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Topological phases in the non-Hermitian Su-Schrieffer-Heeger model
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We address the conditions required for a Z topological classification in the most general form of the non-
Hermitian Su-Schrieffer-Heeger (SSH) model. Any chirally symmetric SSH model will possess a “conjugated-
pseudo-Hermiticity” which we show is responsible for a quantized “complex” Berry phase. Consequently, we
provide an example where the complex Berry phase of a band is used as a quantized invariant to predict the
existence of gapless edge modes in a non-Hermitian model. The chirally broken, PT -symmetric model is studied;
we suggest an explanation for why the topological invariant is a global property of the Hamiltonian. A geometrical
picture is provided by examining eigenvector evolution on the Bloch sphere. We justify our analysis numerically
and discuss relevant applications.
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I. INTRODUCTION

Recent studies have suggested that non-Hermitian analogs
of the Su-Schrieffer-Heeger (SSH) model are relevant in de-
scribing one-dimensional (1D) topological behavior in systems
with gain and/or loss. Specifically, a number of theoretical
works have suggested methods to achieve PT -symmetric
versions of the SSH model in an optical setting [1–5], with
recent experimental successes demonstrating the existence of
robust edge states [6–9]. Thus an active area of research aims to
characterize topological phenomena in non-Hermitian models
[3,10–15].

A crucial assumption of the tenfold way classification of
topological insulators is Hermiticity of the Hamiltonian [16].
In 1D Hermitian models, the presence of either chiral [16] or in-
version symmetry [17] is responsible forZ topological phases.
What symmetries are necessary to ensure a Z classification in
a 1D non-Hermitian model?

We frame our analysis in terms of the non-Hermitian gen-
eralization of the Berry phase: the “complex” Berry (cBerry)
phase [18–21]. In doing so, we find that any chirally symmetric
SSH model will possess a Z invariant, including systems
where inversion symmetry is broken. Fundamentally, this is
because any chiral model will possess a “conjugated pseudo-
Hermiticity” which is responsible for a quantized cBerry phase.
We also discuss the chirally broken, PT -symmetric SSH
model by considering an imaginary staggered potential [1].
We argue that because bulk band crossings occur away from
the topological transition point, the topological invariant must
be a global property of the Hamiltonian.

A central goal of this work is to clarify the role of
the complex Berry phase in non-Hermitian models. In the
absence of Hermiticity, it is unclear what quantity serves
as the bulk topological index in general. Previous studies
have pointed to quantization of the real Berry phase [1,8,22],
global cBerry phase [13], Pfaffian [23], and various winding
numbers [2,3,14] to characterize a transition. In this study,
we highlight the importance of the complex Berry phase of
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a band by demonstrating that its quantization will accurately
predict the existence of gapless edge modes in non-Hermitian
models. We posit that if the system has gapped edge modes,
then the topological index must be associated with the entire
Hamiltonian, not a specific band. This is in agreement with
previous studies [2,3,13].

While a number of studies have focused on the PT -
symmetric version of the model, the non-Hermitian, chirally
symmetric case has received less attention. Such a model arises
when discussing plasmonic dispersion on a bipartite lattice
[24,25] and in optical analogs of the Hatano-Nelson model
[26–29]. We speak more concretely concerning problems
which benefit from our analysis towards the end of the work.

II. MODEL AND RESULTS

We begin by studying the most general 1D nearest-neighbor
tight-binding model on a bipartite lattice without assuming
Hermiticity. Consider N pairs of particles on a finite chain
with the Hamiltonian

H hop = v1

N∑
n=1

|n,B〉〈n,A| + v2

N∑
n=1

|n,A〉〈n,B|

+w1

N−1∑
n=1

|n + 1,A〉〈n,B| + w2

N−1∑
n=1

|n,B〉〈n + 1,A|,

(1)

where we do not assume v1 = v∗
2 ,w1 = w∗

2 , which defines the
Hermitian case [30,31]. In addition to the hopping, we will
consider an imaginary staggered potential when discussing the
PT -symmetric case, given by the term

H pot = iu

N∑
n=1

(|n,A〉〈n,A| − |n,B〉〈n,B|). (2)

