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Competition among various charge-inhomogeneous states and d-wave superconducting
state in Hubbard models on square lattices

Kota Ido, Takahiro Ohgoe, and Masatoshi Imada
Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

(Received 7 September 2017; revised manuscript received 14 December 2017; published 22 January 2018)

We study competitions among charge-uniform and -inhomogeneous states in two-dimensional Hubbard models
by using a variational Monte Carlo method. At realistic parameters for cuprate superconductors, emergent effective
attraction of carriers generated from repulsive Coulomb interaction leads to charge/spin stripe ground states,
which severely compete with uniform superconducting excited states in the energy scale of 10 K for cuprates.
Stripe period increases with decreasing hole doping δ, which agrees with the experiments for La-based cuprates
at δ = 1/8. For lower δ, we find a phase separation. Implications of the emergent attraction for cuprates are
discussed.
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I. INTRODUCTION

After the discovery of the high-temperature superconduc-
tivity in the cuprates [1], its mechanism remains one of
the most challenging issues in condensed-matter physics. A
necessary condition of high-temperature superconductivity for
strongly correlated electron systems is large effective attrac-
tive interactions between electronic carriers emerging from
strong Coulomb repulsions. However, this strong attraction
can also enhance the tendency of electron aggregations in
real space. This means that the strong attractive interaction
induces diverging charge compressibility [2,3] as well as
charge-inhomogeneous states such as phase separations (PSs)
and stripe states [4–16]. In fact, the competition between the su-
perconductivity and the charge inhomogeneity as a stripe state
has been observed and well discussed in La-based cuprates
[17–21]. Recently, such phenomena were also reported in Y-
[22–27], Hg- [23,28], and Bi-based cuprates [29–31], indicat-
ing a ubiquitous feature in the cuprate superconductors [32,33].

To understand the origin of superconductivity in cuprates,
the Hubbard model on a square lattice has been studied for long
time. Although many theoretical studies have been devoted
to understanding the ground states of the Hubbard model,
they are still under debate [2,12–15,34–46]. To gain insight
into the charge-inhomogeneous phases including the stripes,
detailed analyses of their existence and competitions with the
d-wave superconductivity are desired, particularly on their de-
pendences on the hole-doping concentration δ, band structure,
and the interaction. Most numerical studies based on varia-
tional calculations or dynamical mean-field theory showed that
charge-uniform states are the ground states or macroscopic
phase separation appears [12,13,35–37,40,41,47]. However,
in these calculations, the possibility of long-period stripe
states is ignored. Recent studies using the infinite projected
entangled-pair states, the density-matrix embedding theory
(DMET), the constrained-path auxiliary-field quantum Monte
Carlo method, and the density-matrix renormalization group
all reported the stripe ground state but studied systemati-
cally only for a special choice of band structure (only with
nearest-neighbor transfer t = 1) at δ = 0.125, with 8 and 16

periods for charge and spin stripes, respectively [46]. Recent
variational Monte Carlo (VMC) calculations combined with
tensor network states also found stripe states with 8 and 16
(for δ < 0.15) and 4 and 8 (for δ > 0.15) periods for charge
and spin as ground states below δ ∼ 0.25 [15], respectively.
However, the stripe period extensively studied at δ = 0.125 in
these calculations is different from that observed in La-based
cuprates, which is four charge and eight spin periods [17,18].
These results imply that more systematic and realistic study is
needed to understand the real cuprate systems.

One of the missing ingredients in the simple Hubbard model
is hopping parameters beyond the nearest-neighbor pairs. The
previous DMET study showed that the stripe state in the
experiments has a lower energy than the charge-uniform state
in the system with the next-nearest-neighbor hopping [43].
However, since the sizes of embedded clusters are restricted,
the competitions with other stripe states are still unclear at a
finite hole concentration.

