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Kinetic theory of transport for inhomogeneous electron fluids
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The interplay between electronic interactions and disorder is neglected in the conventional Boltzmann theory of
transport, yet can play an essential role in determining the resistivity of unconventional metals. When quasiparticles
are long lived, one can account for these intertwined effects by solving spatially inhomogeneous Boltzmann
equations. Assuming smooth disorder and neglecting umklapp scattering, we solve these inhomogeneous kinetic
equations and compute the electrical resistivity across the ballistic-to-hydrodynamic transition. An important
consequence of electron-electron interactions is the modification of the momentum-relaxation time; this effect
is ignored in the homogeneous theory. We characterize precisely when interactions enhance the momentum
scattering rate, and when they decrease it. Our approach unifies existing semiclassical theories of transport,
and explains how the resistivity can be proportional to the rate of momentum-conserving collisions without
Baber scattering. We compare this result with existing transport mysteries, including the disorder-independent
T 2 resistivity of many Fermi liquids, and the linear-in-T “Planckian-limited” resistivity of many strange metals.

DOI: 10.1103/PhysRevB.97.045105

I. INTRODUCTION

A. Challenge of metallic transport

One of the simplest experiments a condensed matter physi-
cist can perform is to measure the electrical resistivity ρ

of a metal. Unfortunately, computing the resistivity from
first principles is extremely challenging. This is because the
resistivity crucially depends on (i) the scattering rates and
pathways of the electrons and (ii) the mechanism through
which translation invariance is lost.

To understand the heart of the challenge, let us briefly review
the origins of transport theory. In many of the most common
metals, a simple picture proposed by Drude [1] in 1900 holds
quite well. We estimate that the resistivity

ρ = m

ne2

1

τ
, (1)

with m the effective mass of quasiparticles in the metal,
n the density of quasiparticles, and τ−1 is the “scattering
rate” of these quasiparticles. Bloch [2,3] improved on this
picture in 1929, noting that τ−1 ought to be the rate at which
quasiparticles lose their momentum. However, it was already
appreciated by Peierls [4,5] in 1930 that such a picture has
a serious caveat: whatever the quasiparticles scatter off of
must rapidly relax the total momentum of the system. There
is a simple argument: if the total momentum of the system is
conserved, then we may shift to a reference frame moving at
velocity �v relative to the crystal rest frame. In the new reference
frame, we observe an electric current �J = −en�v. However,
Peierls’ critique turns out to be unimportant for common
metals, where most scattering events can relax momentum.

For these common metals, the theory of transport was
placed on solid ground 60 years ago, e.g., [6]. One calculates
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the rate at which quasiparticles of momentum �p scatter into
quasiparticles of momentum �q. By associating this with the
collision integral of a homogeneous, linearized Boltzmann
equation, one is easily able to compute the resistivity of a metal.
Bloch’s and Peierls’ improvements have been accounted for.

However, we have now seen many materials whose trans-
port properties are still beyond the conventional paradigm.
A well-known failure of textbook theory arises in “strange
metals” where one commonly measures ρ ∝ T at temperatures
well below the Debye temperature. Upon closer analysis, one
finds [7]

ρ ≈ ρ0 + m

ne2

kBT

h̄
. (2)

The linear in T contribution to ρ is consistent with the Drude
formula (1) if there is a scattering rate

1

τ
≈ kBT

h̄
. (3)

This is precisely the scattering rate of a strongly interacting,
quantum critical strange metal. It may also be the “fastest scat-
tering rate” in nature for momentum-conserving collisions, that
lead to the loss of quantum coherence [8–10]. One of us [11]
conjectured that (2) may arise from saturating a fundamental
bound on transport, where momentum-relaxing collisions also
occur at the rate (3). However, an immediate problem with
bounding the rate of momentum-relaxing collisions as ∝T ,
even in a metallic state, arises from the fact that the constant ρ0

in Eq. (2) is widely believed to arise from scattering off of static
impurities. Indeed, ρ0 is strongly disorder dependent while the
coefficient of the T -linear term is not [12]. If the universality
of (2) arises from the universality of (3), then physics beyond
the Drude paradigm must be responsible.

A less well-appreciated failure of the textbook theory arises
in the conventional Fermi-liquid phase of many “complicated”
metals, including heavy-fermion metals. Here, one measures
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the resistivity

ρ = ρ0 + AT 2, (4)

where the coefficient A typically depends most strongly on the
thermodynamic properties of the sample. In fact, there appear
to be universal relationships between A and simple thermody-
namic properties such as the specific heat and the band structure
[13,14]. Again, it appears that translation symmetry breaking
plays no role in determining the coefficient A arising in the
resistivity, which is at odds with the theorem that ρ > 0 is
solely a consequence of translation symmetry breaking. So,
we have a second example where, neglecting the constant ρ0,
the resistivity seems directly tied to a scattering rate most easily
associated with momentum-conserving collisions. Given a
diverse array of sample quality and material structure, a theory
which leads to (4), where disorder plays a minimal role in
determining the coefficient A, is clearly needed.

A common explanation for the T 2 resistivity of the heavy
fermion and other materials is that (i) there are multiple bands
present, of different quasiparticle masses [15], and/or (ii) that
typical electron-electron scattering is an umklapp process,
which can directly relax momentum [6]. The first explanation
requires that a “heavy” band efficiently relax momentum or that
the metal has perfectly compensated electron and hole Fermi
surfaces so that the total charge density is zero. The second
explanation is plausible so long as the band structure permits
efficient umklapp scattering near the Fermi surface. However,
the universality of A renders this proposal rather unappealing,
given the diverse band structures present in these different com-
pounds, which ought to lead to differences in the efficiency of
umklapp between different materials. We also note that recent
experiments on the SrTiO3 also show anomalous T 2 resistivity:
in the material there is only a single band of electrons at the
Fermi surface, and umklapp is highly suppressed [16,17].

B. Kinetic theory beyond the relaxation time approximation

The conventional theory of transport in condensed matter
physics [6], which is based on kinetic theory, is not sophisti-
cated enough to solve these puzzles. This is of course true for
the “most strongly correlated” metals, where no quasiparticles
exist: the key assumption underpinning the kinetic equations
is the existence of quasiparticles. However, there are many
metals where (i) quasiparticle-quasiparticle scattering is im-
portant and (ii) quasiparticles remain long lived. This occurs
whenever the electron-electron mean-free path is shorter than
the electron-impurity mean-free path. Such a regime has
been accessed in experiments on multiple materials [18–22].
While we will often refer to “electron-electron” scattering
in this work, we technically always mean “quasiparticle-
quasiparticle” scattering. Transport in these metals, with long-
lived quasiparticles, is still beyond the conventional frame-
work, as we now explain.

The reason that the textbook kinetic theory of transport [6]
is not suitable for such systems is that it neglects classical
correlations between scattering events. The approximation that

particles are equally likely to scatter from momentum �p into
�q, everywhere in the sample, is simply not true in general.
For example, consider a quasiparticle moving through a slowly
varying potential. If this quasiparticle collides many times with
other quasiparticles in one “patch” of the potential, then the
local transition rates are not equivalent to spatially averaged
transition rates. In this limit, one can model transport using
hydrodynamics, as has been done in older [23,24] as well as
more recent work [25–30].

Kinetic theory was invented to study the dynamics of gases
and to compute the viscosity of air. Because hydrodynamics
is contained as a special limit of kinetic theory, a correct
and complete solution of the kinetic theory of transport must
recover the hydrodynamic limit of transport when the electron-
electron mean-free path is sufficiently short. Previously, the
homogeneous Boltzmann equation has been solved in finite
geometries, where boundary conditions play the role of “dis-
order” and lead to nontrivial transport phenomena across the
ballistic-to-hydrodynamic crossover [18,31–33]. There is also
previous literature on transport of noninteracting electrons
in disorder potentials by perturbatively solving the Liouville
(noninteracting Boltzmann) equation [34]. Our work will
borrow some techniques from these works and extend them
into new regimes: we directly account for both the disorder
inevitably present in the bulk of the sample and the effects of
electron-electron interactions.

In this paper, we solve the kinetic theory of transport in an
inhomogeneous system. We are able to compute the resistivity
of a disordered medium across the ballistic-to-hydrodynamic
crossover, recover all known (semi)classical transport phe-
nomena within a unified framework, and identify new hydro-
dynamic regimes. We answer the following question: When
do interactions enhance the momentum scattering rate, and
when do they decrease it? We present two explicit types of
calculations. When the inhomogeneity is weak, we integrate it
out and exactly compute the resistivity to leading order in per-
turbation theory. When the inhomogeneity is strong, we present
a variational principle for upper bounding the resistivity. Both
techniques are completely general and valid for any system
with long-lived quasiparticles and inversion and time-reversal
symmetry. The techniques can immediately be applied to
realistic, material-specific models of electronic transport.

II. SUMMARY OF RESULTS

We first introduce the model and explain qualitatively the
transport phenomena that are possible. We then describe the
predictions of our formalism for experiments, and comment
on the similarities between our findings and the experimental
mysteries we outlined in Sec. I A.

A. Transport regimes

In this paper, we will consider a toy model for kinetic
transport which elucidates the failures of the relaxation time
approximation. We consider a weakly interacting gas of long-
lived quasiparticles of Fermi wavelength λF, moving through a
smooth disorder potential Vimp(�x), which varies on the length
scale ξ (see Fig. 1). The Hamiltonian of the many-body
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ξ

λF

μ(x) = μ0 − Vimp(x)

FIG. 1. Quasiparticles of short Fermi wavelength λF moving in a
smooth disorder potential Vimp. In the many-body limit, this disorder
potential may be interpreted as an inhomogeneous chemical potential.

system is

H =
N∑

i=1

[ε( �pi) + Vimp(�xi)] + Hint, (5)

where ε( �p) = ε(− �p) is an inversion-symmetric kinetic energy
(which need not be �p2/2m) and Hint is a many-body Hamil-
tonian allowing for interactions between the quasiparticles.
We assume that Hint is invariant under uniform translations,
and so the total momentum of the electrons is conserved in
the absence of the impurity potential. When λF � ξ , we will
show in Sec. III that one must account for Vimp in a more
sophisticated manner than is conventionally done [6], and
solve the spatially inhomogeneous kinetic equations. While
our focus in this paper is on the limit where momentum
relaxation is entirely due to long-wavelength disorder, it is
straightforward to add short-range impurity scattering, umk-
lapp, and/or phonon scattering. These will add conventional
momentum-relaxing contributions to the kinetic equations.