The full Hamiltonian reads H = H hop + H pot. If periodic
boundary conditions are assumed, then the system possesses
discrete translational invariance and hence may be diagonal-
ized according to Bloch’s theorem by considering eigenvectors
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FIG. 1. Top: Chiral SSH with non-Hermitian hopping parameters,
no potential. Bottom: Chirally broken, PT -symmetric SSH with non-
Hermitian staggered potential.

of the form

|ψk〉 = 1√
N

N∑
n=1

eikn(ak,bk)(|n,A〉,|n,B〉)T . (3)

Substituting this ansatz into (1) leads to the equation(
iu w1e

−ik + v2

w2e
ik + v1 −iu

)(
ak

bk

)
= E(k)

(
ak

bk

)
, (4)

where the 2×2 matrix above is defined as the bulk Hamiltonian
H (k). Solving for the bulk dispersion E(k) and corresponding
eigenvectors provides us with all the modes in the model except
edge modes, which only appear in the finite-chain Hamiltonian
without periodic boundary conditions (1). The bulk-boundary
correspondence states that an invariant calculated from the
bulk Hamiltonian can predict how many gapless, topologically
protected edge modes to expect in the finite system [32].

In what follows, we will be concerned with two distinct sce-
narios: (1) completely general hopping in the absence of a stag-
gered potential u = 0, which is referred to as the chirally sym-
metric case, and (2) real, symmetric hopping (up to a gauge) in
the presence of an imaginary potential v1 = v2 = v ∈ R,w1 =
w2 = w ∈ R,u �= 0,u ∈ R, which is referred to as the PT -
symmetric case. Figure 1 gives an illustration of the two setups.

We discuss the symmetries in the absence of a staggered
potential u = 0. Restricting hopping to nearest neighbors im-
plies that the Hamiltonian possesses chiral symmetry, defined
by σzH (k)σz = −H (k), where σi refers to Pauli matrices. This
results in eigenvalues E(k) which come in ± pairs at a given
k. Chiral symmetry implies a conjugated pseudo-Hermiticity
H †(k) = σxH (k)∗σx since both conditions are satisfied only
if the bulk Hamiltonian lacks a term proportional to σz. We
will show that this is the necessary ingredient for a quantized
cBerry phase. If w1 = w2,v1 = v2, then H possesses inversion
symmetry, defined as σxH (k)σx = H (−k), which implies
E(k) = E(−k).

In the presence of an imaginary staggered potential u �=
0 and real hopping v1 = v2 = v,w1 = w2 = w, chiral sym-
metry is broken, but the system possesses PT symmetry,
defined by σxH (k)σx = H (k)∗. Generally, PT -symmetric
models have two parameter regimes called the “broken”
and “unbroken” phases [33,34]. The unbroken phase has
attracted much attention since it is defined by a fully real

spectrum and eigenvectors which are PT symmetric |ψk〉 =
σx |ψk〉∗. The unbroken phase for our model occurs when u <

|v − w|. The PT -symmetric model possesses a pseudo-anti-
Hermiticity H (k)† = −σzH (k)σz, which is responsible for a
topological transition (discussed below). Note that pseudo-
anti-Hermiticity reduces to chiral symmetry in the case of a
Hermitian Hamiltonian.

Chiral symmetry ensures that NA − NB is a topological
invariant, where NA/B is the number of zero-energy, left
edge modes with support on sublattice A/B [31,35]. This
is because topologically protected edge modes are their own
chirally symmetric partners, which pins their energy to zero. By
considering the two completely dimerized regimes |v1,2| = 0,

|w1,2| �= 0;|v1,2| �= 0,|w1,2| = 0, we find that this invariant
changes from 1 to 0 and hence infer that a topological
transition must occur somewhere in between these two limits.
Similarly, Esaki et al. argue that pseudo-anti-Hermiticity acts
analogously to chiral symmetry with the caveat that edge
modes must appear gapless only in the real plane [3]. What
bulk invariant is responsible for these edge states?

Before specializing to the model (4), we introduce the Berry
phase for non-Hermitian Hamiltonians. The complex Berry
phase for band n is defined by

Qc
n = i

∫
BZ

〈
λn

k

∣∣∣∣ ∂

∂k

∣∣∣∣ψn
k

〉
dk, (5)

where n labels the band index, |ψ〉,|λ〉 are eigenvectors of
H,H † respectively (namely, the right and left eigenvectors
of the Hamiltonian), and the integral is taken over the 1D
Brillouin zone [19–21]. A generalization of Berry’s original
argument [18] suggests that Qc

n is the geometrical phase picked
up by an adiabatic deformation across the Brillouin zone,
which arises fundamentally because the states |ψn〉 no longer
form an orthogonal basis while biorthonormality constraints
are satisfied, 〈λn|ψm〉 = δnm.