In this paper, by using the VMC method, we study the
competitions among stripe states with different periodicities
in addition to charge-uniform states. We show that the ground
states have stripe orders, the period of which decreases with
increasing δ in a wide range. In the lower doping region, the
PS occurs between the antiferromagnetic insulator and the
stripe state. More importantly, we find that the stripe state
experimentally observed at δ = 0.125 is indeed the ground
state for a realistic value of next-nearest-neighbor hopping.
We clearly see that the superconducting (SC) long-range order
is strongly suppressed due to the emergence of stripe orders,
while charge-uniform and strong superconducting states exist
as excited states with tiny excitation energies.

II. MODEL AND METHOD

We study the t − t ′ Hubbard model on square lattices
under the antiperiodic-periodic boundary condition. The
Hamiltonian is defined by

H = −
∑
i,j,σ

tijc
†
iσ cjσ + U

Ns∑
i

ni↑ni↓, (1)
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where the hopping amplitude tij is taken as tij = t for the
nearest-neighbor pairs, tij = t ′ for the next-nearest-neighbor
pairs, and otherwise tij = 0. U is the on-site repulsive inter-
action, Ns = L × L is the system size, c

†
iσ (ciσ ) is a creation

(annihilation) operator of an electron with spin σ on site i, and
niσ = c

†
iσ ciσ . The lattice constant is taken as the length unit.

We mainly performed the calculations for U/t = 10 because
it is close to the proposed ab initio estimate for cuprates [48].

To study the ground states of the Hubbard model, we
have used the VMC method. As a trial wave function, we
adopted the generalized pair-product wave function with corre-
lation factors: |ψ〉 = PGPJPex

d−h |φ〉 [49]. Here, the Gutzwiller
factor PG = exp (−g

∑
i ni↑ni↓), the Jastrow factor PJ =

exp(−∑
i,j vijninj ), and the doublon-holon correlation fac-

torPex
d−h = exp(−∑5

m=0

∑
l=1,2 α

(l)
(m)

∑
i ξ

(l)
i(m)) are considered,

and |φ〉 = (
∑Ns

i,j fijc
†
i↑c

†
j↓)N/2 |0〉, where ni = ni↑ + ni↓ and

N is the number of electrons. ξ
(l)
i(m) is 1 when a doublon

(holon) exists at the ith site and m holons (doublons) surround
the lth nearest neighbor. Otherwise, ξ

(l)
i(m) is zero. In this

study, we treat g,vij,α
(l)
(m), and fij as variational parameters.

To describe inhomogeneous stripe states, we assume that
fij has the ls × 2 sublattice structure, which enables the ls
period spin stripe. In our calculations, we treat several tens of
thousands of variational parameters for the largest systems. All
the variational parameters are optimized by using the stochastic
reconfiguration method [50].

To clarify physical properties of the ground
states, we measured the spin structure factor Ss(q) =

1
3Ns

∑
i,j 〈Si · Sj 〉 e−iq·(r i−rj ), the charge structure factor

Sc(q) = 1
Ns

∑
i,j 〈ninj − ρ2〉 e−iq·(r i−rj ), and the long-range

part of dx2−y2 -wave SC correlation functions P ∞
d =

1
M

∑
|r|�rmax/2 Pd (r), where M is the number of vectors satis-

fying |r| � rmax/2. Here, ρ = ∑
i,σ 〈niσ 〉 /Ns , rmax = L/

√
2,

and Pd (r) = 1
2Ns

∑
i 〈	†

d (r)	d (r + r i) + 	d (r)	†
d (r + r i)〉,

with 	d (r i) = 1√
2

∑
r g(r)(cr i↑cr i+r↓ − cr i↓cr i+r↑). The

form factor g(r) is defined as g(r) = δrx ,0(δry,1 + δry ,−1) −
δry ,0(δrx,1 + δrx ,−1), where r = (rx,ry). We define the
spin/charge order parameter as 	S/C = √

Ss/c(qpeak)/Ns ,
where Ss/c(qpeak) represents the peak value of the spin/charge
structure factor. We also define the SC order parameter as
	SC = √

P ∞
d .

