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We consider the dimer Hubbard model within dynamical mean-field theory to study the interplay and
competition between Mott and Peierls physics. We describe the various metal-insulator transition lines of the
phase diagram and the breakdown of the different solutions that occur along them. We focus on the specific issue
of the debated Mott-Peierls insulator crossover and describe the systematic evolution of the electronic structure
across the phase diagram. We found that at low intradimer hopping, the emerging local magnetic moments can
unbind above a characteristic singlet temperature T ∗. Upon increasing the interdimer hopping, subtle changes
occur in the electronic structure. Notably, we find Hubbard bands of a mix character with coherent and incoherent
excitations. We argue that this state might be relevant for materials such as VO2 and its signatures may be observed
in spectroscopic studies, and possibly through pump-probe experiments.
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I. INTRODUCTION

Vanadates are fascinating materials that provide a fertile
playground to study nontrivial phase transitions driven by
the electronic correlation. Their structures follow the Magnéli
series VnO2n−1 and most of them exhibit insulator-to-metal
transitions (IMT) upon heating. Significantly, these transitions
involve a structural change but are disconnected to magnetic
ordering, with the exception of the most famous members of the
series V2O3 and VO2. In the former, the magnetic and structural
transitions occur at the same temperature, while in the latter
there is a structural transition but no magnetic ordering at any
temperature.

Vanadium dioxide is particularly appealing because its
transition occurs close to room temperature, around 340 K, so
it may enable practical applications in novel electronic devices
[1,2]. In fact, the study of this material is receiving a great deal
of attention. Therefore, a basic understanding of the nature of
its electronic state and its insulator-to-metal transition (IMT)
is of great importance.

VO2 may be considered a realization of a Mott system, as it
has only one electron per vanadium atom which should lead to
a partially filled band. However, since it exhibits a nonmagnetic
insulating ground state, this classification has often been
challenged. In fact, in influential early papers, Goodenough
[3,4] argued that the first-order IMT occurs concomitant with
a structural distortion of the vanadium chains in the crystal, so
the gap opening upon cooling should be due to a Peierls lattice
instability. Density functional theory (DFT) calculations made
significant progress trying to substantiate Goodenough’s claim
[5,6], however, the nature of the insulating state and the IMT in
VO2 still remains a puzzle. The development of methods that
incorporate strong correlation effects in realistic lattice calcu-
lations provided additional light. Eventually, Biermann et al.
showed using cluster dynamical mean-field theory (CDMFT)
with DFT that strong correlations due to local Coulomb

repulsion may lead to the opening of a gap [7,8]. Hence,
the ground state was considered a “Peierls insulator with
dynamical correlations.” This theoretical problem continued
to attract theoretical attention as the numerical techniques were
further improved. Weber et al. [9] argued that the mechanism
driving the insulator state was better characterized as a “Peierls
assisted orbitally selective Mott transition.” They observed
that mainly the a1g orbital drives the opening of the gap. A
more recent study where the oxygen atoms were explicitly
included [10] enabled a more comprehensive account of the
various phases observed in VO2. However, it also led to
the reinterpretation of the transition as a “Mott transition in
the presence of strong intersite exchange.” We should also
mention here the work by Eyert, whose calculations including
correlations through hybrid functionals [11] may also open a
gap in the monoclinic phase.

While the technical improvements of the computational
methods of realistic correlated materials made significant steps
forward in our understanding of the electronic states, it is also
true that their technical complexity represents a challenge. For
instance, despite multiple studies dedicated to this material
[7,9,10,12], some basic issues remain unaccounted for, such as
the existence of a first-order thermally driven insulator-metal
transition just above room temperature. Finite-temperature
studies are in principle beyond the applicability of DFT
methods although we should point out the recent work of
Plašienka et al. [13]. We investigated the issue of a first-order
IMT in a recent paper [14] employing a model Hamilto-
nian approach within CDMFT. Although the model is rather
schematic, namely, a lattice of correlated dimers, it was in-
tended to qualitatively capture the dimerization-delocalization
competition in the monoclinic phase of VO2. We showed
that there is a thermally driven first-order Mott transition that
occurs at a temperature range compatible with the experimental
observation. Moreover, we have also provided an interpretation
to the puzzling presence of a mid-infrared peak in the optical
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conductivity of metallic nanosize islands observed during the
transition [15] in terms of a novel correlated “monoclinic”
metal [14]. Model Hamiltonians that may capture the key
ingredients are also attractive for experimentalist as they
provide useful insights within a more intuitive yet nontrivial
physical framework for strongly interacting systems.

In this paper we continue with this strategy and make
inroads into the investigation of the nature of the insulator and
metallic states realized in the dimer Hubbard model (DHM)
within CDMFT. Specifically, we address the issue on the
physical characterization of the insulator state. A key feature of
our approach is to observe that the quantum impurity problem
of the DHM has the same form as the respective quantum
impurity problem of the DFT+CDMFT method on realistic
lattices. In fact, we shall see that our model solution does
capture in a simpler context several features already seen
in DFT+CDMFT studies [8,16], such as the presence of
renormalized coherent bands in the insulator.

The model Hamiltonian approach enables the systematic
investigation of the whole parameter space, which sheds light
on the interplay of physical mechanisms. We shall address the
question of the physical crossover from a pure Peierls insulator,
which is a band insulator of a lattice of dimers without correla-
tions, to the pure (un-dimerized) correlated Mott insulator. We
shall see that the behavior of the system across the crossover
regime is nontrivial. One of our main results is that as the
system evolves from the Mott to the Peierls insulator, there
are at least four different regimes, including an unprecedented
state where the Hubbard bands have an electronic structure
with mixed coherent and incoherent character. Interestingly,
VO2 could be in this peculiar regime, which might eventually
be seen in spectroscopy experiments. On the other hand,
we also investigated the correlated “monoclinic” metallic
state and show that it can be understood in simple terms
as a renormalized two-band heavy metal at low frequencies.
Interestingly, indications of a monoclinic metal in VO2 have
been reported in several experimental studies [17–24].

In a larger perspective, our systematic investigation of
the model parameter space should also shed light for the
classification of a variety of monoclinic transition-metal oxide
systems with the MO2 formula [25] and the nonmagnetic
insulator states of other vanadates.

This paper is organized as follows: In Sec. II we introduce
the DHM and the DMFT equations. We also describe a simple
parametrization of a renormalized two-band model that will
be useful for the discussion of our results. In Sec. III we
present the phase diagram and discuss the various insulator-
metal transitions of the model. In particular, we describe the
destruction of the correlated metal and the insulator in the Mott
regime. In Sec. IV we present the detailed study of the Mott to
Peierls crossover. We characterize the several distinct physical
regimes, including one with mixed coherent and incoherent
features in the Hubbard bands possibly relevant for VO2.
Section V is dedicated to the conclusions of our work.

II. DIMER HUBBARD MODEL

We focus on the dimer Hubbard model, which is a basic
and natural extension of the single-band Hubbard model. The

FIG. 1. Schematic representation of the higher-symmetry “rutile”
lattice with one atom per unit cell and the low-symmetry “monoclinic”
lattice, which is a lattice of dimers. In shaded red, we represent
the quantum impurity effective environment determined through the
CDMFT equations. Notice that our model is defined on a semicircular
noninteracting density of states, that may be realized in a Bethe lattice.
Nevertheless, here we depict a square lattice just for the sake of
simplicity.

DHM reads as

H =
⎡
⎣−t

∑
〈i,j〉ασ

c
†
iασ cjασ + t⊥

∑
iσ

c
†
i1σ ci2σ + H.c.