We briefly mention that in the literature, some studies have
suggested that the quantization of the “real” Berry phase,
defined by

Qr
n = i

∫
BZ

〈
ψn

k

∣∣∣∣ ∂

∂k

∣∣∣∣ψn
k

〉
dk, (6)

where 〈ψn|ψn〉 = 1, implies a topological classification in
non-Hermitian systems [1,8,22]. We will find instances where
Qr

n does not predict the existence of gapless edge modes, while
its complex counterpart does in all situations encountered.

We now study the chirally symmetric model, i.e., u = 0.
The right and left eigenvectors are related via conjugated
pseudo-Hermiticity by |λ±

k 〉 = σx |ψ±
k 〉∗. Additionally, the chi-

ral symmetry relates the positive and negative bands by
|ψ±

k 〉 = σz|ψ∓
k 〉. Combining these together leads to a useful

parametrization:

∣∣ψ±
k

〉 = 1√
2 sin θk cos θk

(
e−iφk cos θk

± sin θk

)
,

∣∣λ±
k

〉 = 1√
2 sin θk cos θk

(
e−iφk sin θk

± cos θk

)
, (7)

where eigenvectors are normalized to obey the conditions
〈λ±

k |ψ±
k 〉 = δ++;−−, 〈ψ±

k |ψ±
k 〉 �= 1,0. Substituting (7) into the
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expression for Qc in (5), after some algebra, we find

Qc
± = 1

2

∫
BZ

φ̇kdk = 1

2

(
φk

∣∣k=π

k=−π

)
, (8)

which is clearly quantized to be an integer multiple of π . Note
that our parametrization (7) is ill defined in the case when
θk = nπ/2,n ∈ Z due to the diverging normalization constant.
However, θk attains such values only when a band gap closes for
the chiral system. This is because chiral symmetry precludes a
σz term in H (k); hence the eigenvectors |ψk〉 = (1,0)T ,(0,1)T

can occur only if one of the off-diagonal elements in the
bulk Hamiltonian is zero and hence at a band crossing. (This
point is also known as an exceptional point [36].) Thus the
cBerry phase is a topological invariant: as long as adiabatic
deformations to the Hamiltonian preserve the band gap, the
cBerry phase will be integer quantized in units of π .

In Appendix A we show that the real Berry phase in a chiral
model is not quantized if inversion symmetry is broken. Note
that in the cBerry phase analysis above there is no reference
to inversion symmetry, and relationships between right and
left eigenvectors arise due to chiral symmetry alone. Later, we
will confirm numerically that there are chiral models where
inversion symmetry is broken which possess gapless edge
modes. Interestingly, recent studies have found that the non-
Hermitian 2D Chern number is not sensitive to the combination
of right and left eigenvectors used in the expression for the
Berry curvature, in contrast to the 1D Berry phase [10].

In the previous section we argued that if the system has
chiral symmetry, then, generically, the cBerry phase will be
quantized to an integer value away from a band crossing. It
is well known that a real, staggered potential will destroy
quantization in the Hermitian SSH since such a term breaks
both chirality and inversion [16,17]. Physically, this is because
edge states acquire an energy splitting and hence can be
adiabatically removed without closing a band gap. In the
PT -symmetric model, edge states are gapless in the real plane
but acquire an imaginary energy gap according toEedge = ±ui.
However, due to pseudo-anti-Hermiticity arguments we know
that a topological transition must take place. Liang and Huang
[13] derived the expression for the complex Berry curvature:〈

λ±
k

∣∣∣∣ ∂

∂k

∣∣∣∣ψ±
k

〉PT

= 1

2
(1 ± cos ξk)η̇k, (9)

where cos ξk = iu√
|v+we−ik |2−u2

, e−iηk = v+we−ik

|v+we−ik | . Upon inte-

gration across the Brillouin zone, we find that the cBerry phase
of a given band is not quantized (which is a common feature for
gapped edge modes) but, interestingly, their sum is quantized.