We will present two techniques for solving the inhomoge-
neous kinetic equations. First, in Sec. IV, when Vimp is weak,
we exactly integrate it out and compute ρ at leading order.
Second, in Sec. V, we prove a variational principle which can

be used to compute upper bounds on the resistivity even when
the inhomogeneity is nonperturbatively large. Schematically,
our variational principle gives that

ρxx �
1
V

∫
ddx T ṡ(

1
V

∫
ddxJx

)2

∣∣∣∣∇·JA=0

; (6)

the resistivity can be computed by minimizing the entropy
produced on arbitrary small deviations away from equilibrium,
subject to the constraint that all conservation laws (including
charge) are respected: ∇ · JA = 0. There are integrals over
space (normalized by the total volume V ), but no disorder av-
erage in Eq. (6). In particular, the constraint must be obeyed in
a specific inhomogeneous potential. This constraint is the new
ingredient relative to older variational principles for the ho-
mogeneous Boltzmann equation [6,35–38]. As explicit appli-
cations of these techniques, we have studied models where the
impurity potential is characterized by a single length scale ξ ,
where electron-electron collisions occur on a fixed length scale
�ee, and where all thermally excited quasiparticles move at a
typical speed vF. Our formalism is applicable for more com-
plicated systems, though we leave detailed analyses of these
generalizations to future work. Both the exact perturbative and
variational nonperturbative computations suggest that there are
three main regimes of transport, summarized in Fig. 2:

(1) Ballistic. In the limit where �ee � ξ , the trajectories
of quasiparticles are dominated by random walks through the
disordered landscape. The diffusion constant of this random
walk directly controls the momentum relaxation rate, and
hence the resistivity. One estimates that, up to a possibly small
constant prefactor when the disorder potential is weak, the
momentum relaxation time is proportional to the time it takes
for a quasiparticle to travel across a puddle:

ρ ∝ 1

τ
∝ vF

ξ
. (7)

Vimp ξ Vimp

(a) (b) (c)

FIG. 2. We follow a “special” quasiparticle (in red) as it meanders through a disordered landscape, possibly colliding with other
quasiparticles. In each plot, we show a birds-eye view of a red quasiparticle, moving through the inhomogeneous impurity potential Vimp (shown
in light blue) of a two-dimensional Fermi liquid. This is an artistic simplification; our results are not specific to d = 2. (a) A noninteracting
quasiparticle random walks through the impurity potential, deflected by a small angle after each puddle. This leads to (7). (b) A quasiparticle
rapidly collides with others (in blue) on a length scale �ee. The time it takes for each quasiparticle to “see” the inhomogeneity is thus enhanced,
leading to (8). The arrows on each blue particle emphasize that these collisions conserve the total momentum, and cannot directly contribute
to the resistivity. (c) A large number of conservation laws ensure that as we try to move any one quasiparticle (in red) across the puddle,
many other quasiparticles are forced out of equilibrium in order to satisfy additional conservation laws: the orange holes denote the “absence”
of quasiparticles, out of equilibrium, and the solid orange circles denote where the quasiparticles have been driven. The large number of
quasiparticles out of equilibrium lead to the effective momentum relaxation rate (9).
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Here, we assume that the typical strength of the impurity
potential is fixed and does not depend on ξ .

(2) Viscous hydrodynamic. In the limit where �ee � ξ , each
quasiparticle collides with other quasiparticles in momentum-
conserving collisions. Suppose that when minimizing the
entropy production in Eq. (6), we are able to arrange the quasi-
particles in local thermodynamic equilibrium (on length scales
small compared to ξ ). The time scale relevant for transport is
the time it takes the collection of colliding quasiparticles to
travel from the center of an impurity puddle to the edge: this is
how long it takes to feel the effects of inhomogeneity. As the
quasiparticles undergo random walks with diffusion constant
vF�ee:

ρ ∝ 1

τ
∝ vF�ee

ξ 2
. (8)

In this regime, transport is governed by (a possibly generalized)
viscous hydrodynamics [25–29]. An understanding of how
viscous hydrodynamics emerges from kinetic theory has been
achieved in previous works [31–33]. Indeed, we will see in
simple examples that the resistivity is proportional to the
viscosity of the electron fluid. In Secs. IV D and V in particular,
we place these results in a broader formal structure. The
resistivity (8) emerges whenever there are more inversion-odd
conserved quantities than diffusive imbalance modes.

(3) Diffusive hydrodynamic. There is an obstruction to the
emergence of the above viscous regime, even in the limit
�ee � ξ . Suppose that there are many conserved quantities
which are even under inversion symmetry (e.g., conserved
scalar densities), and thus have odd currents, but, only a
small number of odd conserved quantities in the absence of
disorder (perhaps only momentum). An example which we
will study explicitly later in this paper is a theory of multiple
Fermi surfaces, where the number of particles on each Fermi
surface is conserved. In general, the inhomogeneity makes it
impossible to arrange the system to be in local thermodynamic
equilibrium: the number of constraints arising from the con-
servation laws associated with odd currents is too large to be
solved with equilibrium values of the odd conserved quantities.
Instead, the conservation laws may only be satisfied by creating
“nonequilibrium” imbalances of quasiparticles throughout the
sample (see Fig. 3). Locally, the fluid appears out of thermal
equilibrium due to the presence of such currents. Because
quasiparticles collide after a distance �ee, the nonequilibrium

JJ

Jimb

ee

x

μimbalance

FIG. 3. In order to conserve all currents as we move through the
inhomogeneous landscape, we must excite Nimbalance quasiparticles
out of equilibrium.

quasiparticle gradient required to drive a current must be of
order one quasiparticle per mean-free path. Hence, integrating
this gradient over the impurity puddle, the number of quasi-
particles excited out of equilibrium is Nimbalance ∼ (ξ/�ee)2.
We now estimate the resistivity by calculating the rate at
which momentum is relaxed. The electric field which drove
one quasiparticle out of equilibrium in the viscous limit now
drives Nimbalance quasiparticles out of equilibrium, and so

ρ ∝ 1

τviscous
× Nimbalance ∝ vF�ee

ξ 2
× ξ 2

�2
ee

∼ vF

�ee
. (9)

The relaxational dynamics of the imbalance gradients is
diffusive. The existence of this transport regime is a main
prediction of our theory. Regimes of transport with a resistivity
ρ ∝ 1/�ee, as in Eq. (9), have previously arisen due to a thermal
diffusive mode [26] and also in compensated metals [15,39].
The following two paragraphs elaborate on the relation of our
result with these earlier works.

Let us discuss the diffusive hydrodynamic limit further.
First, in a conventional fluid, conservation of both energy and
particle number leads to a thermal diffusion mode and hence
a contribution to the resistivity similar to (9). However, the
temperature dependence of the resistivity will not be governed
entirely by the temperature dependence of �ee in this case, but
by factors of the entropy density that appear [26]. We em-
phasize the likely existence of nonthermal diffusion modes in
many realistic metals which can lead to the resistivity (9), with
all temperature dependence in ρ governed by the momentum-
conserving scattering rate.

Second, in cases where the extra conserved densities are
due to the presence of multiple bands, one may ask whether or
not (9) is simply a rederivation of Baber scattering [15]. Baber
scattering arises in a metal with two appreciably occupied
bands, where one of the bands carries nearly all of the current,
while the other band efficiently relaxes momentum. Alter-
natively, electron and hole bands in the metal can precisely
compensate each other so that the total charge density is zero,
and hence charge dynamics is decoupled from momentum
relaxation [39]. A precise explanation of these effects can be
found in Ref. [40]. In these limits, one arrives at an equation
similar to (9). In fact, the hydrodynamic mechanism for (9) is
significantly more general. We require neither an asymmetry
between the two bands nor that the total charge density vanish.

The resistivity (9) readily admits a hydrodynamic interpre-
tation. It is possible to observe (9) without long-lived quasipar-
ticles, as we have emphasized in a companion paper [30]. The
advantage of the microscopic description of (9) using kinetic
theory is that we are able to further describe the crossover to a
low-temperature ballistic regime. We are also able to describe
the transition from ballistic to viscous hydrodynamic regimes,
as well as models with multiple microscopic scattering rates,
which exhibit all three regimes of transport, depending on the
value of ξ . Quantitatively characterizing crossovers between
the various classes of hydrodynamic and ballistic transport is a
central achievement of this work, extending the recent results
in Refs. [31–33] to a much broader class of models.

Let us note that the list of transport phenomena we described
is not fully exhaustive. If there are not very many conservation
laws to satisfy, one may be able to drive current along narrow

045105-4



KINETIC THEORY OF TRANSPORT FOR INHOMOGENEOUS … PHYSICAL REVIEW B 97, 045105 (2018)

contours in order to balance the effects of viscous dissipation
and diffusive dissipation more efficiently than (9) [26]. How-
ever, we expect that close to the ballistic-to-hydrodynamic
crossover, which is where most realistic solid-state systems
exist, the most important effects will be the three described
above.

B. Phenomenology for experiments

The hydrodynamic limit of transport has been directly ob-
served in Refs. [18–22,41]. Our proposal is that this limit may
have already been observed in a diverse group of materials,
albeit in a subtle way: through the unconventional temperature
dependence of the resistivity.