⎤
⎦

+U
∑
iα

niα↑niα↓, (1)

where 〈i,j 〉 denotes nearest-neighbor lattice cells, α = {1,2}
denote the dimer orbitals within a given cell, σ is the spin, t is
the lattice (i.e., interdimer) hopping, and (t⊥) is the intradimer
hopping. The parameter U is the onsite Coulomb repulsion.

The noninteracting limit of the DHM has two bands which
are locally hybridized at every lattice cell site. This leads to the
parallel splitting of the two bands by 2t⊥. When this splitting
is large enough, the system has a continuous metal-insulator
transition. We associate this to a Peierls-type mechanism, as it
is driven by the increase of the intradimer hopping amplitude
t⊥. It can be ascribed to a schematic representation of the
monoclinic distortion in the real material that creates dimers
in the unit cell (see Fig. 1). Another way to see this IMT is
by starting from the t → 0 limit, where the local dimers that
form a bonding (B) and an antibonding (AB) molecular orbital
at every 1-2 link. Switching on the interdimer hopping, these
orbitals lead to an insulating state with two split flat bands. At
a large enough (lattice-geometry-dependent) value of t , the B
and AB bands start to overlap and realize a transition into a
metal.

Before proceeding, we should avoid any confusion here
by noting that the model (1) is fully defined only after its
lattice is specified. For instance, if dimers are arranged as a
one-dimensional system, the model is a “ladder” (the dimer
rungs are perpendicular to the direction of the lattice). In two di-
mensions, as in the schematic Fig. 1, one would get a “bilayer”
model, where the dimer rungs connect at every site two parallel
2D layers. Those systems have qualitatively different behaviors
from the one that concerns us here. In 3D systems that have
strong local interactions, one may expect the dynamical mean
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field theory (DMFT) to be a reasonable approximation [26].
In fact, DFT+DMFT methods are implicitly based on such an
assumption. The DMFT approach to the DHM with a dimer
unit cell is, strictly speaking, a cluster-DMFT calculation,
possibly the simplest instance of CDMFT. In DMFT and
CDMFT, it is mathematically convenient and thus customary
to adopt a noninteracting semicircular density of states (DOS),
which is realized in a Bethe lattice [26]. In addition, such a
DOS qualitatively resembles that of a three-dimensional lattice
system. In fact, it has a finite bandwidth given by 4t defined
in Eq. (1). As in previous works, we adopt as unit of energy
the half-bandwidth D = 2t = 1. We should emphasize here
that the physics of models treated within DMFT in general
does not depend on specific geometry of the lattice, but on the
nature of the quantum impurity problem. As we mentioned
already, the realistic VO2 lattice within DFT+CDMFT has the
same type of quantum dimer impurity as in the present case.
Our model has the additional simplification of considering one
orbital at each site instead of the three in the realistic case.
We may see in Fig. 1 schematic “rutile” and “monoclinic”
lattices. From our previous discussion, the key feature is that
in the former case there is a single site in the unit cell, while
in the latter case there is a dimer. The “rutile” lattice can be
qualitatively associated to a conventional single-band Hubbard
model [26], while the “monoclinic” one can be thought of as
two copies of Hubbard models coupled at every unit-cell site
by the intradimer hopping t⊥. In the limit of t⊥ → 0, the two
copies become independent and one recovers the conventional
single-site Hubbard model physics [14,26,27]. As an additional
remark, here we should say that both the single-site Hubbard
and the dimer Hubbard models at half-filling have antiferro-
magnetic ground states, which are favored in bipartite lattices.
Nevertheless, the study of the MITs within the PM (metastable)
states is important in its own right as it has been very useful
to reveal the physical competition between different correlated
states [26].

A. CDMFT equations and the bonding-antibonding basis

The solution of the CDMFT equations is obtained in terms
of the one-particle propagators Gα,β (with α,β = 1,2), which
are subject to the self-consistent condition

G(ω) =
∫

dε ρ(ε)[(ω − ε)I − t⊥σx − �(ω)]−1, (2)

where σx is the x Pauli matrix and �α,β is the local self-energy.
The calculation of the local self-energy requires the solution of
the so-called local quantum impurity problem, which is often
a generalization of the Kondo problem [26]. To solve such
a quantum impurity problem requires the numerical imple-
mentation of a many-body approach. Following previous work
[14], here we make extensive use of the iterative perturbation
theory (IPT) [27] that allows fast and precise calculations in
the whole phase diagram and at all T and T = 0. Notably, IPT
becomes exact in the limits of T = 0 and t →0 or U →0,

for all t⊥ (see Appendix B) and its numerical precision allows
for reliable analytic continuation of the data to the real axis.
We also benchmarked our IPT calculations with results from
other numerical methods such as the continuous time quantum
Monte Carlo (CT-QMC) [28,29] and the exact diagonalization

(ED) [26]. The former is a finite-T calculation and the latter is
a T = 0 one. These methods are both exact up to systematic
errors, but are numerically very expensive and have the serious
drawback of requiring, in the case of CT-QMC, the analytic
continuation of the (noisy) imaginary axis results.

In the present case of half-filling (i.e., one particle per
site), particle-hole symmetry holds. We further assume trans-
lational invariance and search for a paramagnetic solution.
We have then G11(ω) = G22(ω) and G12(ω) = G21(ω). The
self-energies have similar properties. In order to simplify the
discussion of the evolution of the electronic structure, it is
convenient to consider the B/AB representation that renders
the Green’s functions and self-energies diagonal:

GB/AB = G11 ∓ G12, (3a)

�B/AB = �11 ∓ �12. (3b)

In the B/AB basis the electronic structure of the nonin-
teracting problem is particularly simple. The single-particle
energies EB/AB

k form two parallel bands of bandwidth 2D

and are split by 2t⊥, i.e., EB/AB
k = ∓t⊥ + εk , where εk is the

single-particle energy of the bands for t⊥ = 0. In the present
case, since we employ a semicircular DOS (realized in a
Bethe lattice in infinite dimensions) the lattice single-particle
energies εk drop their k dependence [26] and then are simply
labeled by ε ∈ [−D,D] [26]. Thus, at finite t⊥ and U = 0,
the model DOS is composed of two semicircles split by 2t⊥,
ρB/AB(ω) = 2

πD2

√
D2 − (ω ± t⊥)2.

B. Renormalized two-band model

In order to better analyze our results in the subsequent
sections, it is convenient to introduce here a simple low-
energy parametrization of the two-band system. We may
think of this as a noninteracting renormalized two-band
model (R2B). In a normal (i.e., Fermi liquid) metal the
self-energy is well-behaved at low frequencies [30]. In the
present case we expand around ω = 0 the self-energies of
the mean-field equations (2), and introduce a quasiparticle
residue Z:

Z−1 = 1 − ∂ Re�B/AB(ω)

∂ω

∣∣∣∣
0

= 1 − ∂ Re�11(ω)

∂ω

∣∣∣∣
0

(4)

and a renormalized intradimer hopping t⊥ as

t̃⊥ = t⊥ ∓ Re�B/AB(ω)|0 = t⊥ + Re�12(ω)|0. (5)

The DOS of the R2B model then reads as

ρR2B
B/AB(ω) ∼ 2

πD2

√
D2 −

(
ω

Z
± t̃⊥

)2

(6)

that corresponds to two heavy effective bands with dispersion
EB/AB

ε = ∓Zt̃⊥ + Zε, where the effective mass renormaliza-
tion is m∗/m = 1/Z. The overlap between the two band edges
is given by 2η, where

η = ZD − Zt̃⊥. (7)

Thus, for η > 0 we have a metal state, and for η < 0 (i.e.,
splitting dominates) the DOS opens a gap (see Fig. 2). We will
use this quantity to describe the metal-to-insulator transition,
in the next section.
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FIG. 2. Schematic representation of the two bands in the R2B
model. This model is a simple renormalization of the noninteracting
case where Z = 1 and the intradimer hopping is t̃⊥ = t⊥. ZD denotes
the renormalization of bandwidth and 2η the overlap of the two bands.