The PT -symmetric topological transition is fundamentally
different from the normal “topological insulator” paradigm.
In the Hermitian SSH, edge modes are removed at a unique
point where the bands cross; conversely, the entire PT -broken
phase has bulk band crossings, yet edge modes still exist in
the PT -broken region as long as v < w. Indeed, the transition
point occurs when bulk modes are degenerate with edge modes,
which are gapped in the imaginary plane. A phase diagram is
given in Fig. 2.

Previous studies have suggested various global indices to
characterize the number of pairs of gapless-real-energy edge
modes in the PT -symmetric model. Liang and Huang [13]

unbroken broken unbroken

ν = 1 ν = 0
w

w − u w + u

v

FIG. 2. One-dimensional phase diagram in v for the PT -
symmetric case v1 = v2 = v ∈ R,w1 = w2 = w ∈ R at a fixed value
of u,w > 0. The system moves in and out of the PT -broken phase as
a function of v. ν is the topological index which predicts how many
pairs of gapless-real-energy edge modes exist in the system. The bulk
spectrum is gapless in the entire PT -broken phase.

found that the global cBerry phase Qc
G = Qc

+ + Qc
− accurately

captures the transition. Alternatively, Esaki et al. [3] define a
winding number using the Q-matrix classification technique
[16]. It is not surprising that the topological invariant in the
PT model is not a property of the band, but rather of the
entire Hamiltonian since bulk band crossings occur in the entire
broken region and band indices lose their meaning at a band
crossing.

We now provide a geometrical picture which further justifies
our results for the chiral model by projecting eigenvectors onto
the Bloch sphere. The most general 2D right eigenvector can
be parametrized as

|ψ ′(αk,βk)〉 =
(

cos(βk/2)
eiαk sin(βk/2)

)
. (10)

For each eigenvector we may calculate the Bloch vector,
defined as

bk = 〈ψ ′
k|σ |ψ ′

k〉 (11)

at each k point, where σ is the vector of Pauli matrices.
αk,βk correspond to the azimuthal and polar angles of bk ,
respectively.

In Fig. 3 we plot the eigenvector evolution on the Bloch
sphere across the Brillouin zone for two chiral systems with
distinct cBerry phases. The topological classification arises
due to the result from homotopy theory, π1(S2/{n,s}) = Z,
n = (0,0,1)T ,s = (0,0,−1)T , where we map the one-
dimensional path across the Brillouin zone onto the surface of
the Bloch sphere and observe that distinct winding numbers
around the z axis cannot be smoothly deformed into each
other without passing the loop through the north or south
poles. The north and south poles of the Bloch sphere are
attained if |ψ ′(k)〉 = (1,0)T ,(0,1)T , respectively, which (as

FIG. 3. The lower-band vectors bk (red) on the Bloch sphere in the
range k ∈ [−π,π ) for a chiral model when Qc

± = 0 (left) and Qc
± = π

(right). The north–south axis is dashed in black. Systems with distinct
winding number cannot be deformed into each other without passing
through the north or south poles (black dots), which can occur only
at a band crossing in the chiral model. bk are not constrained to the
equator.
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FIG. 4. Chiral, inversion-symmetric setup: u = 0,v1 = v2 =
exp (iπ/5) sin t,w1 = w2 = cos t,N = 100. Edge modes are in red;
bulk modes are in blue.

explained previously) can occur only at a band crossing. If
we restrict adiabatic deformations to those which preserve
band openings, then the poles are not accessible; hence distinct
winding numbers are topologically preserved. The source
of the Z classification in the non-Hermitian model is to be
contrasted with the Hermitian SSH model, where Bloch vectors
are constrained to lie on the equator; hence π1(U (1)) = Z.

In the presence of a real, staggered potential in the Hermitian
SSH, topological classification is lost due to the resultπ1(S2) =
0 since eigenvectors can reach the poles without closing a band
gap. This simple one-band picture breaks down in the presence
of an imaginary potential, i.e., the PT -symmetric case, since
band crossings occur in the broken phase. At the point of the
band crossing, it is unclear how to continue the Bloch vector
loop due to the degeneracy.

We proceed to numerically verify our analysis. In Figs. 4,
5, and 6, the real and imaginary energy eigenvalues are plotted
for the finite-chain Hamiltonian (1) for three distinct setups:
(1) chiral, inversion symmetric, (2) chiral, inversion breaking,
and (3) PT symmetric, with details given in the captions.