III. RESULTS

A. Ground-state phase diagram of the t − t ′ Hubbard model

The main results are summarized in Fig. 1, which shows
the ground-state phase diagram in the δ-t ′ plane for U/t = 10.
Throughout this paper, the stripe state with charge (spin) period
lc (ls) is denoted as ClcSls for simplicity. Charge-uniform states
are obtained under the 2×2 sublattice structures, and energies
are compared with inhomogeneous states obtained under
longer sublattices. As shown in Fig. 1, charge-inhomogeneous
states exist as the ground states in a wide range of δ for any
t ′/t . The wavelength of the charge lc becomes longer with
the decrease of δ, and eventually, the PS, whose wavelength
is infinite, occurs between the antiferromagnetic insulator and

 0

 0.1

 0.2

 0.3

 0  0.1  0.2  0.3  0.4  0.5

Uniform
(PM)

C2S4C3S3

C4S8

C5S5

C6S12

C7S7

PS
AF

FIG. 1. Ground-state phase diagram of the Hubbard model on a
square lattice for U/t = 10. Note that t ′/t is a negative value. At
δ = 0, the ground state is the antiferromagnetic (AF) Mott insulator
(thick green line). Crosses indicate the calculated boundary of the
phase separation (PS). Solid black circles represent the calculated
boundaries of ClcSls stripe states, with lc and ls being the period for
charge and spin, respectively. The dashed line shows δ = 0.125. Solid
lines and colored regions are guides for the eyes. In the white region,
the ground state is a charge-uniform paramagnetic (PM) state.

a stripe state. For −0.3 � t ′/t � −0.15, which is a realistic
range of t ′/t for the cuprates, the ground state at δ = 1/8 is
the C4S8 state which has been observed in La-based cuprates
[17,18]. However, charge-inhomogeneous states are stabilized
even in the highly overdoped regime, and thus a uniform
d-wave superconducting state does not appear as the ground
state of the single-band Hubbard model at strong coupling.
We will discuss our numerical results in comparison with the
experiments in Sec. IV.

B. Ground states and excited states

First, we show results for t ′/t = 0 as the simplest model.
Figure 2(a) shows the energies of uniform and stripe states
with different periodicities as functions of hole-doping con-
centration δ = 1 − N/Ns . We show evidence for the stripe
long-range order described in Fig. 2(a) later in Fig. 4. From
Fig. 2(a), we see that stripe states are the ground states
below δ ≈ 0.25. The maximum value of the energy difference
between uniform and stripe states is of the order of ∼0.01t

at δ ≈ 0.125, which is consistent with the recent results by
other numerical calculations such as the tensor network states
[15,46]. By increasing the hole concentration, the wavelength
of the charge lc becomes shorter. This is naturally related to the
mean distance between holes, which decreases with increasing
doping concentrations. Stripe states with lc � 3 were not found
as ground states.

To clarify the possibility of PS, we performed a Maxwell
construction for the energy curve of the ground states [dashed
line in Fig. 2(a)]. We find that a PS appears for 0 < δ � 0.125.
This region is narrower than that obtained in the previous VMC
study, where only uniform states were assumed [13]. Then we
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FIG. 2. Doping concentration dependence of energies for several
different states in the two-dimensional Hubbard model with U/t =
10 at (a) t ′/t = 0 and (b) t ′/t = −0.3. A linear function f (δ) =
−1.835δ − 0.4211 or g(δ) = −1.4δ − 0.4211 is subtracted for better
visibility. For clarity, a thick yellow line represents the energies of
the ground states. Types of states and system sizes are described in
the legend. Error bars arising from the Monte Carlo sampling are all
smaller than the symbol size. The dashed black line and gray region
show the tangent line of the energy curve drawn from δ = 0 and PS,
respectively. In (a), commensurate fillings δ = 1/lc are indicated by
colored arrows.

conclude that the stripe states are stable ground states in the
region 0.125 < δ < 0.25. At δ ≈ 0.125, several stripe states
for lc = 6–8 are nearly degenerate, which is also consistent
with recent studies by other numerical methods [46]. The
charge and spin configurations of the C8S16 state at δ = 0.125
are plotted in Figs. 3(a) and 3(b), respectively.