The renormalized two-band (R2B) model may describe
both metallic and insulating states, so long as the � remains
well behaved (i.e., linear) according to the parametrization. As
it turns out, the description will be valid at low frequencies
throughout the metallic phase, which is a Fermi liquid. In the
insulator, we shall see that it is a good approximation only
within the Peierls limit, where the interaction and thus the
� are small. In the Mott regime, this parametrization is not
appropriate.

III. PHASE DIAGRAM AND
INSULATOR-METAL TRANSITIONS

In Fig. 3 we show theU − t⊥ phase diagram atT = 0, which
is well known from previous studies [14,27,31,32]. We recall
now its main features. There is a metallic phase for t⊥ < 1,
and an insulator phase at high enough U . The IMT changes
character depending on the value of t⊥. At values higher than
t⊥ ≈ 0.7 the transition is continuous (second order) along a line
Uc3 indicated in green in Fig. 3. At smaller values of t⊥, there
are two lines Uc1 and Uc2 , respectively, indicated in blue and
red in the figure. These are two spinodal lines of the mean-field
theory self-consistent solution. The metal state is destabilized
for U > Uc2 whereas the insulator state is destabilized along
U < Uc1 . Thus, in-between the two spinodal lines there are two
different solutions of the CDMFT equations, one metallic and
one insulating. At finite temperature, this coexistence region
shrinks, until it disappears at a critical temperature. At higher
T there is a crossover behavior and bad metal states [14]. This
phase diagram is obtained with IPT but we have validated all
its main features by extensive CT-QMC calculations [14].

The description of how these transitions take place in this
basic model of strongly correlated systems has (rather surpris-
ingly) not been investigated in detail. As we discussed before,
this type of impurity model is at the core of calculations of

FIG. 3. The metal-insulator transition takes place along the Uc1 ,
Uc2 , and Uc3 lines (blue, red, and green, respectively). The Uc2 line
corresponds to a spinodal line where the metallic solution discon-
tinuously disappears upon increasing U . Along the Uc3 line there
is a continuous second-order metal-insulator transition. The Uc1 line
marks the spinodal where the Mott insulator vanishes discontinuously
upon decreasing U . The Mott insulator is continuously connected to
the Peierls insulator, however, different crossover behaviors can be
identified.

realistic material with a dimer in the unit cell. We shall therefore
describe the transitions in detail in the next subsections.

A. Metal-to-insulator transitions across Uc2 and Uc3

The metal-to-insulator transition by increasing U dramat-
ically changes its character as a function of t⊥. In Fig. 4
we illustrate this by showing the evolution of the frequency-
dependent DOS with increasing U , for two representative
values t⊥ = 0.3 and 0.8, that respectively cross the Uc2 and
the Uc3 lines.

FIG. 4. DOS for increasing values of U crossing the red Uc1 and
the green Uc3 boundary lines (left and right panels, respectively) of
the phase diagram of Fig. 3. Black lines represent the local(−ImG11)
spectral function, which is the average of the bonding (dashed blue)
and antibonding (dotted-dashed orange) bands, calculated at T = 0
with IPT.
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FIG. 5. Z and |η| as a function of U for various values of
dimerization t⊥. The left and central panels correspond to the behavior
as the Uc2 (t⊥) red spinodal line is approached (cf. Fig. 3), where
the metal-insulator transition is discontinuous. The right panel shows
the behavior when the green second-order line is crossed (cf. Fig. 3).
The R2B parametrization works on either side of the transition. Note
that η is negative on the insulating side in the last panel.

The behavior of the DOS at higher t⊥ = 0.8 displays a rather
simple evolution. As shown by the data in the B/AB basis
(dotted blue and dotted-dashed orange) we observe that the
total DOS (thick black) is the average of the two semicircular
contributions of the B and AB bands. The gap opens continu-
ously and the effective masses or, equivalently, the bandwidth
of the two bands remains essentially unrenormalized. The
insulator at U > Uc3 is clearly a band insulator state. As
we mentioned before, we identify this state with the Peierls
insulator since it is realized at large t⊥ and relatively low U .
We may also note that at the highest values of the interaction
U , this simple description begins to fail as the B and AB DOS
begin to develop a second contribution to the spectral weight
for ω > 0 and < 0, respectively. We shall discuss this feature
in more detail later on.

In contrast, the transition at lower values of t⊥ = 0.3 is
significantly different. The evolution of the DOS is more
complex and has various contributions. We can immediately
observe the strongly correlated (Mott-Hubbard) character by
noticing a characteristic three-peak structure at intermediate
values of the interaction. The central peak, which gives the
metallic character, becomes narrower as it losses spectral
weight that is transferred to build the high-energy Hubbard
bands at energy of order ±U/2. Interestingly and contrary
to the single-band Hubbard model case, there is no pinning
condition for the central quasiparticle peak [27] and this
quasiparticle develops a nontrivial structure in the DOS at low
frequencies as the critical value Uc2 is approached. We shall
come back to this point also later on. Unlike the higher-t⊥ case,
the decomposition of the DOS in the B/AB contributions does
not seem to provide any simpler picture of the evolution.

We can gain further insight on this transition by tracking the
behavior of the self-energy through the two parameters that we
defined above for the R2B model, Z and η, that we show in
Fig. 5.

Consistent with our previous discussion, in the t⊥ = 0.8
case we see the parameter |η| continuously and linearly going

FIG. 6. Low-frequency scaling of the metallic DOS from Fig. 4
for increasing U at fixed t⊥ = 0.3. Right panels show a zoom
into the corresponding low-frequency region that is indicated with
green lines in the left panels. The local spectral function (black
lines) is decomposed in the bonding spectral function (blue line)
and antibonding spectral function (orange dotted-dashed line). The
dashed red line is the renormalized parametrization of the low-energy
quasiparticle from Eq. (6). The superposition of the two bands
decreases as the system approaches the critical value Uc2 ≈ 3.47. The
size of the superposition is the vanishing scale η, which in this scaled
plot is η/ZD = 1 − t̃⊥/D.

to zero at both sides of the transition (η > 0 in the metal). The
parameter Z remains close to one, which indicates an almost
negligible mass enhancement. As one lowers the value of t⊥
to 0.5, we observe that the Z parameter begins to experience
a bigger renormalization. Further down, for t⊥ = 0.3 the mass
renormalization (∝1/Z) is very large. Thus, the metal state is
strongly correlated with heavy quasiparticles. We can think of
such a state at low energies as resulting from two “Kondo”
states at each one of the atomic impurity sites. Each one of
the sites is independently screened by conduction electrons,
and also by each other. This leads to renormalized bonding
and antibonding heavy bands as was already discussed in our
previous paper [14]. Here, we shall be concerned with the
question of how this heavy metallic state breaks down as U

is increased.
A heavy metal with a (single) band and divergent mass

is a hallmark of the metal-insulator transition in the single-
band Hubbard model within DMFT [26]. That transition is a
realization of the well-known Brinkman-Rice scenario, where
the effective mass diverges at the metal-insulator transition.
In the present dimer model, we shall see that, despite a large
renormalization of the effective mass, it does not diverge and
the transition is qualitatively different.