In the presence of chiral symmetry, i.e., Figs. 4 and 5, the
edge modes are gapless in both real and imaginary energies.
Crucially, while bulk band gaps may close in the real or
imaginary plane away from the topological transition point,
the only time they close simultaneously is at the transi-
tion. In the inversion-broken scenario, the bulk spectrum is
no longer invariant under the transformation k → −k (not
shown); however, we see that a topological transition persists.
In Appendix B we elaborate on the spectrum of the chiral,
inversion-symmetric case.

In the PT -symmetric plot (Fig. 6), the two PT -unbroken
phases (defined by purely real bulk modes) are separated by
a PT -broken phase where some bulk modes become purely
imaginary. Moreover, note that there is a pair of gapped edge
modes in the imaginary plane when v < w. At the point of

FIG. 5. Chiral, inversion-breaking setup: u = 0,v1 = sin t,v2 =
exp (iπ/10) sin t,w1 = cos t,w2 = exp (iπ/5) cos t,N = 100. Edge
modes are in red; bulk modes are in blue.

FIG. 6. PT -symmetric setup: u = 0.3,v1 = v2 = sin t,w1 =
w2 = cos t,N = 100. Edge modes are in red; bulk modes are in blue.

the topological transition, bulk modes become degenerate with
edge modes. In the PT -broken phase the bulk spectrum is
gapless.

III. APPLICATIONS

While we have focused on a family of SSH models, our main
results are expected to generalize to other 1D non-Hermitian
systems. Specifically, the cBerry phase is expected to be
quantized for any chiral model away from a bulk band crossing.
We note that the 1D model in Ref. [37] falls outside the scope
of this framework since it possesses chiral symmetry yet has
bulk band crossings away from the topological transition point,
implying that the cBerry phase is ill defined in these regions. It
is not clear that the cBerry phase can be used as a topological
invariant in this model.

The original motivation for this study began by considering
the problem of plasmonic dispersion on bipartite chains of
nanoparticles. The self-consistent Green’s equation for this
model is of the form Gp = α(ω)−1p, where p is the polariza-
tion vector of the chain, α(ω)−1 is the inverse polarizability
which can be mapped to the real and imaginary parts of
the plasmonic dispersion frequency, and G is a Green’s
function matrix which defines how the electric field of a
radiating nanoparticle affects neighboring polarization [25].
Once radiative and retardation effects are taken into account,
the hopping elements respect inversion- symmetry but acquire
a Hermiticity-breaking phase [24,25,38,39].

The PT -symmetric Hamiltonian studied in this work has
been theoretically proposed in the context of complex photonic
lattices with alternating gain and loss [1] and has recently been
realized in experiment with the observation of robust edge
states [8]. We note that PT -symmetric SSH models and 1D
“non-Hermitian quantum walks” are closely related [2,13]. In
the language of our analysis, the non-Hermitian quantum-walk
Hamiltonian is simply Hqw = HPT − iuI, where I is the
identity matrix. Recent optical experiments have indeed found
edge states in the non-Hermitian quantum-walk model [7,9].

From a numerical perspective, our study of the non-
Hermitian, chiral model provides an exact expression for the
cBerry phase that one may hope to match with computational
methods [40].

IV. SUMMARY

In summary, we have investigated the topological properties
of non-Hermitian SSH models with various symmetries and
in the process shed light on the role of the complex Berry
phase. We have demonstrated that any chirally symmetric
SSH model will possess a quantized cBerry phase for each
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band which serves as a good topological invariant to predict
the existence of gapless edge modes. We have provided
an argument which explains why the PT -symmetric model
possesses a global invariant: pseudo-anti-Hermiticity leaves
edge modes gapless in real energy but gapped in imaginary
energy. This implies that bulk band crossings can occur away
from the topological transition point, which suggests that
the invariant is a property of the entire Hamiltonian, not
individual bands. From the viewpoint of classification theory, it
appears that chiral symmetry and pseudo-anti-Hermiticity are
the relevant symmetries necessary to categorize non-Hermitian
1D transitions, although future work needs to address this in a
more systematic way [41]. We have used homotopy arguments
to justify the Z classification of the chiral model by projecting
eigenvectors onto the Bloch sphere and evolving them across
the Brillouin zone. We have verified our analysis numerically
and discussed relevant applications of the study. Future work
will aim to extend these ideas to higher dimensions.
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APPENDIX A: REAL BERRY PHASE
IN A CHIRAL MODEL