Next, we show the results for t ′/t = −0.3, which is
a realistic value for the cuprate superconductors [48].
Figure 2(b) shows the hole-doping dependence of the energies
for U/t = 10. We find an essential similarity to the case
t ′/t = 0, indicating the robust stability of the stripe ground
state irrespective of the band structure. A quantitative differ-
ence is, however, that the stripe states as ground states extend
in a wider region, 0.1 < δ < 0.5. Moreover, the ground state
at δ = 0.125 shows C4S8 order, which is consistent with the
experiments of La-based cuprates [17,18]. The charge and spin
configurations of the C4S8 ground state at δ = 0.125 are shown
in Figs. 3(c) and 3(d), respectively. This C4S8 state stably exists
as the ground states for 0.11 � δ � 0.15, although it severely
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FIG. 3. Charge density n(r) = 〈nr↑ + nr↓〉 and spin density along
the z direction Sz(r) = 0.5 〈nr↑ − nr↓〉 for the ground state for L = 16
and U/t = 10 at δ = 0.125. The next-nearest-neighbor hoppings are
(a) and (b) t ′/t = 0 and (c) and (d) t ′/t = −0.3. Note that the simula-
tions were performed for finite-size systems. Nevertheless, the varia-
tional wave functions show translational symmetry breaking when the
momentum projection is not operated. Although a better ground-state
wave function is obtained after the momentum projection, the overlap
of the two functions spatially translated with each other negligible in
the size L = 16, and the order parameter is expected to be close to
the thermodynamic limit.

competes with other stripe order such as C3S3 and C5S5.
The locking of stripe period has been recently observed in
the scanning-tunneling-microscope experiment combined with
the phase-resolved electronic structure visualization technique
[29]. Below δ ∼ 0.1, a PS between antiferromagnetic and
stripe states occurs as in the case of t ′/t = 0.

C. Spin, charge, and superconducting orders

The δ dependences of 	2
S and 	2

C for t ′/t = 0 are shown in
Figs. 4(a) and 4(b), respectively. We see that 	2

S decreases as δ

increases. On the other hand, 	2
C has a dome structure around

the maximum at δ ∼ 0.1. The domelike stripe order exists even
after the extrapolation to the thermodynamic limit, as shown
in Appendix B.

Figure 4(c) shows the δ dependence of 	2
SC. We see that

	2
SC in the stripe states is substantially smaller than those

of charge-uniform states. The previous VMC study showed
that the strong superconductivity obtained by assuming charge
uniformity emerges nearly in accordance with the region of
the PS and therefore is mostly preempted by the PS [13]. In
the present study, we have shown that if microscopic inhomo-
geneity is allowed, a large portion of the PS is compromised
as the formation of stripes. The superconductivity is weakened
by the stripe formation anyhow because of its character, where
1D-like carrier rich strips are weakly coupled by the interchain
Josephson tunneling. However, it should be remarked that the
uniform strongly SC state also survives as an excited state with
the excitation energy on the order of 0.01t (in the cuprate scale
∼10–100 K), as we see in Figs. 2(a) and 2(b). 	2

SC in the

045138-3



KOTA IDO, TAKAHIRO OHGOE, AND MASATOSHI IMADA PHYSICAL REVIEW B 97, 045138 (2018)

0.0 0.1 0.2 0.3

0.00

0.02

0.04

0.06

0.00

0.02

0.04

0.00

0.02

0.06

0.04

L=20, Uniform
L=16, C4S8
L=20, C5S5
L=24, C6S12
L=14, C7S7

L=16, C8S16
L=18, C9S9
L=22, C11S11
GS

(b)

(a)

(c)

FIG. 4. The δ dependence of (a) 	2
S, (b) 	2

C, and (c) 	2
SC for

U/t = 10 and t ′/t = 0. Notations are the same as in Fig. 2(a). An
enlarged view for 	2

SC is shown in Appendix A.