Motivated by the previous discussion and by Eqs. (5) and (6)
of the renormalized two-band model, we close up on the low-
frequency peak of the spectra of Fig. 4 and we replot the DOS
in Fig. 6 as a function of the rescaled frequency ω/ZD. We
see that a clear picture emerges, where the central peak can be
understood as two bands whose splitting is renormalized down
but whose width is also renormalized down. The R2B model
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parametrization (in dashed red line in the figure) provides
a good representation of the lowest-frequency part of the
spectra, made by the low-energy edges of the B and AB peaks.
Otherwise, it is not very accurate.

Unlike in the Brinkman-Rice scenario, where Z → 0, here
the transition occurs at a finite effective mass. The opening of
the gap results from the combined effect of the renormalization
of the bandwidth and of the splitting. Both decrease as U →
Uc2 (t⊥), but the quantity that becomes zero is not Z but
the renormalized B/AB band overlap η = ZD − Zt̃⊥. This
means that the low-energy B and AB contributions to the
quasiparticle peak separate. This behavior is similar to the
MIT reported in a correlated two-orbital model [33]. Despite
the lack of a mass divergence, the transition does share a
similarity with the MIT in the single-band case, namely, that
as the DOS(ω = 0) becomes zero, the Kondo effect can no
longer be sustained and the impurities lose their respective
Kondo screening clouds. In the single-band (single-site) case,
in the Mott-insulator state one is left with almost free local
moments. However, in the present situation, a strong RKKY-
type magnetic interaction between the two sites takes over
and one has intradimer magnetic screening. This dramatic
enhancement of the intradimer magnetic interaction translates
into the sharp increase of the intradimer effective hopping t̃⊥ =
t⊥ + Re�12(0), which drives the opening of the gap (see Fig. 4)
[14]. Interestingly, this sharp increase of the Re�12(0) was also
observed in DFT+CDMFT calculations in VO2 by Brito et al.
[10]. They related this effect to the gap opening by the B/AB
band splitting of the a1g orbital in VO2. It is interesting to
see that our present model Hamiltonian does capture the same
basic physical mechanism, albeit in a simplified scenario that
makes its physical interpretation transparent. Thus, we see how
the renormalization of the intradimer hopping that drives the
MIT originates in the loss of lattice Kondo screening and the
concomitant boost of the local intradimer magnetic interaction.
These competing mechanisms are well known in strongly
correlated systems tracing back to Doniach’s Kondo lattice
[34]. Not surprisingly, the R2B model is unable to provide a
proper description of the system beyond the transition in the
Mott-insulator state (see Fig. 4). We shall come back to this
point later on.

We should mention here that, within the IPT approximation
and our numerical precision, η does not seem to vanish
completely at intermediate values of t⊥ (≈ 0.5) as clearly as
it does for smaller and larger values (see Fig. 5). We have
also used CT-QMC at the lowest possible temperatures, but
the results were inconclusive due to the very small energy
scale being in competition with the low temperature. This issue
might be eventually fully resolved by better adapted methods
such as NRG-DMFT [35] or DMRG-DMFT [36].

B. Insulator-to-metal transition across Uc1

An interesting feature of the solution of the DHM is the
existence of a first-order transition driven by temperature [14].
This transition emerges as a consequence of two coexistent
solutions found in a region of the phase diagram of the model
[27] as we show in Fig. 7.

We have described above how the metallic solution col-
lapses discontinuously as one increases the interaction U .

FIG. 7. DOS for increasing values of U and t⊥ = 0.3 within the
coexistence region. Metallic solutions are shown on left panels and
insulating ones on the right. Black lines represent the local(−ImG11)
spectral function, which is the average of the bonding (dashed blue)
and antibonding (dotted-dashed orange) bands, calculated at T = 0
with IPT.

Here, we shall consider the collapse of the insulator one as we
come down from high U towards Uc1 . The systematic behavior
of the DOS is shown in Fig. 8 for two representative values of
t⊥: a smaller value t⊥ = 0.4 where the system crosses the Uc1

line and, for comparison, a larger value t⊥ = 0.6 which is closer
to the continuous transition line Uc3 .

At the lower value of t⊥ we observe that the DOS does
not seem to close the gap at the transition. Notice the choice

FIG. 8. DOS for decreasing values of U as the system crosses
the Uc1 transition line (blue line of Fig. 3). Left panel is away from
the tricritical point and right panel data are close to it. Black lines
represent the local(−ImG11) spectral function, which is the average
of the bonding (dashed blue) and antibonding (dotted-dashed orange)
bands, calculated at T = 0 with IPT. Note the discontinuous behavior
as Uc1 is crossed.
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of values of U very close to the critical point. The transition
is clearly discontinuous since just below Uc1 for U = 1.9 the
DOS changes abruptly, displaying a metallic state that has a
large quasiparticle peak. The line shape of the Hubbard bands
is quite peculiar and we shall consider that feature later on.
At the larger value of t⊥, the system is still crossing the Uc1

line. However, and in contrast to the previous case and within
our numerical precision, the gap seems to close continuously.
Nevertheless, and different to the behavior across the Uc3 line
that we described before (cf. Fig. 4), the character of the
transition from insulator to metal remains discontinuous in
regard of the DOS line shape. Indeed, as the results show,
it changes quite significantly with only a tiny variation of U

(lower two panels on the right-hand side of Fig. 8). Also, in
contrast to the lower-t⊥ case, we see that the line shape of the
DOS in the insulator has significantly less structure. This is due
to the proximity of the parameters to those of the continuous
transition, therefore, the first-order character becomes weaker
as one approaches the tricritical transition point where the Uc1 ,
Uc2 , and Uc3 lines meet.

IV. MOTT-PEIERLS INSULATOR-
INSULATOR CROSSOVER

We now turn to the central part of our study, namely,
the characterization of the multiple crossovers regimes in the
DHM.

As we discussed already in the Introduction, the physical
characterization of the VO2 as Mott, Peierls, or “in-between”
has been a tricky issue. As we shall see in this section, this can
be explained by the rich physics and subtle behavior changes
that the DHM exhibits as it crosses over from pure Mott to
pure Peierls. We may define the former with respect to the
prototypical Mott insulator that is realized in the one-band
Hubbard model. As we already discussed in Sec. II, the DHM
in the t⊥ = 0 limit becomes in fact two independent copies of
the single-band Hubbard model. In such a regime, the electrons
become localized because of the strong onsite Coulomb repul-
sion. This creates “free local moments” at every site, and the
electronic structure is, accordingly, very incoherent Hubbard
bands split by a large energy scale ∼U [26]. The other extreme
case, the pure Peierls, is identified in the DHM as the U = 0
limit with the B/AB bands having a 2t⊥ split, larger than
the bandwidth 2D. Hence, a gap in the DOS spectra opens
by virtue of the momentum-independent strong dimerization
hopping amplitude. This is a pure “band-structure” effect as the
interaction U is set to zero. In this insulator state, the bonding
and antibonding bands are separated and the former is fully
filled with two electrons per dimer site. The system is a “band
insulator,” which is nonmagnetic, and its electronic structure
shows two parallel coherent Bloch bands. We shall explore in
this section how the system transmutes from one regime to the
other.