There has been some debate concerning whether the real
or complex Berry phase serves as the topological invariant for
non-Hermitian models [1,8,13,22]. In the main text we have
demonstrated that the complex Berry phase is quantized as long
as the Hamiltonian has chiral symmetry. We now demonstrate
that if inversion symmetry is broken, then the real Berry phase
is not quantized for the chiral model. Numerically, we found
zero-energy edge states exist even in the absence of inversion
symmetry, implying that the complex Berry phase serves as the
proper index which predicts gapless modes in non-Hermitian
models.

Consider the chiral model, i.e., u = 0,

H (k,w1,w2,v1,v2) =
(

0 w1e
−ik + v2

w2e
ik + v1 0

)
, (A1)

and note the following relation:

H (k,w1,w2,v1,v2) = σxH (−k,w2,w1,v2,v1)σx. (A2)

This can be viewed as an “inversion condition” which states
that if we view the system from the opposite end and simul-
taneously swap w1 ↔ w2,v1 ↔ v2 then the original system
is recovered. Note that H has inversion symmetry only if
w1 = w2,v1 = v2. This condition (A2) tells us that the eigen-
vectors obey |ψ(k,w1,w2,v1,v2)〉 = σx |ψ(−k,w2,w1,v2,v1)〉.
In order to keep the forthcoming notation succinct we will write
this as |ψ(k,1)〉 = σx |ψ(−k,2)〉. Explicitly,

|ψk,1〉 =
(

e−iφk,1 cos θk,1

sin θk,1

)
, |ψ−k,2〉 =

(
eiφk,1 sin θk,1

cos θk,1

)
.

(A3)
Note that φk,1 = −φ−k,2 and sin θk,1 = cos θ−k,2. We wish to
show that the real Berry phase Qr = i

∫
BZ

〈ψk| ∂
∂k

|ψk〉dk is

quantized only if inversion symmetry is obeyed. Consider the
following quantity:

Qr
1 ± Qr

2 =
∫

BZ

φ̇k,1 cos2 θk,1dk ±
∫

BZ

φ̇k,2 cos2 θk,2dk.

If Qr
1 and Qr

2 are quantized individually, then their sum and
difference will be too. We break this quantity up as

Qr
1 ± Qr

2 =
∫ π

0
φ̇k,1 cos2 θk,1dk +

∫ 0

−π

φ̇k,1 cos2 θk,1dk

±
(∫ π

0
φ̇k,2 cos2 θk,2dk +

∫ 0

−π

φ̇k,2 cos2 θk,2dk

)
.

In order to evaluate Qr
1 + Qr

2, consider the sum of the first and
last integrals in the expression above:
∫ π

0
φ̇k,1 cos2 θk,1dk +

∫ 0

−π

φ̇k,2 cos2 θk,2dk

=
∫ π

0
φ̇k,1 cos2 θk,1dk+

∫ 0

−π

φ̇k,2dk −
∫ 0

−π

φ̇k,2 sin2 θk,2dk

=
∫ π

0
φ̇k,1 cos2 θk,1dk+

∫ 0

−π

φ̇k,2dk−
∫ π

0
φ̇k,1 sin2 θ−k,2dk

=
∫ 0

−π

φ̇k,2dk.

Repeating this calculation with the second and third terms
amounts to the same result with the replacement 1 ↔ 2:

Qr
1 + Qr

2 =
∫ 0

−π

φ̇k,2dk +
∫ 0

−π

φ̇k,1dk (A4)

=
∫ π

−π

φ̇k,2dk, (A5)

which is clearly an integer multiple of π .
In the inversion-symmetric case Qr

1 = Qr
2; hence it is clear

that Qr
1 − Qr

2 = 0. Thus we have just demonstrated that if the
system possesses inversion symmetry, then its real Berry phase
will be an integer multiple of π .