uniform state has a dome structure [13] similar to that of 	2
C

in the ground state, as we see in Figs. 4(b) and 4(c).
Figure 5 plots physical quantities for the case of t ′/t =

−0.3, which are again similar to those in the case of t ′/t = 0.
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FIG. 5. The δ dependence of (a) 	2
S, (b) 	2

C, and (c) 	2
SC for

U/t = 10 and t ′/t = −0.3. Notations are the same as in Fig. 2(b).
An enlarged view for 	2

SC is shown in Appendix A.
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FIG. 6. Interaction dependence of the stability of uniform and
inhomogeneous states (the energy difference 	E = Estripe − Euniform)
for t ′/t = −0.3. Here, Estripe and Euniform are the energies of stripe and
uniform states, respectively. Circles, squares, and triangles show the
energies of the C2S4, C3S3, and C4S8 stripes, respectively. Red,
green, and blue symbols represent 	E for U/t = 10, 6, and 4,
respectively. Curves are guides for the eyes.

Note that the stripe order parameters remain finite in the
thermodynamic limit below δ ∼ 0.4 (see also Appendix B).
However, in the experiments, the stripe state has been observed
only below δ ∼ 0.2 [33]. This discrepancy will be discussed
later.

D. Interaction dependence for t ′/ t = −0.3

Finally, we show the interaction dependence of the energy
difference between the uniform and inhomogeneous states for
t ′/t = −0.3 in Fig. 6. The stripe states are the ground states
above U/t ∼ 4, and the stripe phase expands with the increase
inU . ForU/t = 6, the stripe and the uniform strongly SC states
are nearly degenerate around δ ∼ 0.3. The stripe and uniform
SC order parameters become smaller compared with those for
U/t = 10, but the δ dependence is similar, and we do not find
a clear indication of PS. (See Appendix C.) At U/t = 4, the
charge-uniform state is nearly degenerate with the stripe state,
but the order parameters for the stripe and SC are all nearly zero
in both states, implying that the ground state is a paramagnetic
metal. Although the stability changes, the stripe and SC orders
have a similar trend in the dependences on U and δ.

IV. DISCUSSION

The same trend between the stripe and SC orders is naturally
understood because the emergent and strong effective attrac-
tive interaction of carriers, which arises from the originally
repulsive interaction, generates both of the order. The stripe
as a consequence of aggregation of carriers in real space and
the strong-coupling superconductivity both require strong ef-
fective attraction of carriers. The effective attraction may have
both static and retarded pieces. It is possible that the latter may
be contributed by bosonic glues, including spin fluctuations
[51–55], and reinforced by hidden-fermion excitations [56,57].
The static effective attraction is a direct consequence of the
negative quadratic coefficient b < 0 in the energy expansion
E = E0 + aδ + bδ2 + · · · , as seen in Figs. 2(a) and 2(b);
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b < 0 is caused by the Mottness, where the kinetic energy
decreases nonlinearly upon doping [13].

In the presence of realistic values of t ′/t and U/t for
cuprates, our calculations show a severe competition among
stripe states with lc = 3–7 below δ ∼ 0.2. The charge wave-
lengths lc = 3–7 have been observed in a number of cuprates
for 0.05 � δ � 0.2 [17–29]. The wavelength of charge lc = 4
is consistent with the observations not only in La-based
cuprates [17,18] but also in a Bi-based cuprate [29]. The charge
inhomogeneity with lc = 5–7 has been observed in La-based
cuprates below δ ∼ 0.1 [19–21]. The wavelength lc = 3 is
close to the experimental observations for a Y-based cuprate
[22–27]. The charge wavelengths observed in a single-layer
Hg-based cuprate are lc ≈ 3.58 [23] and 4.35 [28], which is
located within lc = 3–5. Recent first-principles studies have
shown that the single-layer Hg-based cuprate has weaker
effective Coulomb interactions than the single-layer La-based
cuprate [48,58]. Our results support these studies because
the inhomogeneities become weaker with weakening of the
interaction, which is consistent with the experiments where
the charge order in the Hg-based cuprate is much weaker than
that in the La-based cuprate [20,21,23].