In Fig. 9 we show the various regimes that the system
exhibits as it crosses over from the Mott to the Peierls limit.
There are four different zones, which can be well characterized.
The understanding of zone I is key to this study. Its important
feature is an interesting thermal crossover where spin degrees
of freedom are active. These magnetic moments are due to
the Coulomb interaction and emerge as the result of Mott

FIG. 9. The phase diagram of the model with the various
crossover regimes I–IV that are described in the text. The dashed
lines separating the different zones are for reference only since the
evolution is continuous. The dashed-dotted lines denote the various
paths across the diagram whose evolution we describe in the text. For
reference, we draw as gray lines the Uc1, Uc2, and Uc3 transitions (cf.
Fig. 3).

localization above the Uc1 line at low t⊥. Zone IV is charac-
terized by the insulating Peierls state. As we shall see, we can
think of that state as “orbitally polarized” in the B/AB basis,
with correlations playing a relatively minor role. The zones II
and III have a mix character and the evolution of the electronic
structure is quite subtle. We have therefore explored the
evolution of the system across the different zones by following
the black lines that are indicated in Fig. 9. We consider two
parallel lines at fixed values of U and varying t⊥. The relatively
smaller U line traces the systematic evolution from within the
Mott coexistence region towards the Peierls one. At a larger
value of U we shall see that the system remains within a Mott
state even for relatively large values of t⊥. The main feature in
this case is an interesting evolution of the electronic structure,
going from incoherent Hubbard bands (zone I) to coherent
ones (zone III) and passing through a mixed state with the
coexistence of coherent and incoherent contributions (zone
II). We shall describe these various crossovers in detail in the
following subsections.

A. Zone I: Singlet to free-moment crossover in the Mott state

This regime at U > Uc1 and small t⊥ is crucial to understand
the physical behavior of the present model. The large value
of the onsite Coulomb repulsion U creates a local magnetic
moment at each site of the dimer. Then, the interaction between
these moments undergoes a thermal crossover from a singlet
ground state at T → 0 to a free-moment regime above a low-
temperature scale T ∗. This temperature is a low-energy scale
of the model, which indicates the singlet pair formation and is
two orders of magnitude smaller than the bare parameters. In
Fig. 10 we show the behavior of the total magnetic moment
formation 〈(N↑ − N↓)2〉 = 〈[(n1↑ − n1↓) + (n2↑ − n2↓)]2〉 as
a function of t⊥ at different fixed temperatures. At any given
temperature, we observe that the moment formation goes from
a very small value at large t⊥ and suddenly has a dramatic
increase upon lowering that parameter. The reason is that the
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FIG. 10. Total magnetic moment formation as a function of t⊥
at different temperatures. Finite-temperature calculation done with
CTHYB, and zero temperature with ED. Inset: temperature crossover
scale for singlet pairing of the two site moments T ∗. This scale is
proportional to the square of t⊥ consistent with its magnetic origin.

magnetic coupling between the local moments at the two sites
of the dimer is large at bigger t⊥ so they lock into a singlet
state which is nonmagnetic. When this magnetic interaction
is reduced by decreasing t⊥, the magnetic binding energy
falls below the thermal energy and the singlet state breaks
down. The two local moments unbind and behave as local free
spins analogous to the Mott-insulator state of the single-band
Hubbard model.

This behavior can also be clearly seen by its dramatic effect
on the electronic structure. In Fig. 11 we show in a color
intensity plot the bonding spectral function dispersion AB(ε,ω)
for the system at a fixed T and two values of t⊥. One larger

FIG. 11. Intensity plot of the bonding spectral function AB(ε,ω)
at U = 3 and t⊥ = 0.1 and 0.3 calculated at T = 0.02, using CTHYB.
In side panels we show the corresponding DOS(ω), i.e., the integrated
bonding spectral function. We recall that in the Bethe lattice the single-
particle energy plays an analogous role as the lattice momentum k.
The noninteracting dispersion is ε − t⊥, with −D < ε < D.

FIG. 12. Evolution of the bonding DOS(ω) and corresponding
change in the bonding self-energy at fixed t⊥ = 0.8 (real part in solid
lines and imaginary part in dotted-dashed lines) for increasing U .
The location of this crossover path is indicated by one of the black
dashed-dotted lines in Fig. 9. Red dashed lines correspond to the R2B
model parametrization, which fails at large U .

t⊥ = 0.3 with the two moments locked into the singlet and a
smaller one t⊥ = 0.1 with two unbound free moments.

The change in the spectral function is very significant and
consistent with the magnetic state. To make the effect more
explicit, we focus on the bonding spectral function. We recall
that the antibonding is obtained by reflection around ω = 0,
and the site-basis one is the average of the two. At the higher
value of t⊥, the spectra are not symmetric; we see that the
low-energy band has most of the spectral weight. This signals
that the system is locked in the singlet bound state, with the
bonding band almost fully occupied. In contrast, at lower t⊥ the
state is not magnetically bound and correspondingly we obtain
a symmetric spectrum. The AB state is virtually identical to the
B one, so both have a similar occupation, which indicates that
the magnetic states are decoupled and free to fluctuate as in
the Mott insulator in the single-band case. In fact, the spectral
function of the low-t⊥ case that is above T ∗ is very similar to the
incoherent Hubbard bands of the single-band Mott-Hubbard
insulator [26], which is nothing but the t⊥ = 0 case.

This physical insight is a key reference to guide the
discussion of the various t⊥- and U -dependent crossovers that
we shall describe next. In fact, we shall see that the emerging
magnetic moments, characteristic of the Mott localization
phenomenon, will show up in different contributions to the
electronic structure.

B. Zone IV-III and IV-I crossovers: Building correlations
on the Peierls state

We have just discussed how the local moment degrees of
freedom that are present in zone I due to Mott localization
may bind or unbind. Now, we will discuss how in the Peierls
nonmagnetic state (large t⊥ and U = 0), the magnetic moments
gradually emerge as the correlations are increased. To illustrate
that, we plot in Fig. 12 the evolution of the bonding orbital
DOS, i.e., the AB(ω) spectral function for increasing U , along
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with its corresponding self-energy �B(ω). At weak correla-
tions, for t⊥ = 0.8 and U = 1.4, the system is still within the
Peierls insulating state in zone IV. We observe that the R2B
model parametrization (red dashed line) provides a rather good
description. The occupation of the B state is almost complete,
so we may consider this state as fully orbitally polarized in the
B/AB basis. Accordingly, the self-energy remains smooth and
small.

Increasing U , the system crosses over from zone IV to III
and we observe qualitative changes in both the DOS and �.
For U = 2.4 we already see an incipiently structured spectral
weight developing at ω > 0. Accordingly, the self-energy
begins to develop a rapidly varying wiggle. These developing
structures become apparent at a higher interaction strength
U = 3.3. We clearly observe the emergence of a quasiparti-
clelike resonance in the DOS, with a concomitant pole in the
self-energy. This signals the onset of a well-defined excitation
and the narrowness of the peak indicates that it is essentially a
localized state. This excitation is in fact due to local moments
building up at each of the dimer sites [14]. Unlike in the
Mott state at low t⊥, where the local moments produce a
broad incoherent contribution to the spectral function, here the
moments are strongly coupled by the large t⊥. Therefore, they
remain Mott localized within the dimer but establish a local
coherent (singlet) state. Upon further increasing the interaction
U , the resonance gains more spectral weight and the strength
of the pole also grows. The “Mottness” character of the state
increases as we see that the simple renormalized two-band

FIG. 13. Evolution of the bonding DOS(ω) and corresponding
change in the bonding self-energy (real part in solid lines and
imaginary part in dotted-dashed lines) at fixed U = 2.3 for decreasing
t⊥. The location of this crossover path is indicated by one of the black
dashed-dotted lines in Fig. 9. Red dashed lines correspond to the R2B
model parametrization, which fails at lowest t⊥. While there is a sharp
narrow peak at the w > 0 of the spectra (lower panel), we are not fully
confident in the presence of the small secondary peak being a separate
excitation.

parametrization fully breaks down. Notice, however, that in
contrast to the pure Mott insulator with incoherent Hubbard
bands, here the lower Hubbard band in AB(ω) remains fully
coherent as in the Peierls insulator case. This is evident from
the imaginary part of the self-energy (bottom right panel of
Fig. 12), which is negligible on the full ω < 0 frequency
range. We thus begin to observe the coexistence of incoherent
and coherent features in the electronic structure, which are
respectively connected to Mott and Peierls physics.