Our main proposal is that the T 2 resistivity observed in
(strongly) correlated Fermi liquids, and T -linear resistivity in
the non-Fermi-liquid regime of many such materials, including
transition-metal oxides [42–44], pnictides [45,46], heavy-
fermion metals [47,48], and organic metals [49], has a common
origin: a nonthermal diffusive mode limiting transport, as we
have already described. We now ask whether such a mode can
exist in many strange metals. The most natural imbalance mode
is due to the imbalance of quasiparticles between different
pockets and/or bands; we will describe a toy model of this
in detail in Sec. IV C 4. Many strange metals (though not
all) have complicated band structures, and this is a natural
possibility. For single band materials, such as cuprates [43]
or SrTiO3 [16,17], there are other possible imbalance modes,
including spin imbalance modes,1 “quadrupole” fluctuations
(Sec. IV C 3), and modes associated to additional degrees of
freedom such as phonons.

Our proposal requires that the impurity potential be smooth.
This is actually rather natural to obtain in many strange metals,
which are quasi-two-dimensional layered materials, with clean
conduction layers separated by a distance d ∼ 1.5 nm from
dirty dopant layers. The static Coulomb potential created by
the random arrangement of ions will be random and vary
significantly only on length scales larger than

ξ ∼ d ×
√

ε‖
ε⊥

, (10)

where ε‖ is an “effective dielectric constant” associated to in-
plane electric fields, and ε⊥ is the “effective dielectric constant”
for out-of-plane electric fields. This equation straightforwardly
follows from Gauss’ law in an anisotropic medium. In the
monolayer cuprates, we estimate ε‖/ε⊥ ≈ 1.2 [50], though we
caution that this is simply an order-of-magnitude estimate;
other materials may be more anisotropic. Strange metals
can have mean-free paths as short as �ee ∼ 1 nm [51,52],
which could be smaller than ξ . Even slightly outside the
quantum critical fan of such bad metals one can expect �ee ∼ ξ ,
and so our hydrodynamic mechanism continues to describe
transport, both in the strange metal and in the Fermi liquid.
Furthermore, in many strange metals, the amplitude of the
disorder, which is related to the dopant concentration, is not

1A careful treatment of spin imbalance diffusion is beyond this work
for technical reasons (time-reversal symmetry is broken), but may
exhibit similar behavior to a model of two Fermi surfaces.

tunable without moving out of the non-Fermi-liquid regime.
One cannot arbitrarily reduce the disorder. Thus, we expect that
the disorder is large amplitude and long wavelength in realistic
materials. This is precisely the regime where diffusion-limited
transport naturally occurs.

Finally, we note that many materials, including very pure
atomic metals like Au or Pb [53] and doped SrTiO3 [17] exhibit
sharp downturns of a few percent in the resistivity at low
temperature. These downturns cannot be associated with the
Kondo effect because ∂ρ/∂T is not vanishing as T → 0. This
downturn is consistent with viscous effects. We will describe
in Sec. IV C 4 a microscopic toy model with phenomenology
very similar to these materials. Furthermore, our formalism
elucidates why many metals which are believed to be clean
and strongly correlated do not exhibit obvious signatures of
viscous transport in bulk resistivity measurements; there may
be additional nonthermal diffusive modes whose contributions
to the resistivity overwhelm viscous effects. It would be
interesting to revisit these phenomena in more detail, using
our more complete kinetic theory of transport.

III. BOLTZMANN EQUATION

We now turn to the detailed solution of the kinetic theory
of transport. Let us consider weakly interacting fermionic
quasiparticles with an effective dispersion relation ε( �p), in the
absence of disorder. We assume that in a perfectly clean sample,
in thermal equilibrium, the distribution function is given by the
noninteracting Fermi function:

feq = nF

(
ε( �p) − μ0

T

)
, nF(x) = 1

1 + ex
. (11)

We will only use the specific form of feq to estimate the tem-
perature dependence of certain coefficients (for conventional
Fermi liquids). We will neglect the effects of the underlying
lattice, other than through their modification of the band
structure ε( �p), hence, we will not include phonons in our
kinetic theory, nor will we account for umklapp.

It has long been known that in such a Fermi liquid, so long as
the charge density is finite, the resistivity vanishes. In order to
obtain a nonzero resistivity, we will suppose that the chemical
potential is inhomogeneous:

μ(�x) = μ0 − Vimp(�x). (12)

The equilibrium distribution function is now �x dependent.
When the inhomogeneity length scale ξ is long compared to
the Fermi wavelength λF, then

feq(�x, �p) = nF

(
ε( �p) − μ(�x)

T

)
. (13)

Here and henceforth, we have set kB = 1.
Now, we apply an infinitesimal electric field �E, which will

perturb the true distribution function f a bit away from feq.
We will then solve the Boltzmann equation in order to compute
the resistivity:

∂f

∂t
+ �v · ∂f

∂ �x + ( �F − e �E) · ∂f

∂ �p = −C[f ] . (14)
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In this equation, �v is the quasiparticle velocity

�v ≡ ∂ε

∂ �p , (15)

and �F is the external force from the impurity potential:

�F ≡ −∂Vimp

∂ �x . (16)

C is a local collision term subject to suitable conservation laws,
and respecting Fermi-Dirac statistics of a weakly interacting
quantum gas of fermions. In particular, feq must be an exact
solution of (14) when �E = 0. This implies that the collision
operator C has zeros associated with the local conservation
laws of charge and energy. More complicated disorder which
couples to f with more than a simple p derivative corresponds
to impurity potentials that couple to other operators in the
quantum Fourier transform (QFT). We remind the reader that
the collision operator can be thought of as encoding the decay
rate of the quasiparticles: crudely speaking,

C[f ] ∼ Im(	[f ])f (17)

with more precise expressions found in Ref. [54].
Let us briefly remind the reader of the assumptions going

into (14) [54]. The Boltzmann equation can be rigorously
derived from the Schwinger-Keldysh formalism, and is a con-
trolled expansion when (i) the scales over which f (x,p) varies
obey |
x| · |
p| � h̄. For our purposes this will correspond
to |
x| � λF, hence, we will assume that the function Vimp(�x)
is smooth on microscopic scales; (ii) quasiparticles are well
defined, which qualitatively means that all scattering rates (the
eigenvalues of the linearizedC operator) are all small compared
to kBT/h̄. In such a limit, the collision operator will likely be
well approximated by a small number of Feynman diagrams
and can be computed, although we will not do so explicitly at
any point in this paper. We will also neglect renormalization of
ε and Vimp over their bare values, due to quantum fluctuations,
though this can be accounted for [54].

Our goal is to find stationary solutions to the kinetic equa-
tions to linear order in �E. We write f ≈ feq + δf + O(E2).
Because feq is an exact solution to the kinetic equations, up to
the electric field contributions, we obtain at leading order

�v · ∂xδf + �F · ∂pδf + e �E · �v
(

−∂feq

∂ε

)
= δC

δf

∣∣∣∣
f =feq

δf. (18)

This equation is a classical linear differential equation, and we
will heavily employ the technology of linear algebra. In order
to do so most efficiently, it is helpful to write this equation in
terms of a variable �, defined via

δf ≡
(

−∂feq

∂ε

)
�. (19)

We then interpret �(�x, �p) as a vector |�〉 in an infinite-
dimensional vector space:

|�〉 ≡
∫

ddx ddp �(�x, �p)|�x �p〉. (20)

Let us define an inner product

〈�x �p|�x0 �p0〉 ≡ 1

(2πh̄)dVx

(
−∂feq(�x, �p)

∂ε

)
δ(�x − �x0)δ( �p − �p0),

(21)

with Vx the spatial volume of the theory. While the distribution
function f (�x, �p) is real, we will sometimes Fourier transform
the spatial coordinate �x, and in this case the inner product
above should be understood as complex. Equation (21) is useful
because with a sharp Fermi surface, the distribution function δf

is generally quite singular and sharply peaked around the Fermi
surface. The functions � are smooth functions, in contrast.
Furthermore, the weighted inner product (21) will not diverge
on any sensible (polynomial in �p) trial function.

With the definitions above we can write the linearized
Boltzmann equation in the abstract form

(W + L)|�〉 = Ei |Ji〉. (22)

Here, we introduced the streaming operator

L|�x �p〉 ≡ −
∫

ddx0d
dp0(�v · ∂x + �F · ∂p)δ(�x − �x0)

× δ( �p − �p0)|�x0 �p0〉, (23)

the linearized collision operator

W|�x �p〉 ≡
∫

ddp0
δC(x,p)

δf (x,p0)
|�x �p0〉, (24)

and the source vector

|Ji〉 ≡ −e

∫
ddx ddp vi( �p)|�x �p〉. (25)

L is an antisymmetric matrix: when integrating by parts
across ∂εfeq in Eq. (21), the x and p derivatives can easily
be shown to cancel. We will further assume that the micro-
scopic kinetic theory is time-reversal symmetric and inversion
symmetric in this paper; the latter assumption requires that the
band structure obey ε( �p) = ε(− �p). Under these assumptions,
W is a symmetric matrix in �p [6]: time-reversal invariance
implies W( �p,�q) = W(−�q,− �p) while inversion symmetry im-
plies W( �p,�q) = W(− �p,−�q). For simplicity, we have sup-
pressed �x indices in these equations, and for the remainder
of the paragraph. The assumption that feq describes a stable
thermal equilibrium implies that W is positive semidefinite.
Upon decomposing |�〉 into its even/odd components in �p,
the matrices W and L are restricted to the following sectors:

|�〉 =
(|�e〉

|�o〉
)

, W =
(

Wee 0

0 Woo

)
, L =

(
0 Leo

Loe 0

)
.

(26)

Wee and Woo are symmetric, and Leo = −LT
oe. The fact that

W is block diagonal follows from the fact that the odd-even
block vanishes (due to time-reversal symmetry). For an even
perturbation |�〉, W|�〉 has no odd component:∫

ddq [W( �p,�q) − W(− �p,�q)]�(�q)

=
∫

ddq [W( �p,�q) − W( �p,−�q)]f (�q)

=
∫

ddq [W( �p,�q)f (�q) − W( �p,−�q)f (−�q)] = 0. (27)
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The last step follows from the fact that �q is a dummy integration
variable.