The parameter values t ′/t = −0.3 and U/t = 10 were pro-
posed as realistic values for the cuprates [48,59,60]. However,
our results show that the stripe phase is extended in a much
wider range of δ compared with the experiments. On the other
hand, by weakening U/t , the stripe order parameters and the
energy difference between the stripe states and the uniform SC
state becomes small. These results imply that an appropriate
description of single-band effective Hamiltonians for cuprates
is found in the region of intermediate on-site interactions rather
than the strong-coupling region, at least in terms of the stability
of the stripe and SC phases.

The reason why the d-wave SC ground state does not
clearly appear, in contradiction to the experimental results, is
speculated to be the oversimplification of the Hubbard models
we studied. As recent numerical results are consistent with
each other [46], the discrepancy does not seem to originate
from the limitation of the accuracy of our calculations (see
also the last paragraph of this section). In order to make a more
quantitative and reliable comparison with experiments beyond
our present analysis, we should analyze the ab initio effective
Hamiltonians, which include long-range Coulomb interactions
and hopping integrals and, if necessary, the electron-phonon
coupling missing in the simplified Hubbard model. For ex-
ample, in the ab initio single-band effective Hamiltonian for
the Hg-based cuprate [48], the nearest-neighbor Coulomb
interaction is about 20% of the on-site interaction. The third-
nearest-neighbor hopping t ′′ in the effective Hamiltonian also
has a non-negligible value of t ′′/t ∼ 0.15 [48]. A tiny energy
difference between the superconducting and stripe states is sub-
ject to be easily reversed by such realistic factors. We are now
at a stage that allows quantitative comparisons between model
(or even ab initio) calculations and the experimental results
because of the achieved accuracy of the solver. The origin of
the quantitative discrepancy will be discussed elsewhere based
on first-principles studies.

One may be concerned about the accuracy of the present
calculation. However, our trial wave function can be sys-

tematically improved by using methods such as the power
Lanczos and/or tensor network [15,61–64]. These additional
refinements indeed lower the energies. However, the energies
are nearly equally lowered among competing states, and other
physical quantities such as stripe and superconducting orders
only slightly change [13,15]. (See also Appendix D.)

V. SUMMARY

Our VMC calculations show stripe ground states of the
Hubbard models irrespective of the amplitude of the next-
nearest-neighbor hopping. The stability of the stripe states
and the stripe order parameters substantially increase with
increasing U in the strong-coupling region beyond U/t =
5 and become extended in a wider range of hole-doping
concentration with a domelike δ dependence. With increasing
hole doping, the stripe period decreases. The stripe period is
roughly proportional to the mean hole distance for t ′/t = 0.0,
whereas it is not for t ′/t = −0.3. This detailed difference
may be ascribed to the difference in the Fermi surface nesting
vectors, especially in the antinodal region. This issue will be
studied in future studies. The period at t ′/t = −0.3 agrees with
that observed in the experiments at δ = 0.125.

In the static stripe ground states, the superconductivity is
substantially suppressed. On the other hand, metastable excited
states with uniform and strongly SC order, whose excitation
energy is tiny (∼0.01t), appear with domelike δ dependence
similar to the dome of charge stripe order. The superconducting
order in both excited and ground states decreases for smaller
U/t and is numerically invisible for U/t � 4, which again has
a trend essentially similar to the charge order.

The same trend between the SC and stripe states and
their severe competition are a consequence of the strong
effective attraction originating from the strong repulsive in-
teraction. Understanding their common route and distinctions
revealed here will help in designing ways to suppress the
stripe and stabilize the SC state simultaneously. Some at-
tempts have already been made [16,65], and extensive stud-
ies along this line are intriguing challenging issues for the
future.