Without assuming inversion symmetry, note Qr
1 − Qr

2 =
(Qr

1 + Qr
2) − 2Qr

2, which allows us to make use of the expres-
sion which we just derived:

Qr
1 − Qr

2 =
∫ π

−π

φ̇k,2dk − 2
∫ π

−π

φ̇k,2 cos2 θk,2dk. (A6)

We use integration by parts on the second integral and then
rewrite it in a more symmetric form as

Qr
1 − Qr

2 = φk,2(1 − 2 cos2 θk,2)|π−π

+ 2

(∫ π

−π

φk,2 sin θk,2 cos θk,2θ̇k,2dk

−
∫ π

−π

φk,1 sin θk,1 cos θk,1θ̇k,1dk

)
. (A7)

In the inversion-symmetric case both terms independently go
to zero. In the absence of inversion symmetry, we do not expect
this expression to be quantized in general.
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APPENDIX B: INVERSION-SYMMETRIC,
CHIRAL MODEL

We discuss aspects of the non-Hermitian, chiral SSH model
since such a Hamiltonian serves as the simplest starting
point to understand the role of non-Hermiticity in topological
models. Furthermore, we will restrict our analysis to inversion-
symmetric models since these are relevant to the plasmonic
experiments mentioned in the main text.

Begin by parameterizing the bulk Hamiltonian (4) accord-
ing to v1 = v2 = eiχv sin t,w1 = w2 = eiχw cos t,u = 0. This
is the most general chiral, inversion-symmetric SSH model.
The bulk dispersion reads

E2
k = e2iχw cos2 t + e2iχv sin2 t + 2ei(χv+χw) cos t sin t cos k.

(B1)

It is clear that in order to obtain a band closing in the bulk
spectrum, the parameter t must be tuned to the value t =
(2n + 1)π/4,n ∈ Z. Thus the lack of Hermiticity does not
change the topological transition point (which occurs at a band
closing) in the inversion-symmetric model. The same is true
if inversion symmetry is broken by just a phase term in the
hopping elements. It is also worth noting that by tuning the
phase degrees of freedom χv,w we can choose the momentum
kgap at which the gap closes in the bulk spectrum according
to ±kgap = χw − χv ± π , where relevant k values occur in the
first Brillouin zone.

If we expand around the topological transition point, it is
possible to determine how the magnitude of the energy gap �

scales as a function of t away from the transition point. Keeping
leading orders in δt leads to the following expression:

�(δt)4 = δt2{1 − cos[2(χw − χv)] + O(δt2)}. (B2)

The non-Hermitian chiral model shows a square-root scaling
behavior �(δt) ∝ √

δt in the magnitude of the energy (unless
χw − χv = nπ,n ∈ Z). This is to be contrasted with the linear
scaling of the Hermitian SSH model. Indeed, this is confirmed
numerically in Fig. 7(a).

In the special case when χv = −χw = χ , there is an emer-
gent, antilinear symmetry at the topological phase boundary

FIG. 7. (a) Magnitude of the finite-chain spectrum with periodic
boundary conditions (no edge modes) for v = exp iχv sin t , w =
exp iχw cos t , χv = π/5,χw = 0. The magnitude of the energy gap
scales as

√
t away from the topological transition. (b) Bulk dispersion

at transition point t = π/4 when χv = −χw = 0.3(2π ). The spectrum
at any k is either purely real or imaginary.

which ensures that the energetic secular equation will be real.
Specifically, for the bulk Hamiltonian (4) at the transition point
H (χ,k) = H (−χ,−k)∗. The sign of χ cannot affect the bulk
spectrum due to periodic boundary conditions. Therefore this
relation constitutes an antilinear symmetry which implies that
eigenvectors are either broken or unbroken, in analogy with
the PT -symmetric case. The combination of the chiral and
antilinear symmetry implies that energies are either purely real
or imaginary. This can be seen in Fig. 7(b), where the spectrum
undergoes a broken-to-unbroken transition in k.

We have refrained from commenting on the chiral,
inversion-broken case in the event of unequal magnitudes, i.e.,
|v1| �= |v2|,|w1| �= |w2|. This is known as the Hatano-Nelson
model and has recently been proposed in optical lattices
[26–29]. While our cBerry phase analysis shows that this model
is expected to undergo a topological transition, it is difficult to
numerically confirm this assertion. In the case of nonperiodic
boundary conditions, spectrum convergence with respect to
system size is slow.

Finally, we mention that if additional degrees of freedom
are added to the model (such as beyond-nearest-neighbor
hopping), then it is possible to achieve any integer invariant
Z. These systems possess more than one pair of edge modes.
This confirms the Z classification of the model.
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