The matrix W will also have null vectors associated with
conservation laws. To see this, we note that if the quantity∫

dd �p dd �x α( �p)f is conserved, then there must be a family of
solutions to the nonlinear Boltzmann equation associated with
shifts in the conjugate thermodynamic variable ζ :

feq

(
ε

T

)
→ feq

(
ε − ζ · α( �p)

T

)
. (28)

For example, setting α( �p) = 1, we obtain a conservation law
for electron number; the conjugate thermodynamic variable
is the chemical potential μ. The linearized collision oper-
ator must have a zero mode associated with the fact that
∂ζC[feq(ζ )] = 0:

W
∫

ddp α( �p)|�x �p〉 = 0. (29)

Because the charge current is locally given by

�J (�x) = −e

∫
ddp �v( �p)f, (30)

we find

〈�|Ji〉 = − e

Vx

∫
ddx ddp

(2πh̄)d
vi( �p)

(
−∂feq

∂ε

)
�

= 1

Vx

∫
ddx Ji. (31)

Hence, the source vector |Ji〉 is the “basis vector” for the
homogeneous part of the electric current.

Our goal is to compute the resistivity tensor, which is
given by Ei = ρijJj . Alternatively, we may compute the
conductivity tensor Ji = σijEj . Using (31), we see that

σij = 〈Ji |(W + L)−1|Jj 〉. (32)

Unfortunately, in general, one cannot perform the inverse
(W + L)−1 explicitly. In Sec. IV, we will show how to invert
W + L analytically, at leading perturbative order in Vimp. In
Sec. V, we will develop a variational technique that allows for
nonperturbative upper bounds on the resistivity.

Historically, one neglects the streaming terms and ap-
proximates L = 0 [6]. However, we clearly cannot do this
in our model: we have neglected umklapp scattering and
hence momentum is conserved in electron-electron collisions.
Therefore, the vector

|Pi ,�x〉 ≡
∫

ddp pi |�x �p〉 (33)

is a null vector of W: W|Pi ,�x〉 = 0 for all �x. This is sufficient
to prove that the conductivity is infinite, and hence ρ = 0, if
the streaming terms can be neglected.

Another approximation which has been made is to neglect
interactions (W = 0) and treat inhomogeneity perturbatively
[34]. We will review this approach in Sec. IV B, but our more
general formalism allows for a complete treatment of both
inhomogeneity and interactions.

IV. PERTURBATION THEORY FOR WEAK DISORDER

A. General considerations

So far, our comments have been quite general. However, it
is useful to have precise quantitative results for ρ across the
ballistic-to-hydrodynamic crossover. Towards this end, we will
completely solve the transport problem at weak disorder. More
precisely, suppose that (upon disorder averaging, denoted with
E)

E[Vimp] = 0, E[Vimp(�x)Vimp(�y)] = δ2F
( |�x − �y|

ξ

)
. (34)

Here, F is an O(1) function, and ξ is a length scale associated
with the disorder distribution. We will define the Fourier
transform

Vimp(�k) ≡ 1√
Vx

∫
ddx ei�k·�xVimp(�x), (35)

and typically assume that for k → ∞, Vimp(k) ∼ exp[−kξ ].
The volume-dependent prefactor appearing above is such that∫

ddk|Vimp(�k)|2 = δ2, and will simplify notation shortly. If δ

is a perturbatively small parameter, then at leading order (so
long as the charge density is not zero in equilibrium) one finds
the resistivity ρ = ρ2δ

2 + O(δ4). We will exactly compute the
coefficient ρ2, making the simple assumption that the only
locally conserved quantity, odd under inversion, is momentum.
We relax this assumption in Eq. (A10).

As this section is a little technical, we state the result upfront.
We will find that to leading nontrivial order in the impurity
potential, the resistivity

ρij = 1

n2e2

∫
ddk

(2π )d
kikj |Vimp(k)|2A(k), (36)

where we define

A(k) ≡ 〈n|(W + L)−1
�k,clean

|n〉. (37)

We have denoted |n,�k = �0〉 = |n〉, where |n,�k〉 will be defined
in Eq. (49) below.

In addition to the derivation that follows, in Appendix A
we rederive the expression (37) from a more sophisticated
(quantum-mechanical) framework called the memory matrix
formalism. Using this formalism, we learn that A(k) is the
spectral weight of the density operator, evaluated (in our case)
in a classical kinetic limit: it tells us how efficiently we may
lose momentum off of impurities on the length scale k−1.

We may just as well compute the conductivity σ ∼ δ−2.
In order to do so, we employ the following key observation.
When the disorder is perturbatively small, it is instructive to
Fourier transform the position coordinate �x to a wave-number
coordinate �k. We write W and L in the following block-diagonal
form [this is different and unrelated to the block-diagonal form
mentioned in Eq. (26)]:

W + L =
(

(W + L)�0,�0 (W + L)�0,�k
(W + L)�k′,�0 (W + L)�k′,�k

)
∝
(

1 δ

δ 1

)
. (38)

Only the diagonal pieces are nonvanishing at δ = 0, when
momentum is conserved. The exact conductivity is given
by (32). By construction in Eq. (25), |E〉 is only nonvanishing
in the �k = �0 sector. By (32), we are looking for an eigenvalue of
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(W + L)−1, overlapping with |E〉, which diverges as δ−2. So,
we break up the spatially homogeneous �0�0 block of (38) into a
further 2 × 2 block by separating out the null eigenvectors of
W:

(W + L)�0,�0 =
(

0 0

0 W0 + O(δ2)

)
. (39)

To obtain this form, let us consider for simplicity the momen-
tum (abstract) vectors

|Pi ,�k〉 =
∫

ddx ddp pie
i�k·�x |�x �p〉. (40)

From (33), W|Pi ,�k = �0〉 = 0, to all orders in δ. Similarly,

L|Pi ,�k〉 =
∫

ddx ddp

(
[i�v( �p) · �k]pi − ∂Vimp

∂xi

)
ei�k·�x |�x �p〉.

(41)

When �k = �0, the first term vanishes, and the second term
has no homogeneous component. The inner product with a
�k = �0 vector would be proportional to

∫
ddx(−∂εfeq)∇Vimp =∫

ddx ∇feq = 0. This explains why (39) holds to all orders in δ.
Using block-diagonal matrix inversion identities, and for

simplicity denoting

(W + L)�0,�k = δ

(
A1

A2

)
, (W + L)�k′,�0 = δ(A3 A4), (42)

we obtain

[(W + L)−1]�0�0

≈
[(

0 0

0 W0

)
− δ2

(
A1

A2

)
(W + L)−1

�k′,�k(A3 A4)

]−1

∝
(

δ2 δ2

δ2 1

)−1

. (43)

Using the δ scalings in this equation, we can easily see that to
leading order as δ → 0, only one subblock of [(W + L)−1]�0�0
is divergent:

[(W + L)−1]�0�0

=
(

−δ−2
[
A1(W + L)−1

�k′,�kA3
]−1

O(δ0)

O(δ0) O(δ0)

)
+ · · · . (44)

Hence,

σij ≈ 〈Ji |
(

−δ−2
[
A1(W + L)−1

�k′,�kA3
]−1

O(δ0)

O(δ0) O(δ0)

)
|Jj 〉. (45)

We now must compute A1,3 to leading order in δ. The
first observation that we make is that we may neglect the

Vimp dependence in the inner product (21); we have already
extracted the leading-order δ dependence and hence the Vimp

dependence of the inner product will only contribute to the
conductivity at subleading orders. Furthermore, A1,3 must
come entirely from the streaming terms because, by definition
in Eq. (42), they correspond to the null space of W. Hence,
A1 = −AT

3 . Because we have assumed that momentum is the
only odd conserved quantity, the only inversion-odd vectors
A1,3 project on to are |Pi ,�x〉 (or |Pi ,�k〉). We conclude that to
leading order in δ,

σij ≈ 〈Ji |Pk〉 1

〈Pk|L�0�k(W + L)−1
�k�k′,clean

L�k′ �0|Pl〉
〈Pl|Jj 〉. (46)

We have denoted |Pi ,�k = �0〉 = |Pi〉 for simplicity. The no-
tation (W + L)−1

�k�k′,clean
reminds us that, because we are only

computing to leading order in δ, we may approximate (W +
L)−1 with its value when δ = 0.

Let us now simplify (46). First,

〈Ji |Pj 〉 = −e

∫
ddp

(2πh̄)d
pivj

(
−∂feq

∂ε

)
= e

∫
ddp

(2πh̄)d
pi

∂ε

∂pj

∂feq

∂ε

= −eδij

∫
ddp

(2πh̄)d
f

= −δijne. (47)

Second,

L�k�0|Pi ,�k = �0〉 = Fi |n,�k〉 = ikiVimp(�k)|n,�k〉, (48)

where

|n,�k〉 ≡
∫

ddx ddp ei�k·�x |�x �p〉. (49)

Combining (46) and (47), we find the resistivity (36).
The remainder of this section provides a detailed analysis

of (37) in various solvable limits of kinetic theory. In this
perturbative limit, we will be able to completely characterize
the consequences of interactions on transport.

B. Noninteracting theory

We begin by analyzing a noninteracting theory where
W = 0; the only dynamics comes from the streaming terms.
Actually, it is important to keep W as an infinitesimal regulator
W ∼ z > 0. This is because in the clean theory, L = i�k · �v( �p),
and hence

ρij = 1

n2e2

∫
ddp

(2πh̄)d

[
−∂feq

∂ε

∫
ddk

(2π )d
kikj |Vimp(k)|2 1

z + i�k · �v( �p)

]
= 1

n2e2

∫
ddp

(2πh̄)d

[
−∂feq

∂ε

∫
ddk

(2π )d
kikj |Vimp(k)|2Re

(
1

z + i�k · �v( �p)

)]
= π

n2e2

∫
ddp

(2πh̄)d

[
−∂feq

∂ε

∫
ddk

(2π )d
kikj |Vimp(k)|2δ[�k · �v( �p)]

]
. (50)
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In the second step, we have used that |Vimp(k)|2 is an even
function of �k. In the third step, we have taken the regula-
tor z → 0. The factor of −∂feq/∂ε comes from the inner
product (21).