We now turn to the crossover behavior from zone IV to zone
I (cf. Fig. 9). The systematic behavior is shown for AB(ω) and
�B(ω) in Fig. 13. We observe that all the features that we
described before in the zone IV to III crossover as a function
of U are also present here as the system evolves as a function
of the model parameter t⊥. It crosses over from the Peierls
insulator in zone IV towards the Mott state in zone I. Similarly
as before, we observe the emergence of a narrow resonance in
the ω > 0 part of the spectra. However, a difference with the
previous crossover is that the evolution now ends close to the
pure Mott state and we see that the �B(ω) is non-negligible
at ω < 0. One may notice that this second crossover path
traverses the zone II. The clear characterization of that regime
requires the discussion of the spectral function A(ε,ω), which
we shall consider in the next subsection.

V. EVOLUTION OF THE DIMER MOTT INSULATOR:
COEXISTENT INCOHERENT AND COHERENT

CONTRIBUTIONS

We now finally consider the strongly correlated regime
set by a relatively large value of the interaction U = 4. We
shall discuss the systematic changes of the insulator state as

FIG. 14. Evolution of the bonding DOS(ω) and corresponding
change in the bonding self-energy (real part in solid lines and
imaginary part in dotted-dashed lines) at fixed U = 4 for increasing
t⊥. The location of this crossover path is indicated by one of the black
dashed-dotted lines in Fig. 9. Red dashed lines correspond to the R2B
model parametrization, which is always poor in this case.
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FIG. 15. Local density of states A(ω) (vertical panels) and intensity plots of the spectral function A(ε,ω) of the Mott-insulating state at
large U = 4 and increasing t⊥. Obtained by IPT at T = 0.

it evolves as a function of increasing intradimer hopping t⊥.
As we did before, we begin considering the bonding DOS
AB(ω) and the corresponding self-energy�B(ω), which unveils
details of its mathematical structure. The data are shown in
Fig. 14. We recall that the same quantities on the AB orbital
are obtained by reflection around ω = 0, and that the total
DOS corresponds to the average of the B and AB. The main
feature is that there is always a large gap with two main
contributions at ω ∼ ±U/2. Thus, for all t⊥ we have a large
insulating gap controlled by U , which is an indication of Mott
physics having a dominant role. We also see, consistent with
this observation and with our discussion in previous sections,
that the unoccupied part of AB(ω) always has a sharp resonance
that we associated to emergent magnetic moments. Moreover,
in �B(ω) we always observe the presence of a strong pole.
Interestingly, we see that the position of the pole is almost at
the center of the gap at lower t⊥. In fact, it must reach ω = 0
in the limit of t⊥ → 0 as system the becomes two independent
copies of a single-band Mott insulator [26]. Thus, this strong
pole is a hallmark of the opening of a Mott gap. As we increase
t⊥ we see that the pole remains strong but evolves towards the
upper edge of the gap. This has the effect of strongly affecting
the ω > 0 part of the spectrum while we observe that theω < 0,
in contrast, evolves towards the semicircular density of states.
This apparent weakening of correlations in the lower Hubbard
band can be also understood by the fact that this band is further
filled up, hence effectively moving away from the half-filled
situation. However, it would be a mistake to simply consider
this a weakly correlated state since, as we already emphasized,
the gap is large and set by the Coulomb interaction U . In fact,

we observe that the R2B model parametrization (red dashed
line in Fig. 14) is poor in all cases.

Another interesting feature revealed by the �B(ω) is that
the imaginary part, which is related to the inverse lifetime, is
always relatively large on the ω > 0 side of the spectra while
is much smaller, or even negligible, for larger t⊥ on the ω < 0
side. This indicates that the positive frequency excitations have
incoherent character (save for the sharp resonance state that we
discussed in previous sections), while the negative frequency
ones are coherent. One additional interesting feature that we
would like to point out is the complex evolution of the line
shape of AB(ω) at small t⊥, where Im�B is still non-negligible.
This regime corresponds to the crossover zone II (cf. Fig. 9). In
order to gain further insight into these issues, we shall consider
the “momentum” resolved spectral function A(ε,ω) along with
the local DOS, A(ω) = ∫

dε A(ε,ω).
For the sake of clarity, we consider both the total (i.e., site

basis) and bonding orbital spectral functions. Their evolution
is shown, respectively, in Figs. 15 and 16. We should actually
begin with the spectra already shown in Fig. 11, which
illustrated the very low-t⊥ regime (zone I) where the system
is deep in the Mott phase with decoupled magnetic moments
(at finite T > T ∗). Consequently, the A(ε,ω) displays a very
incoherent electronic structure, similar to the single-band Mott
state.

As we increase the t⊥ in Figs. 15 and 16 we observe
the systematic evolution of the electronic structure. It always
shows two roughly parallel lower and upper Hubbard bands
split by U . These bands gain in coherence as t⊥ is increased.
At the end state, i.e., higher t⊥, two well-defined and coherent

FIG. 16. Bonding density of states AB(ω) (vertical panels) and intensity plots of the bonding spectral function AB(ε,ω) of the Mott-insulating
state at large U = 4 and increasing t⊥. Obtained by IPT at T = 0. Note these are the same data as in Fig. 15 but shown on a different basis.
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contributions dominate the electronic structure. As can be seen
in the last panel of Fig. 16, the main contribution comes
from the bonding state for the lower Hubbard band, and
correspondingly from the antibonding for the upper Hubbard
one. However, some incoherent weak intensity and weakly
dispersive states can still be observed. This state resembles
the Hubbard I solution, with two coherent bands, that are split
by U . This can be rationalized noting that in the B/AB basis,
the system is strongly orbitally polarized.

More interesting are the states at lower values of t⊥. As
displayed in the first two panels of Fig. 16, we observe that
the Hubbard bands develop a unique characteristic, which
is their mixed character. In fact, we observe sharper and
more coherent quasiparticlelike contributions to the electronic
structure in the inner edges of the Hubbard bands, which upon
integration lead to a peculiar line shape for the local DOS(ω).
The outer part of the Hubbard bands, in contrast, is strongly
incoherent. The physical interpretation of the quasiparticle
states stems from the intradimer magnetic coupling of the
emergent moments. Within the dimer they develop a coherent
singlet state, thus remain localized, and their effective mass is
heavy. The propagation of higher-energy states through the
lattice remains very incoherent, as signaled by the diffuse
spectral intensity which is broad on a scale of ∼D. These
states with a mixed character in the propagation of the Hubbard
bands are an original feature of the DHM and they are absent
in the single-band model case. It would be interesting to see
if some of its signatures may be experimentally observed in
spectroscopic studies.

