expressions (3) and (4), by comparison with a truncated
phonon-space exact diagonalization of (1) [62–64]. We work
within DMC in the thermodynamic limit N → ∞.

Figure 5 illustrates the influence and relative importance
of the electron j(f ) and polaron j(p) parts of the current to the
spectral function A(ω). In the adiabatic regime, the polaronic
current significantly contributes to the low-energy optical
response of the system but the peak positions and the overall
line shape are unaltered. By contrast, in the antiadiabatic
regime, the lowest peak, attributed to exciton polarons, is
less affected by j(p) regarding the spectral weight; now j(p)
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FIG. 5. Contributions to the optical response, A(ω), in the adi-
abatic �/Eg = 0.1 [(a) and (b)] and antiadiabatic �/Eg = 1.0 (c)
cases. The fermion-phonon couplings are assumed to be the same
in the valence and conduction bands, λe,h = λ. Thick red (thin
blue) lines give results when both current contributions j(f ) and j(p)

(only j(f )) were included.

primarily influences the threshold and shape of the upper
absorption band.

V. CONCLUSIONS

To sum up, utilizing a refined diagrammatic Monte Carlo
method, we discussed the optical absorption of photons by ex-
citon polarons within a paradigmatic two-band model, treating
Coulomb and fermion-phonon coupling effects on an equal
footing. The results are unbiased, and were derived for the
infinite system in three dimensions. Even though both interac-
tions promote the formation of electron-hole bound states in
the band gap, the resulting quasiparticles—and consequently
their optical signatures—can be very different depending on
the relative strength of the Coulomb attraction and the coupling
to the lattice degrees of freedom where also retardation effects
play an important role. While the predominantly Coulomb-
bound exciton polaron shows a strong and narrow resonance,
the optical signal of an exciton heavily dressed by phonons
has a much lower spectral weight, similar to bipolarons.
When the phonons are slow (adiabatic regime), the low-energy
contribution resulting from the polaronic part of the current-
current correlation function is substantial, whereas for fast
phonons, in the non-to-antiadiabatic regime, the polaronic
current mainly affects the threshold and line shape of the
upper optical-absorption band. We furthermore show that the
distance of the first phonon sideband from the zero phonon
line is smaller than the separation of the consequent higher
energy sidebands when the phonon frequency is larger than
the exciton binding energy. In this way our model calculations
will support the analysis of optical-absorption measurements
in a wide class of correlated materials.
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