Let us begin by evaluating this in the limit T → 0. In this
limit

−∂feq

∂ε
= δ(ε − μ). (51)

For simplicity in what follows, let us also assume that the Fermi
surface is spherically symmetric. While this is not generally
true, relaxing this assumption leads to angular prefactors alone.
Upon performing the angular integral over p we obtain

ρij ∝ 1

n2e2

∫
ddk

(2π )d−1
kikj |Vimp(k)|2 ν(μ)

|k|vF
, (52)

where we have neglected an overall constant prefactor. ν(μ) is
the density of states at the Fermi surface:

ν(μ) =
∫

ddp

(2πh̄)d
δ[ε( �p) − μ]. (53)

Employing (34), and noting rotational invariance of the disor-
der, we obtain

ρij ∝ ν(μ)δ2

n2e2vFξ
δij . (54)

For a spherical Fermi surface, we have n ∝ pd
F and ν(μ)vF ∝

pd−1
F . Defining m ≡ pF/vF, δ = mv2

Fθ , where θ is roughly the
angle a quasiparticle is scattered by the disorder on length
scales of order ξ , we obtain

ρ ∝ m

ne2τimp
, (55)

where τimp ≡ ξ/vFθ
2 is the momentum-relaxation time. This

is nothing more than the canonical formula for the residual
resistivity [55], in the limit of small-angle scattering. We

emphasize that the scaling2

ρ ∝ 1

ξ
(56)

is a universal consequence of this ballistic limit. One of our
main concerns will be the breakdown of this scaling due to
electron-electron interactions.

Not surprisingly, we have found a residual resistivity due
to impurity scattering. On closer inspection, this is slightly
subtle: we previously formulated a bound on the resistivity
associated with entropy production. The key point is that
the regulator z that we imposed in Eq. (50) is sufficient
to lead to “spontaneous” production of entropy: (z + L)−1

has a nonvanishing symmetric component. We associate this
entropy production with the emergence of an “arrow of time.”
Alternatively, we note that the microscopic trajectories of
single particles in random potentials in spatial dimensions
d � 2 are diffusive: in certain limits, this has been proven
rigorously [56,57]. The computation that we have done is a
perturbative computation of the associated diffusion constant,
which we can obtain from ρij via an Einstein relation.

Thermal effects

Before moving on to account for electron-electron interac-
tions, let us briefly mention thermal corrections to this residual
resistivity. At very low temperatures, we employ a Sommerfeld
expansion of (−∂feq/∂ε) in Eq. (50). If, for simplicity, we
retain the assumption of spherical symmetry and assume that
n is held fixed with increasing T , then, using that

n(μ,T ) ≈ nT =0(μ) + π2T 2

6
ν ′(μ) + · · · , (57)

we find

μ(T ) ≈ μ0 − ν ′(μ)

ν(μ)

π2T 2

6
. (58)

If we neglect the k dependence in |Vimp(k)|2, we find, using the
Sommerfeld expansion,

ρ(T ) ∝ 1

n2e2

∫
ddp

(2πh̄)d
ddk

(
δ(ε − μ) + π2T 2

6
δ′′(ε − μ) + · · ·

)
k2|Vimp(k)|2δ[�k · �v(p)]

= 1

n2e2

∫
ddp

(2πh̄)d
ddk

(
δ(ε − μ) + π2T 2

6
δ′′(ε − μ) + · · ·

)
kd+1|Vimp(k)|2

vF

∝ δ2

n2e2ξ

∫
dε

ν(ε)

vF(ε)

(
δ(ε − μ) + π2T 2

6
δ′′(ε − μ) + · · ·

)
∝ ρ(0)

{
1 + π2T 2

6

[(
ν(μ)

vF(μ)

)′′
−
(

ν(μ)

vF(μ)

)′
ν ′(μ)

ν(μ)

]}
. (59)

In the last step, we have used the fact that μ is T dependent, in
order to keep n fixed. Depending on the band structure and μ,
this is a perturbative correction which does not, a priori, have
a fixed sign. The important point for us is that (working with
a Fermi liquid where 1/�ee ∼ T 2)

ρ(T ) − ρ(0)

ρ(0)
∝
(

T

μ

)2

∝ λF

�ee
. (60)

These temperature-dependent corrections are significantly
smaller than those caused by electron-electron interactions.
As we will see, the parameter governing the magnitude of

2We have assumed, as noted under Eq. (7) above, that the typical
strength of the impurity potential δ has been kept fixed. In most
previous literature, δ is defined in a ξ -dependent way.
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corrections due to electron-electron interactions is ξ/�ee, which
is much larger than (60).

C. Kinetic theory on a 2D Fermi surface

1. Toy model

We now turn to a series of toy models of 2D Fermi
liquids with circular Fermi surfaces of Fermi velocity vF,
following the recent papers [31–33]. The technical virtue of
this model will be that only finite-dimensional matrices need
to be inverted to compute A(k) in Eq. (37), and hence the
resistivity can be obtained exactly. The model assumes that
in the low-temperature limit, the only interesting dynamics is
associated with fluctuations in f exactly at the Fermi surface,
and so neglect all thermal effects. While this is quite a strong
assumption, it appears to model experiments of flows through
tight constrictions reasonably well [18,20,21]. To be more
specific, we approximate the distribution function by

�(�x, �p) ≈
∑
j∈Z

eijpθ �j (�x), (61)

where tan pθ = py/px is the angle of the momentum vector.
More formally, we write

|�〉 =
∫

d2x
∑

j

�j (�x)|j (�x)〉, with

|j (�x)〉 ≡
∫

d2p
(px + ipy)j

p
j

F

. (62)

Henceforth, we will denote pθ as θ for simplicity.
Our first goal is to project W and L onto only the harmonic

modes, labeled by j in Eq. (61); we follow the presentation
of [32]. As T → 0, we anticipate that the only interesting
dynamics occurs at the Fermi surface. The fluctuations of the
local number density of electrons are given by


n(�x) =
∫

d2p

(2πh̄)2

(
−∂feq

∂ε

)
� = ν(μ)�0. (63)

The momentum density gi is similarly given by

gx(�x) =
∫

d2p

(2πh̄)2

(
−∂feq

∂ε

)
�pF cos θ = ν(μ)pF

�1 + �−1

2
,

(64a)

gy(�x) =
∫

d2p

(2πh̄)2

(
−∂feq

∂ε

)
�pF sin θ = ν(μ)pF

�−1 − �1

2i
.

(64b)

We conclude that �0,±1 must be exactly conserved in the clean
theory. Denoting with |j 〉 the mode � ∝ eijθ , we conclude that
the simplest nontrivial W respecting the conservation of charge
and momentum is

W = 1

ν(μ)

vF

�ee
(1 − |−1〉〈−1| − |0〉〈0| − |1〉〈1|)

= 1

ν(μ)

vF

�ee

∑
|j |�2

|j 〉〈j |. (65)

�ee is the mean-free path for electron-electron momentum-
conserving collisions: it is the length scale over which higher

harmonics in Eq. (61) decay in the absence of any disorder.
Projected onto the Fermi surface harmonics, in the homoge-
neous theory:

L = ivF

ν(μ)
(cos θkx + sin θky). (66)

This can also be transformed into the |j 〉 basis, but it is not
instructive to do so now. Note that the factors of 1/ν in both
W and L are related to the nontrivial inner product (21), which
in this toy model is relatively simple:

〈j |j ′〉 = ν(μ)δjj ′ . (67)

2. A single Fermi surface

In order to compute the resistivity we simply need to
evaluateA(�k), given in Eq. (37). Note that what was previously
denoted as |n〉 is now denoted as |0〉: the zeroth harmonic on the
Fermi surface. Hence, we must compute 〈0|(W + L(�k))−1|0〉.
We outline the computation in Appendix B; it is quite similar
to [31–33]. The result is

A(k) = ν(μ)

√
1 + k2�2

ee − 1

vF�eek2
. (68)

An immediate consequence of (68) is that for arbitrary
(isotropic) inhomogeneity, electron-electron interactions in
this model decrease the resistance.

It is instructive to consider first the limit where �ee � ξ ,
so that interactions are very weak. In this case, the “typical”
k ∼ 1/ξ and k�ee is large; in this limit we obtain

A(k) = ν(μ)

vFk
, (69)

and hence

ρxx ∝ ν(μ)δ2

2n2e2vFξ
. (70)

Keeping track of constant prefactors more carefully, one can
show exact agreement with the free theory result (52).

In the opposite limit where ξ � �ee, we instead find

ρxx = ν(μ)

2n2e2

∫
d2k

(2π )2
|Vimp(k)|2 �eek

2

2vF

= ν�ee

4vFn2e2
E[(∇Vimp)2]

= ηE

[(
∇ 1

n

)2]
, (71)

where we have used the fact that 
n ≈ νVimp to leading
order in Vimp, along with the definition of the shear viscosity
η = n2�ee/4νvF [32] in the last step. The last equation above,
expressing the resistivity in terms of the viscosity, was found in
Ref. [26]. We can interpret this last result from a perturbative
hydrodynamic transport bound [28]: when the only dissipative
coefficient is shear viscosity, we have ρxxJ

2
x = η

2E[(∂ivj +
∂jvi − ∂kvkδij )2], on the function vx = J/n. Hence, in this
regime we have transitioned from ballistic to hydrodynamic
transport.

Of course, through the kinetic theory solution, we in fact
understand the entire crossover between these two regimes. It
is instructive to consider a specific form for Vimp(k), associated
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FIG. 4. The resistivity (68) as a function of the interaction strength
ξ/�ee, measured relative to ρres, the residual resistivity when �ee =
∞. We have used the impurity potential (72). Electron-electron
interactions decrease the resistance, as it must in this toy model.
Furthermore, when |Vimp(k)| has significant weight at small k, the
effects of interactions are important even when �ee ∼ 10ξ .

with random point-charge impurities, placed a distance ξ above
the 2D plane:

|Vimp(�k)|2 ∝ e−2|�k|ξ

(|�k| + kTF)2
. (72)

Here, kTF is a Thomas-Fermi screening wave number. We
cannot perform the integration in Eq. (68) analytically, but
it is straightforward to do numerically. The result is shown in
Fig. 4. As anticipated in Eq. (71), as �ee becomes shorter, the
resistivity decreases and ultimately tends to zero. In the limit
where kTF → 0, the decrease in the resistivity is significantly
faster due to the enhancement of Vimp(k) in the k → 0 limit.