VI. CONCLUSIONS

We have studied in detail the solution of a basic strongly
correlated model, the dimer Hubbard model, which is possibly
relevant for VO2 [14], monoclinic transition-metal oxides MO2

[25], and more generally structures with a dominating bond
between a pair of correlated metallic ions.

This model is also interesting as it is arguably the simplest
realization of a cluster DMFT problem and has a quantum im-
purity model that is analogous to that of realistic DFT+DMFT
calculations of monoclinic VO2. Indeed, we have seen that
the solution of the DHM does exhibit the same physical
mechanism for the insulator gap opening as was reported in
DFT+DMFT studies, namely, the strong enhancement of the
intradimer self-energy.

We provided a detailed description of the solutions in
the “coexistent region” where two (meta)stable states of the
CDMFT equations are found: one a metal and the other an
insulator. Moreover, we described in detail how these states
break down at their respective critical lines. We have clarified
the key role played by the intradimer correlation, which here
acts in addition to the familiar onsite Coulomb correlations
(Mott-Hubbard) that were already present in the one-band case.
Their interplay (i.e., Kondo screening vs RKKY) determines
the physics of the metal-to-insulator transition line as the
instance where the renormalized low-energy B/AB bands
separate. This was described in terms of our R2B model
parametrization, which turned out to be always applicable in
metallic side on the full t⊥ − U phase diagram at low enough
frequencies, but not in the Mott-insulator state.

The simplicity of the DHM provides new and detailed
physical insight and allows us to clarify the important issue of
the Mott-Peierls crossover. This question has remained a matter
of debate in DFT+CDMFT studies for VO2. A reason may
be found in the surprisingly subtle evolution of the electronic
structure with the systematic change of model parameters.
In fact, the crossover from the Mott to the Peierls limit is
nontrivial and we characterized a variety of physical regimes.
Interestingly, we found that the Hubbard bands evolve from
purely incoherent (Mott) to purely coherent (Peierls) through
a state with unexpected mixed character. This feature can be
understood as follows: in the Mott limit, at low intradimer
hopping t⊥, one has emergent magnetic degrees of freedom
that remain freely fluctuating above a rather small spin-singlet
pairing temperature T ∗. Increasing the intradimer hopping,
the moments bind into a spin-singlet state and they acquire
coherence (i.e., a well-defined quantum state) within the dimer.
However, the excitations of such a state still lack coherence
through the lattice. We may think of this state as Mott-localized
singlet dimers. Upon further increase of the intradimer hop-
ping, the bonding orbital becomes fully occupied as one may
think of t⊥ as an effective crystal field. Hence, the system
becomes orbitally polarized in the bonding/antibonding basis,
which renders the electronic structure coherent as quantum
fluctuations are frozen out. Nevertheless, even in this large-
t⊥ limit, the gap remains controlled by the interaction U .
Therefore, the state remains a Mott-insulator one at strong
enough U (zone III on Fig. 9), and although it is in a B/AB
polarized state, it can be seen that a Hartree-Fock description
fails.

Our work has uncovered a paradigm of a nonmagnetic Mott
insulator, which may be realized in structures with two strongly
coupled correlated atoms, with VO2 as a prototypical example.
This Mott state has a surprising coexistence of coherent and
incoherent excitations. An open question is whether this feature
may be seen in spectroscopic studies, or if it may be put
in evidence by pump-probe experiments that may selectively
excite particles to the coherent or incoherent states.

Finally, the intradimer magnetic coupling provides binding
of the two electrons into a singlet state below a characteristic
temperature T ∗. It is an interesting open question to study the
fate of such a state upon doping the system. This situation is
rather reminiscent of the magnetic pseudogap state discussed in
the context of the doped Mott state of curate superconductors.

APPENDIX A: DETAILS OF THE
TWO-RENORMALIZED-BAND APPROXIMATION

AT LOW FREQUENCIES

In order to derive a simple description of the low-frequency
electronic structure in a large region of parameter space, it is
useful to expand the mean-field equations (2) at low energies
ω → 0 once they are in diagonal form:

GB/AB(ω) =
∫

dε ρ(ε)[ω − ε ± t⊥ − �B/AB(ω)]−1. (A1)

From this equation, one approximates the self-energy assuming
it has a well-behaved Taylor expansion up to linear order in the
interval 0 < ω < ω∗, i.e., Re�B/AB(0) ≈ Re�B/AB(ω∗), we can
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FIG. 17. Low-energy behavior of the spectral function and self-
energy for the dimer system in the metallic phase at t⊥/D = 0.3
U/D = 2. (a) Bonding spectral function AB(ω) in orange and bonding
renormalized band in dashed red lines providing a good agreement
with the band edge of the spectral function. (b) The corresponding
self-energy in the bonding basis �B . In the site basis, (c) the same site
�11 and (d) intersite �12 self-energies. Solid lines are the real parts
and in dotted-dashed lines the imaginary parts. As expected in the
quasiparticle regime Im� ≈ 0 and the real part is linear.

write

�B/AB(ω) ≈ �B/AB(ω = 0) + ∂�B/AB(ω)

∂ω

∣∣∣∣
w=0

ω (A2)

and call this the quasiparticle interval where this approx-
imation holds. The quasiparticles are long lived provided
Im�B/AB(ω) ≈ 0. In such a way, we may then represent the
low-energy Green’s function as

GR2B
B/AB(ω) =

∫
dε ρ(ε)

[
ω

(
1 − ∂ Re�B/AB(ω)

∂ω

∣∣∣∣
0

)

− ε ± t⊥ − Re�B/AB(0)

]−1

, (A3)

defining as in the main text the quasiparticle residue Z by

Z−1 ≡ 1 − ∂ Re�B/AB(ω)

∂ω

∣∣∣∣
0

= 1 − ∂ Re�11(ω)

∂ω

∣∣∣∣
0

(A4)

and the renormalized intradimer hopping

t̃⊥ ≡ t⊥ ∓ Re�B/AB(0) = t⊥ + Re�12(0), (A5)

where the last equivalences are due to Re�11(0) = 0 and
∂ Re�12(ω)

∂ω
|
0

= 0 as can be verified in Fig. 17. Thus, we obtain a

renormalized two-band (R2B) representation of the electronic
structure at low ω in terms of two quasiparticle bands. Their
corresponding DOS is composed of two narrowed semicircles
of width 2D̃ = 2ZD and split by 2Zt̃⊥,

ρR2B
B/AB(ω) = 2

πD2

√
D2 −

(ω

Z
± t̃⊥

)2
. (A6)

Under this approximation, the total spectral weight of this
renormalized band is not one any more but Z < 1 and the rest

of the spectral function outside the quasiparticle regime has
totally vanished. However, this renormalized two-band system
is well capable of representing the low-energy states of the
system, especially the band edges of the quasiparticle peaks
through which we are able to quantify the metal-to-insulator
transition, as described in the main text. This simple low-
frequency description in terms of two bands is accurate enough
in a large region of the phase diagram, where the Re�B/AB

is well behaved as mentioned above. These regions include
the weakly correlated limit but also the strongly correlated
metal.

It is important to recognize that the quasiparticle residue
Z defined in Eq. (A4) does not follow the standard def-
inition of a Landau-Fermi quasiparticle. In such case one
would first find quasiparticles by finding the poles ω∗(ε)
of the spectral function given by the solution of the
equation

ω∗ − ε ± t⊥ − Re�B/AB(ω∗) = 0. (A7)

In that case, one finds the quasiparticle residue for each Landau
quasiparticle at every instance of the spectral dispersion, for
each of the composing bands of the system.