An interesting future issue is to more quantitatively analyze
effective low-energy Hamiltonians of cuprates obtained from
ab initio calculations [48] to understand the mechanisms
and material dependence in light of the present severe
competition. In particular, the validity of the single-band
description has to be seriously examined because the present
elucidation suggests a weaker correlation than the parameters
proposed in the literature [48] if one sticks to the single-band
description.
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APPENDIX A: ENLARGED VIEW
OF δ DEPENDENCE OF �SC

Figures 7(a) and 7(b) show enlarged views of Figs. 4(c) and
5(c) in the main text, which plot the hole concentration depen-
dence of the superconducting order parameters for t ′/t = 0
and t ′/t = −0.3, respectively. The maximum value of the
SC order parameters for the ground states is of the order of

21.000.0 0.080.04
0.00

0.08

0.04

0.00

0.08

0.04

0.00

0.20

0.10

FIG. 9. System-size dependence of order parameters for t ′/t =
−0.3 and U/t = 10. In the legend, types of quantum states and hole
concentrations are described. Solid and dashed lines represent the
linear-extrapolation fittings.
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10−4–10−3 at most, which is much smaller than that of the
uniform excited state.

APPENDIX B: SIZE DEPENDENCE OF STRIPE AND
SUPERCONDUCTING ORDER PARAMETERS

FOR STRIPE STATES

To clarify the thermodynamic properties of the ground
states, we show the size dependence of physical quantities
for t ′/t = 0 and U/t = 10 within the stripe ground state at
several doping concentrations in Fig. 8. Here, following the
convention in the literature [67], we estimate the extrapolated
order parameter 	 by fitting several points with a + bL−1.
Even when we employ the scaling a′ + b′L−1/2, the results
do not essentially change. Figure 8 shows that both the
spin and charge order parameters remain finite even after
extrapolations below δ ∼ 0.2. At commensurate fillings, one
hole fills in a one-charge wavelength, i.e., δ = 1/lc. The bottom
panel of Fig. 8 shows, in the thermodynamic limit, clear
stronger suppression of long-range superconducting order at
commensurate fillings δ = 1/lc than the case δ �= 1/lc, which
is incommensurate to the stripe period. In the latter incom-

0.00 0.05 0.10 0.15

0.00

-0.01

0.01

0.02

0.00 0.05 0.10 0.15
-0.08

-0.04

0.00
(a)

(b)

FIG. 10. Doping dependence of the energy of several different
states for t ′/t = −0.3 below δ = 0.15. We set f (δ) = −0.8δ − 0.640
and g(δ) = −1.7δ − 0.4211. Types of states and system sizes are
described in the legend. For clarity we draw a thick yellow line for
the energies of the ground states for L = 24. The dashed black line
and gray region show the tangent line of the energy curve drawn from
the δ = 0 ground state and PS, respectively.

0.0 0.1 0.2 0.3 0.4 0.5

0.00

0.01

0.02
0.00

0.04

0.06

0.02

0.00

0.04
0.06

0.02

FIG. 11. Doping concentration dependence of squared order
parameters for spin (top panel) and charge (middle panel) stripes
and superconductivity (bottom panel) for U/t = 6 and t ′/t = −0.3.
Dashed and dotted curves represent the results of the ground states and
the charge-uniform state for U/t = 10 for comparison, respectively.
Notations are the same as Fig. 5.

mensurate fillings, the superconducting order likely remains
nonzero in the thermodynamic limit.

We also show size dependences of physical quantities for
t ′/t = −0.3 in Fig. 9. As we mentioned in the main text,
the extrapolated values of stripe orders have nonzero values
below δ ∼ 0.4. On the other hand, we do not find any positive
extrapolated values of the SC order parameter at this stage,
which is different from the case of t ′/t = 0. To understand this
difference, we need further analysis of the size dependence
of the SC order parameter and its doping dependence in the
thermodynamic limit for both t ′/t = 0 and t ′/t = −0.3, but
this is left for a future study.