3. Long-lived j = 2 mode

Now, consider a slight twist to the previous model: let us
suppose that the j = 2 “d-wave” modes are also long lived
relative to generic excitations. This will be seen to dramatically
change the physics. We modify W to

W = vF

�ee
[1 − |−1〉〈−1| − |0〉〈0| − |1〉〈1|

−(1 − b)(|2〉〈2| + |−2〉〈−2|)]. (73)

The parameter 0 < b < 1 determines the lifetime of the j = 2
modes, relative to the higher harmonics: they are exactly
conserved if b = 0; when b = 1, we recover the results of the
previous subsection. Following the techniques of Appendix B,
together with the calculation when b = 1, leads to an analytic
expression for A(k), and hence ρxx :

A(k) = ν(μ)

vF

�ee√
1 + k2�2

ee + 2b − 1
. (74)

Let us begin by setting b = 0–in this case the j = 2 mode
is exactly conserved. It is not difficult to see in this case that
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FIG. 5. The resistivity (74) as a function of the interaction strength
ξ/�ee, measured relative to ρres, the residual resistivity when �ee =
∞. We have used the impurity potential (72). Electron-electron
interactions enhance the resistance when b = 0, as they must in this
toy model. As in Fig. 4, we observe that the effects of interactions can
become important even when �ee ∼ 10ξ if the disorder is sufficiently
correlated on long length scales.

because

k <
k2�ee√

1 + k2�2
ee − 1

, (75)

electron-electron interactions strictly enhance the resistivity.
Moreover, when interactions are strong so that ξ � �ee,

ρxx ≈ ν(μ)

2n2e2vF

∫
k dk

2π
|Vimp|2 2

�ee
= ν(μ)δ2

n2e2vF�ee
. (76)

We observe that, up to the small factor of δ2, it is as if the
momentum-relaxing rate is actually set by �ee, the mean-free
path for momentum-conserving collisions. We will see how
this, potentially counterintuitive, effect can be understood from
general principles in Sec. IV D. Figure 5 shows this effect
numerically. When Vimp is associated with out-of-plane point
charges, and screening is weak, we observe a remarkable effect:
an accidental approximate Mattheisen rule which holds well
across the entire ballistic-to-hydrodynamic crossover, so that

ρxx ≈ c1

ξ
+ c2

�ee
, c1,2 constants. (77)

Let us also note that in this case with b = 0, the contribution
to the resistivity due to long-wavelength correlations in the
impurity potential when Vimp is given by (72) is

ρxx ∝
∫

k dk

2π

2e−2kξ

(k + kTF)2
[1 + O((k�ee)2)]. (78)

If kTF → 0, this integral is logarithmically divergent: schemat-
ically,

ρxx ∝ log
1

kTF max(ξ,�ee)
. (79)

Although it may well be the case that such divergences
are cured at higher orders in perturbation theory, materials
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FIG. 6. The resistivity (74) as a function of the interaction strength ξ/�ee, for different values of b, measured relative to ρres, the residual
resistivity when �ee = ∞. We have used the impurity potential (72). As b becomes smaller, we observe a larger regime where electron interactions
enhance the resistivity.

with low screening (kTF → 0) would be expected to have an
extremely high resistivity. The effects of weak disorder could
be compensated by this logarithmic enhancement of ρxx to
provide a momentum-relaxation length comparable to �ee.

We now turn to the case 0 < b < 1. Following the dis-
cussion of (75), from (74) it is not difficult to see that the
resistivity can only be enhanced by interactions when b < 1

2 .
When b � 1 is parametrically small, and �ee � ξ , it is helpful
to approximate (74) by

ρxx ≈ ν(μ)

2n2e2vF

∫
k dk

2π
|Vimp|2 2k2�ee

k2�2
ee + 4b

. (80)

Whenever �ee/ξ � 2
√

b, the resistivity will be well approxi-
mated by the b = 0 limit given in Eq. (76): interactions strictly
enhance the conductivity. In contrast, whenever �ee/ξ � 2

√
b,

then we find

ρxx ≈ 1

2b
× ν�ee

4vFn2e2
E[(∇Vimp)2] = η(b)E

[(
∇ 1

n

)2]
,

(81)

with η(b) ≈ η(1)/2b for b � 1. As long as b > 0, therefore,
for strong enough interactions we do ultimately recover a
more conventional viscous-dominated hydrodynamic regime,
analogous to Sec. IV C 2. However, when b is small, there
may be a parametrically large regime where the long-lived
j = 2 mode enhances the resistivity. We explore this crossover
numerically in Fig. 6. Especially when the disorder potential
has a significant long-wavelength component, we observe that
the viscous regime where interactions suppress the resistivity
can emerge extremely quickly.

4. Two Fermi surfaces: Baber scattering, revisited

Another complication of our original model is to consider
the case where the Fermi surface consists of two disconnected
pockets of circular shape. If the pockets are sufficiently well
separated in the Brillouin zone, with the distance between
pockets on the scale of kF, and the Brillouin zone is sufficiently
large, then we may neglect both interpocket scattering of
electrons and umklapp processes. In this limit, the number

of electrons within each pocket must be conserved separately.
We refer to the difference in electron density between the two
pockets as an imbalance mode.

The simplest model for this consists of two copies of our
model of a single Fermi surface, with an additional collision
term that can exchange momentum between the two pockets
(as two-body scattering events may allow electrons from one
pocket to dissipate momentum into the other). Let us denote
with �A (A = 1,2) the angular distribution function in a single
pocket, and with |jA〉 the j th harmonic of �A. The notational
simplifications from Sec. IV C 1 carry through otherwise.

Let us begin by assuming, for ease of computation, that
the electrons in each pocket have identical ν(μ) and quadratic
dispersion relation ε(p) ∝ p2 − p2

F, and that each pocket of the
Fermi surface is circular. In this case, we write the streaming
term as

L = i(cos θkx + sin θky)(vF,1P1 + vF,2P2). (82)

P1 is a projection matrix, defined such that P1|jA〉 = |j1〉δA1;
P2 is defined similarly. We write the collision term as

W = vF,2

�ee

∑
|j |�2,A

|jA〉〈jA| + vF,2

�ee

∑
j=±1

× (vF,2|j1〉 − vF,1|j2〉)(vF,2〈j1| − vF,1〈j2|)
v2

F,1 + v2
F,2

. (83)

For simplicity, we have taken the relaxation time τee = �ee/vF,2

to be the same for all nonconserved modes. Our qualitative
results are not sensitive to this assumption. The second term
accounts for the fact that only the total momentum

|p±〉 ∝ vF,1√
v2

F,1 + v2
F,2

|±1,1〉 + vF,2√
v2

F,1 + v2
F,2

|±1,2〉 (84)

is conserved. The momentum vector takes this form because
with a quadratic dispersion relation, the velocity and momen-
tum are proportional. For simplicity, we assume that electrons
in both pockets have the same collision rate. The global density
is given by

|n〉 ∝ |01〉 + |02〉. (85)
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FIG. 7. The resistivity as a function of the interaction strength ξ/�ee, for different values of vF,1/vF,2, measured relative to ρres, the residual
resistivity when �ee = ∞. We have used the impurity potential (72). As the particles in each pocket move at different velocities, we observe a
rapid enhancement of the resistivity, with ρ ∼ 1/�ee.

While it is challenging to analytically compute A(�k), using
the techniques of Appendix B it is straightforward to compute
A(�k), and hence ρ, numerically. The result is shown in Fig. 7.
As usual, we have rescaled the results relative to the residual
resistivity at �ee = ∞. We observe that when �ee is large,
but finite, interactions decrease the resistivity. This is due
to viscous effects within each band. As �ee becomes small,
if the velocities of the two bands are not equivalent, then
the fluctuations in the chemical potential help to source an
“imbalance mode.” This is precisely the mechanism that we
argued in Sec. II would lead to ρ ∝ �−1

ee .
To be more quantitative, we observe that the hydrodynamic

description of transport in this Fermi liquid contains an
imbalance mode [30]. This mode can be seen already in the
homogeneous system, with no disorder. Let us focus on flows
in the long-wavelength limit where �ee is very short compared
to the length scales over which � changes. We can choose to
look at flows which only depend on the x direction. Taking the
inner product of the Boltzmann equation (22), in the absence
of an external electric field, with j � 2 harmonics, we obtain

0 = ∂x�
1
1 = ∂x�

2
1, (86a)

0 = vF,1

vF,2
∂x

(
�1

0 + �1
2

)
+ 2vF,2

(v2
F,1 + v2

F,2

)
�ee

(
vF,2�

1
1 − vF,1�

2
1

)
, (86b)

0 = ∂x

(
�2

0 + �2
2

)− 2vF,1(
v2

F,1 + v2
F,2

)
�ee

(
vF,2�

1
1 − vF,1�

2
1

)
,

(86c)

0 = vF,1

vF,2
∂x�

1
1 + 2�1

2

�ee
, (86d)

0 = ∂x�
2
1 + 2�2

2

�ee
. (86e)

In the above equations, we have denoted �A
j = 〈j,A|�〉,

and we have used the fact that on flows with only x dependence,
�A

j = �A
−j , to simplify the equations slightly. These equations

follow from (22); following [32] we have dropped j � 3
harmonics in both bands as these are parametrically small at
long wavelength and can be neglected. Keeping the terms with
fewest derivatives, and defining

vx = vF,1�
1
1 + vF,2�

2
1 , (87)

we find that the time-independent hydrodynamic equations for
this two-band model are

0 ≈ ∂x

(
v2

F,1vx − 1

2
v2

F,1vF,2�ee∂x

(
�1

0 − �2
0

))
, (88a)

0 ≈ ∂x

(
v2

F,2vx − 1

2
v2

F,1vF,2�ee∂x

(
�2

0 − �1
0

))
, (88b)

0 ≈ ∂x

(
v2

F,1�
1
0 + v2

F,2�
2
0

)− �ee
v4

F,1 + v4
F,2

2vF,2
(
v2

F,1 + v2
F,2

)∂2
x vx.