Zε
B/AB ≡

[
1 − ∂ Re�B/AB(ω)

∂ω

∣∣∣∣
ω=ω∗(ε)

]−1

. (A8)

This treatment is unnecessary for our current specific pur-
poses since we are working with an energy-averaged spectral
function and in our particle-hole symmetric half-filled case,
the simple expansion around ω = 0 provides an excellent
description of the low-energy features of the spectral function,
in particular the band edges, which we use to quantify the
transition.

APPENDIX B: PROOF THAT THE IPT SOLUTION
IS EXACT AT T = 0 FOR THE ISOLATED DIMER

(ATOMIC LIMIT OF THE DHM)

At the heart of the dimer lattice problem is a hydrogen
molecule motive (the dimer) which repeats in the lattice.
Isolating this molecule in the limit t → 0, the governing
Hamiltonian is reduced to

H = t⊥
∑

σ

(c†1σ c2σ + c
†
2σ c1σ ) + U (n1↑n1↓ + n2↑n2↓)

−μ
∑
α,σ

nασ , (B1)

where cασ annihilates an electron from the dimer orbital α =
{1,2} and with spin σ = {↑ , ↓}. U > 0 is the onsite repulsive
Hubbard interaction and t⊥ > 0 the dimer hybridization. The
chemical potential is fixed to ensure half-filling at μ = U/2.

In this work, the fermionic arrangement convention
is to order states by their spin projection. Thus, the
full occupation is described by the many-body state
vector

|1↑2↑1↓2↓〉 = c
†
1↑c

†
2↑c

†
1↓c

†
2↓|∅〉. (B2)

The single-particle sector has only four states, as one has four
particles. After diagonalizing this block, we only find two
distinct energy levels since up and down spin are degenerate.
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We call these two levels the bonding (B) and antibonding (AB)
levels:

|Bσ 〉 = 1√
2

(|1σ 〉 − |2σ 〉), EB = −U

2
− t⊥, (B3a)

|ABσ 〉 = 1√
2

(|1σ 〉 + |2σ 〉), EAB = −U

2
+ t⊥. (B3b)

The ground state is in the N = 2 sector and it is nonde-
generate ∀ U > 0 and ∀ t⊥ > 0. Its energy eigenvalue and
eigenvector are

EGS = −U

2
− 1

2

√
U 2 + 16t2

⊥, (B4a)

|GS〉 = 1

a

(
(|1↑2↓〉 + |2↑1↓〉) − 4t⊥

U + b
(|1↑↓〉 + |2↑↓〉)

)
,

(B4b)

where a =
√

32t2
⊥

(U+b)2 + 2 and b =
√

U 2 + 16t2
⊥. It becomes

clear from this that as the local Coulomb interaction is raised,
the double occupation is reduced in the system. The zero-
temperature Green’s function of the dimer can be obtained
through the Lehmann representation by

Gαβσ (ω) =
∑
m

〈GS|cασ |mN=3〉〈mN=3|c†βσ |GS〉
ω − (Em − EGS)

+
∑
m

〈mN=1|cασ |GS〉〈GS|c†βσ |mN=1〉
ω − (EGS − Em)

, (B5)

which reduces for the local (G11) and intersite (G12) Green’s
functions into

G11σ = 1

a2

[ (
1 − 4t⊥

U+b

)2

a2(b + 2t⊥ + 2ω)
−

(
1 − 4t⊥

U+b

)2

a2(b + 2t⊥ − 2ω)

+
(
1 + 4t⊥

U+b

)2

a2(b − 2t⊥ + 2ω)
+

(
1 + 4t⊥

U+b

)2

a2(−b + 2t⊥ + 2ω)

]
,

(B6a)

G12σ = 1

a2

[ (
1 − 4t⊥

U+b

)2

(b + 2t⊥ + 2ω)
+

(
1 − 4t⊥

U+b

)2

(b + 2t⊥ − 2ω)

−
(
1 + 4t⊥

U+b

)2

(b − 2t⊥ + 2ω)
+

(
1 + 4t⊥

U+b

)2

(−b + 2t⊥ + 2ω)

]
. (B6b)

The self-energy is obtained by solving Dyson’s equation,
which is a matrix equation of the form[

�11 �12

�12 �11

]
=

[
ω −t⊥

−t⊥ ω

]−1

−
[
G11 G12

G12 G11

]−1

(B7)

and results in

�11 = U 2

4

ω

ω2 − 9t2
⊥

= U 2

8

(
1

ω + 3t⊥
+ 1

ω − 3t⊥

)
, (B8a)

�12 = U 2

4

3t⊥
9t2

⊥ − ω2
= U 2

8

(
1

ω + 3t⊥
− 1

ω − 3t⊥

)
. (B8b)

The IPT scheme is drastically simplified in the isolated
molecule case as it becomes a single iteration procedure.
The self-energy is directly approximated by the second-order
diagram

�αβ(iωn) ≈ −U 2
∫ β

0
G0

αβ (τ )G0
αβ(−τ )G0

αβ(τ )eiωnτ dτ. (B9)

In this case, one does not include the Hartree term as for
the particle-hole symmetric case it is exactly canceled by the
chemical potential. The IPT equation (B9) can be conveniently
reformulated into real frequencies by the analytical continua-
tion and we can focus only on the imaginary part only needing
the spectral functions [37]:

Im�αβ(ν)

= −πU 2
∫

dw dw′[A−
αβ(w)A+

αβ(w′)A−
αβ(ν − w + w′)

+A+
αβ (w)A−

αβ(w′)A+
αβ(ν − w + w′)], (B10)

where

A+
αβ(w) = θ (w)Aαβ(w) = −θ (w)ImG0

αβ(w)/π

= 1

2
[δ(w − t⊥) + δ(w + t⊥)], (B11a)

A−
αβ(w) = θ (−w)Aαβ(w) = −θ (−w)ImG0

αβ(w)/π

= 1

2
[δ(w − t⊥) − δ(w + t⊥)], (B11b)

where θ (w) is the Heaviside step function. Replacing into
Eq. (B10),

Im�11(ν)

= −π
U 2

4

∫
dw dw′[θ (−w)δ(w + t⊥)θ (w′)

× δ(w′ − t⊥)A−(ν − w + w′) + θ (w)δ(w − t⊥)θ (−w′)

× δ(w′ + t⊥)A+(ν − w + w′)]

= −π
U 2

4

∫
dw′[θ (w′)δ(w′ − t⊥)A−(ν + t⊥ + w′)

+ θ (−w′)δ(w′ + t⊥)A+(ν − t⊥ + w′)]

= −π
U 2

4
[A−(ν + 2t⊥) + A+(ν − 2t⊥)]

= −π
U 2

8
{θ [−(ν + 2t⊥)][δ(ν − t⊥) + δ(ν + 3t⊥)]

+ θ (ν − 2t⊥)[δ(ν − 3t⊥) + δ(ν − 3t⊥)]},

Im�11(ν) = −π
U 2

8
[δ(ν + 3t⊥) + δ(ν − 3t⊥)]. (B12)

The real part can be obtained by the Kramers-Kronig relation.
A similar procedure is followed to find �12, after which one
recovers the exact expressions as presented in (B8). Thus, one
can assert that the IPT approximation is exact in the zero-
temperature and t = 0 limits.
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