0.022(5) 0.641(4) 0.767(5) 0.658(6) 0.011(9) 0.645(2) 0.753(4) 0.632(6)

0.205(5) 0.117(4) 0.057(5) 0.115(6) 0.205(9) 0.112(3) 0.060(4) 0.119(6)

0.177(8) 0.095(7) 0.086(7) 0.133(6) 0.165(6) 0.105(7) 0.089(8) 0.143(7)

0.187(8) 0.573(7) 0.610(7) 0.438(6) 0.147(6) 0.574(7) 0.614(8) 0.390(7)

(a)

(b)

FIG. 12. Spin density along the z direction Sz
i = 〈ni↑ − ni↓〉 and

hole density 1 − 〈ni〉 = 1 − 〈ni↑ + ni↓〉 for t ′/t = −0.3 at δ = 0.125
for the ground state with C4S8 for L = 24. The radius of every
red circle is proportional to the hole density 1 − 〈ni〉. The length of
every black arrow is proportional to the amplitude of the spin density
|Sz

i |. The values of |Sz
i | and 1 − 〈ni〉 averaged over the y direction

are shown above and below the plots, respectively. The number in
parentheses represents the error on the last digit.
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TABLE I. Energies per site of competing states obtained from the
VMC and first Lanczos calculations for several system sizes L and
hole-doping concentrations δ at U/t = 10 and t ′/t = 0. The number
in parentheses represents the error on the last digit.

L δ State VMC First Lanczos

20 0.180 Uniform −0.7384(2) −0.7591(4)
20 0.180 C5S5 −0.74820(4) −0.7639(8)
14 0.143 Uniform −0.6665(5) −0.6900(7)
14 0.143 C7S7 −0.68315(5) −0.6992(3)
16 0.109 Uniform −0.60744(9) −0.6272(4)
16 0.109 C8S16 −0.62232(4) −0.6377(1)

APPENDIX C: PHYSICAL QUANTITIES
FOR t ′/ t = −0.3 AND U/ t = 6

Figure 10 compares the hole-doping dependence of the en-
ergies between U/t = 6 and U/t = 10 below δ ∼ 0.15. We do
not find an evidence for the PS between the antiferromagnetic
state and the stripe state at U/t = 6, where a tangent line from
δ = 0 to the other point (δ > 0) of the energy curve cannot be
drawn, distinct from the case U/t = 10.

Figure 11 plots the δ dependence of the spin, charge, and su-
perconducting order parameters for U/t = 6 and t ′/t = −0.3.
We see that the results are qualitatively similar to those for
the case of U/t = 10, but the stripe order parameters become
smaller. This means that the inhomogeneity is weakened by
the decrease in the on-site interaction. This tendency is also
seen in Fig. 12, where the electron distribution in real space is
depicted. The superconductivity in the uniform excited states
has the same trend as the case of the stripe orders. At U/t = 4,
the stripe and superconducting orders are scaled to zero within
the numerical accuracy.

APPENDIX D: POWER LANCZOS METHOD

The power Lanczos method is one of the systematic ways
to improve a trial wave function in the VMC method [61]. In
the N -th power Lanczos method, we operate the Hamiltonian
to the optimized trial wave function |ψopt〉 as

|ψ (N)〉 =
(

1 +
N∑

n=1

αnHn

)
|ψopt〉 , (D1)

where αn are the variational parameters. We use the first-step
Lanczos method (N = 1) since the numerical costs grow
exponentially with increasing N .

 0  2  4  6  8  10  12

VMC
1st Lanczos

10-3
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100
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FIG. 13. (a) Superconducting correlation function Pd (r) and
(b) charge structure factor Sc(qpeak) at qpeak = (qx,0) of the C8S16
state for L = 16, U/t = 10, and t ′/t = 0 at δ ≈ 0.11. The solid blue
line and dashed red line are the results obtained by using the VMC
method and the first-step Lanczos method, respectively.

Table I shows the energies of competing states for various
doping concentrations δ. The Lanczos method improves the
energies of competing states but does not change the character
of the ground states and only slightly alters physical properties.
We have checked the effects of the Lanczos operation on other
physical quantities such as the superconducting correlation
function and the charge structure factor. However, they are
only slightly changed, as shown in Fig. 13.
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