(88c)

We have thrown out terms that are third order or higher in
derivatives, as they are subleading in the hydrodynamic limit.
These hydrodynamic equations make manifest that there is a
diffusive imbalance mode with a diffusive current ∝∂x(�1

0 −
�2

0). Now, we turn to the computation of the resistivity. In the
hydrodynamic limit k�ee � 1, we can approximately compute
A(k) analytically by inverting the 10 × 10 submatrix of W + L
consisting of only j � 2 modes. This correctly computes A(k)
to leading order in k. We find that as long as vF,1 �= vF,2,

A(k) ≈ 2ν(μ)
(
v2

F,1 − v2
F,2

)2

�eevF,2v
2
F,1

(
v2

F,1 + v2
F,2

)
k2

, (89)

which, following our discussion in Sec. IV C 3, implies that

ρ ∼ vF,2

�ee

2
(
v2

F,1 − v2
F,2

)2

v2
F,2v

2
F,1

(
v2

F,1 + v2
F,2

) . (90)

The scattering length �ee in Eq. (90) is a direct consequence of
the diffusivity proportional to �ee in Eq. (88). If this imbalance
mode were absent, then we would obtain instead the viscous re-
sultA ∼ �ee as in Sec. IV C 2. The velocity dependence of (90)
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FIG. 8. The resistivity of the two-band Fermi liquid is dominated
by imbalance diffusion in the hydrodynamic regime, and we see
excellent quantitative agreement between our analytic prediction (90)
(solid lines) and numerical data (circles) in the hydrodynamic regime
ξ � �ee. We have explicitly computed the coefficient of proportional-
ity in Eq. (90) from the form of |V 2

imp|; there are no fit parameters in
the comparison between numerics and analytics.

comes from the thermodynamic susceptibility characterizing
the overlap between the charge density and the imbalance
density [30]. In particular, for identical realizations of disorder,
but differing values of vF,1 and vF,2, (90) gives us a simple way
to confirm that our numerically calculated resistivity is in the
hydrodynamic regime and that the resistivity is dominated by
imbalance diffusion (see Fig. 8).

There are other mechanisms that can lead to imbalance
modes. For example, in charge-neutral graphene, the relativis-
tic dispersion relation forbids electron-hole scattering at lowest
order in interactions [58,59]. In charge-neutral graphene, the
temperature dependence of thermodynamic susceptibilities is
not negligible, and so this is not a good model system to observe
ρ ∼ 1/�ee.

5. Toy model of electron-phonon scattering

Finally, let us briefly discuss a very crude toy model of
electron-phonon scattering. We use an identical model to
Sec. IV C 4, thinking of band 1 as describing phonons and
band 2 as describing electrons. The distribution �1 of phonons
should no longer be interpreted as a Fermi surface, but simply
as the total number of phonons with velocity at angle θ .
Because phonon number is not conserved, we now take the
interaction to be

W = vF,2

�ee
|01〉〈01| + vF,2

�ee

∑
|j |�2,A

|jA〉〈jA|

+vF,2

�ee

∑
j=±1

(vF,2|j1〉 − vF,1|j2〉)(vF,2〈j1| − vF,1〈j2|)
v2

F,1 + v2
F,2

.

(91)

Again, for simplicity we have taken the decay rate τee =
�ee/vF,2 to be the same for all nonconserved quantities. The
zero mode of the phonons, in particular, is no longer a con-
served quantity. Furthermore, the charge density mode |n〉 ∝
|02〉 since only the electrons are charged. These changes will
destroy the diffusive mode in the generalized hydrodynamics
of the electron-phonon system. As such, interactions should
ultimately decrease the resistivity, as there is no diffusive
mode decoupled from momentum drag. We confirm this with
a numerical computation of ρ in Fig. 9. We expect that a more
detailed quantitative treatment of electron-phonon interactions
will lead to the same qualitative effects.

D. General principles

Now that we have seen a variety of toy models, let us now
describe, in general, the circumstances under which electron-
electron interactions will increase or decrease the resistivity,
in the weak disorder limit.

We now analyze the formula (37) for A(�k) for general
kinetic theories with inversion and time-reversal symmetry,
and with momentum relaxation arising only from charge
impurities Vimp. It is instructive to break W and L into block
4 × 4 matrices, keeping track of (i) odd vs even vectors under
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FIG. 9. The resistivity of the toy model of electrons and phonons, as a function of the interaction strength ξ/�ee, for different values of
vF,1/vF,2, measured relative to ρres, the residual resistivity when �ee = ∞. We have used the impurity potential (72). The physics is qualitatively
identical to the viscous-dominated transport discussed in Sec. IV C 2.
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inversion symmetry, and (ii) null vectors of W (“slow” modes)
vs non-null vectors of W (“fast” modes). We write

|�〉 =

⎛⎜⎜⎜⎝
|�even,slow〉
|�odd,slow〉
|�even,fast〉
|�odd,fast〉

⎞⎟⎟⎟⎠,

W + L =

⎛⎜⎜⎜⎝
0 Les,os 0 Les,of

Los,es 0 Los,ef 0

0 Lef,os We Lef,of

Lof,es 0 Lof,ef Wo

⎞⎟⎟⎟⎠ . (92)

We remind the reader that in the analysis of (37), the matrix
inverse (W + L)−1 is taken over momentum indices alone.
Hence, L = i�k · �v( �p). We also remind the reader that LT

ea,ob =
−Lob,ea for a,b ∈ {s,f}.

Because the density vector |n〉 is in the even/slow sector,
it is clear from (37) that we need to compute the slow/even
diagonal block of (W + L)−1. It is straightforward, but tedious,
to use block-matrix identities to perform this matrix inverse.
As the result is quite cumbersome, we present explicit results
in Appendix C, only focusing on the qualitative physics here.
For simplicity, we assume that all scattering rates in Wo and We

are comparable, and so the discussion below is not applicable
to the model of Sec. IV C 3 when 0 < b � 1.

The first step of evaluating (37) is to “integrate out” the fast
degrees of freedom, which leads to

(W + L)−1
slow =

(
Ŵe L̂es,os

L̂os,es Ŵo

)−1

. (93)

We have only displayed the top-left 2 × 2 submatrix of (W +
L)−1 here. Explicit formulas for the matrices Ŵ and L̂ can be
found in Appendix C. Physically speaking, Ŵe,o each give the
decay rate of spatial fluctuations of conserved quantities, and
so they will scale with k as follows:

Ŵe,o ∼ k min(1,k�ee). (94)

Some explanation of this result is warranted. At ballistic
length scales k�ee � 1, the density of quasiparticles at every
momentum is approximately conserved and approximately all
of these quantities are relaxed by impurities, which occurs
at a rate ∝k, determined by the time over which quasi-
particles traverse the inhomogeneous landscape. This result
was demonstrated explicitly at �e = ∞ in Sec. IV B and it
will be perturbatively corrected in �−1

ee . In the hydrodynamic
limit, Ŵ ∼ k2�e because spatial inhomogeneities of conserved
quantities relax via diffusion (even if there is ballistic sound
motion at leading order). Regardless of �ee, we find that

L̂es,os ,̂Los,es ∼ k (95)

from the explicit formulas in the Appendixes. Assuming
Ŵo is invertible (we discuss the more general case in the
Appendixes),

A(k) = 〈n|(Ŵe + L̂es,osŴ−1
o L̂T

es,os

)−1|n〉. (96)

In the ballistic limit, both terms are proportional to k and so
A ∼ k−1 as in Sec. IV B. In the hydrodynamic limit, the first

term scales as k2�ee while the second scales as �−1
ee k0. Thus,

we would generically expect the second term to dominate the
matrix inverse, leading to

A(k) ∼ �ee. (97)

This is precisely the result we found in the viscous-dominated
hydrodynamic limit in Sec. IV C 2, and leads to ρ ∝ �ee. In this
case, interactions enhance transport and reduce the resistivity.
However, it may be the case that there are more even conserved
quantities than odd conserved quantities.3 This was the case,
for example, in the model of imbalance diffusion in Sec. IV C 4.
In this case, L̂es,osŴ−1

o L̂T
os,es is not a full rank matrix and it

cannot, by itself, be inverted. We conclude that if |n〉 is a
“generic” even conserved quantity, thatA(k) will be dominated
by the part of |n〉 lying in the null space of L̂es,osŴ−1

o L̂T
os,es. This

leads to

A(k) ∼ 1

�eek2
(98)

and hence, as in Sec. IV C 4, ρ ∝ 1/�ee: interactions suppress
transport and enhance ρ. The constant prefactors that we have
neglected in the above discussion can be straightforwardly
accounted for but will be sensitive to the specific microscopic
model. Below, we will see that such coefficients admit a simple
interpretation when k�ee � 1.

In the hydrodynamic limit, we can provide more intuition
for these results. For simplicity, we assume spatial isotropy
in this paragraph. Suppose that the hydrodynamic degrees of
freedom include Ns sound modes and Nd diffusive modes.
Nd > 0 generically arises when there are more even than odd
conserved densities. Such imbalance densities are not “eaten”
by sound modes. As we derived in Appendix A, A(�k) is
proportional to an integral over the spectral weight of the
charge density operator. Because charge is always a conserved
quantity, in the hydrodynamic limit we may write [60]

GR
ρρ(ω,k) ≈

Ns∑
j=1

χ
js
ρρk

2

v2
j k

2 − ω2 − i�jωk2

+
Nd∑
i=1

Diχ
id
ρρk

2

Dik2 − iω
+ regular , (99)

where the coefficients χ
js
ρρ and χid

ρρ are thermodynamic sus-
ceptibilities. Their precise form is unimportant, and for the
viscous and imbalance modes that we described in the previous
section, all of these susceptibilities are independent of �ee and
temperature. On general grounds �j ∼ Di ∼ �ee. We then find
that as k�ee → 0,

A(k) ≈
Ns∑

j=1

χ
js
ρρ�j

v4
j

+ 1

k2

Nd∑
i=1

χid
ρρ

Di

. (100)

If there is any diffusive mode, such as an imbalance mode
(Sec. IV C 4), that has overlap with the density operator, so
that χid

ρρ �= 0, then we immediately find that at the longest

3For this count, momentum should be counted as one conserved
quantity and not d .
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wavelength, this diffusive mode inhibits transport [makesA(k)
large] and so the resistivity will always increase with increasing
scattering rate. If there are no diffusive modes that couple
to the charge density, as in Sec. IV C 2, then interactions
always enhance transport and decrease the resistivity. Strictly
speaking, if any diffusive modes are present, the contributions
toA(k) arising from sound modes are subleading and cannot be
included because there are O(k2�2

ee) corrections to the diffusive
part of the Green’s function that must be accounted for. But,
schematically, the hydrodynamic formula (100) is what our
more sophisticated kinetic formalism reduces to in the limit
when all hydrodynamic modes are sound or diffusion. And, of
course, our kinetic formalism is also valid for models which are
not isotropic or in which the hydrodynamic degrees of freedom
are more complicated than simple sound waves and diffusion;
the latter possibility was considered in Sec. IV C 3.

We end with a word of caution. Our discussion so far
has focused only on the �ee dependence (which could be
tuned, for example, by modifying the Coulomb interaction
strength via a “dielectric”) and ξ . In some relevant cases, the
temperature dependence of the coefficients that we have set
to 1 can be extremely important because both �ee and the
constant prefactors that we have neglected will depend on
temperature in a nontrivial way. An important example of this
is a (canonical) Galilean-invariant Fermi liquid with charge,
energy, and momentum conserved (in the absence of disorder).
In such a theory, �ee ∼ T −2. At temperatures T � EF, one
finds in the weak disorder limit, when ξ � �ee [26],

ρ ∼ η

ξ 2
+ T s2

κQ

∼ �ee

ξ 2
+ T 2

�ee
. (101)

We have suppressed dimensionful but temperature-
independent quantities in the above formula. This qualitative
scaling can be straightforwardly recovered in our formalism.
The key point is that the term governed by thermal diffusion
is suppressed at low temperatures when ξ ∼ �ee. Hence, one
will find ρ(T ) to be a nonmonotonic function of temperature
across the ballistic-to-hydrodynamic transition. This is why
imbalance rather than thermal modes are necessary to address
the experimental challenges outlined in Sec. I A.

V. VARIATIONAL PRINCIPLE FOR THE RESISTIVITY

In this section, we will develop a variational method suitable
for upper bounding the resistivity of an inhomogeneous fluid,
even when the disorder is not perturbatively weak. We begin
by reviewing the technique for homogeneous fluids, and then
discuss how to generalize it to inhomogeneous fluids.

A. Homogeneous fluids

We begin with the Joule heating expression (32) in a
homogeneous fluid, where we may set L = 0. For simplicity,
assume that the electric field �E is a unit vector in the x direction,
and that ρij and σij are (in such a coordinate basis) diagonal
matrices. It is straightforward to relax this assumption. Then,
we may write

ρxx = 〈�̄|W|�̄〉
〈�̄|Jx〉2

= 1

〈Jx |W−1|Jx〉 , (102)

where W|�̄〉 = |Jx〉 solves the Boltzmann equation. There is
a variational principle [6], that built on earlier work [35–37],
which states that for any vector |�〉,

ρxx � 〈�|W|�〉
〈�|Jx〉2

, (103)

with equality saturated on |�〉 = |�̄〉. As we prove in
Appendix D,

〈�̄|W|�̄〉 = T ṡ, (104)

where ṡ is the entropy density production caused by Joule
heating. Hence, this variational technique admits a simple
physical interpretation: transport occurs by the pathway which
minimizes entropy production, with fixed sources.

Let us prove this variational principle. Define

R[�] ≡ 〈�|W|�〉
〈�|Jx〉2

. (105)

Let |�̄〉 be an exact solution to (22), and let |�〉 = |�̄〉 + |ϕ〉.
Noting that R[λ�] = R[�] for any λ �= 0, we may freely
choose 〈ϕ|E〉 = 0 by a suitable rescaling. Then,

R[�̄ + ϕ] = 〈�̄|W|�̄〉 + 2〈ϕ|W|�̄〉 + 〈ϕ|W|ϕ〉
(〈�̄|Jx〉 + 〈ϕ|Jx〉)2

= 〈�̄|W|�̄〉 + 〈ϕ|W|ϕ〉
〈�̄|Jx〉2

� 〈�̄|W|�̄〉
〈�̄|Jx〉2

= ρxx. (106)

We have used positivity of W as well as W|�̄〉 = |Jx〉 and
〈Jx |�̄〉 = 〈Jx |W−1|E〉 in the last step. Hence, we always
overestimate the resistivity, and the bound is saturated on the
true solution to the equations of motion.

B. Inhomogeneous fluids

We are interested in inhomogeneous Fermi liquids, where
L �= 0. The presence of the antisymmetric streaming terms
ruins the variational approach (103). It is simple to see why.
From (104), which holds with L �= 0, we see that all entropy
production comes from the symmetric matrix W, and so naively
one might postulate on physical grounds that (103) holds for
both the homogeneous and inhomogeneous fluids. However,
because the matrix L is antisymmetric, it is a simple exercise
in linear algebra to prove that, for any vector,

〈Jx |W−1|Jx〉 � 〈Jx |(W + L)−1|Jx〉. (107)

Because the variational principle (103) is minimized on (102),
the true resistivity, from (32), is larger than the minimum of
the variational principle (103). It is not a correct variational
approach.

Where does the derivation go wrong when L is nonzero?
Writing |�〉 = |�̄〉 + |ϕ〉, we may still assume 〈ϕ|Jx〉 = 0,
but now (W + L)|�̄〉 = |E〉. Hence, similar manipulations to
before yield

R[�̄ + ϕ] = 〈�̄|W|�̄〉 + 〈ϕ|W|ϕ〉 − 2〈ϕ|L|�̄〉
〈�̄|Jx〉2

. (108)
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The final term above will generally spoil any hope of a variational principle. However, suppose that we could force our trial
functions to obey LT|ϕ〉 = 0. Then, we would again find that

R[�̄ + ϕ]|LT|ϕ〉=0 = 〈�̄|W|�̄〉 + 〈ϕ|W|ϕ〉
〈�̄|Jx〉2

� ρxx, (109)

with

ρxx = 〈�̄|W|�̄〉
〈�̄|Jx〉2

= 〈�̄|W + L|�̄〉
〈Jx |(W + L)−1|Jx〉2

= 1

〈Jx |(W + L)−1|Jx〉 . (110)

In general, it is difficult to accomplish LT|ϕ〉 = 0 because in general LT|�̄〉 �= 0. In order to proceed further, it is useful to
separate out the dynamics of the conserved densities and currents from the remaining modes. Let us split the vector |�〉 into three
components:

|�〉 =

⎛⎜⎝ |�odd〉
|�even,slow〉
|�even,fast〉

⎞⎟⎠. (111)

This decomposition is defined by the fact that the matrices W and L take the form

W =

⎛⎜⎝Wo 0 0

0 0 0

0 0 We

⎞⎟⎠, L =

⎛⎜⎝ 0 L1 L2

−LT
1 0 0

−LT
2 0 0

⎞⎟⎠, (112)

with W−1
e nonsingular. Recall the discussion around (26) above on the even/odd properties of W and L. We know that |E〉 is

nonvanishing only in the first (odd) component. Using block-matrix inversion identities to remove the even, fast modes, we find

〈Jx |(W + L)−1|Jx〉 = (〈Jx | 0)

(
Wo + L2W−1

e LT
2 L1

−LT
1 0

)−1(|Jx〉
0

)
. (113)

The matrix Wo + L2W−1
e LT

2 is manifestly positive-definite and symmetric. Now, suppose that the list of even conserved quantities
(null vectors of W) is finite (at each point x). Then, the middle row of (W + L)|�〉 = |E〉 [using the three-block decomposition
of (111)] implies that

LT
1 |�odd〉 = 0. (114)

Since this equation must be true on the background solution, writing |�odd〉 = |�̄odd〉 + |ϕodd〉, we conclude that imposing (114)
on a trial wave function necessarily imposes

LT
1 |ϕodd〉 = 0. (115)

As long as there are only a finite number of conserved quantities, then we will only have a finite number of these constraint
equations.

Using the even/odd decomposition, the variation (108) can be written

R = 〈�̄odd|W̃|�̄odd〉 + 〈ϕodd|W̃|ϕodd〉 − 2〈ϕodd|L1|�̄even,slow〉 − 2〈�̄odd|L1|ϕeven,slow〉
〈�̄|Jx〉2

, (116)

where

W̃ ≡ Wo + L2W−1
e LT

2 . (117)

Assuming the constraints (114) and (115), we observe that both
antisymmetric terms above vanish regardless of the variational
choice of |�even,slow〉. Therefore, following the same logic
as (109), we are led to the following constrained variational
principle for the resistivity:

ρxx � R̃[�̃] ≡ 〈�̃|W̃|�̃〉
〈�̃|Jx〉2

∣∣∣∣
LT

1 |�̃〉=0

, (118)

with �̃ running only over odd vectors. At present, this looks
abstract and possibly useless. However, we expect that in many

problems of interest, the only even zero modes of W correspond
to scalar (under spatial rotations) conserved quantities such as
energy or charge, where (114) is nothing more than ∇ · �J = 0,
for each conserved current �J .

Hence, the resistivity is then bounded from above by the
rate of entropy production, subject to the constraints that
all currents associated with conserved quantities are exactly
divergenceless. In the hydrodynamic limit, this is equivalent
to the hydrodynamic transport bounds of [28,30,61,62], which
themselves are generalizations of Thomson’s principle, a
variational approach for computing the effective resistance of a
resistor network [63]. The advantage of the kinetic variational
principle over the hydrodynamic ones is (in addition to the
distinct, but overlapping, regime of applicability) the fact
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that we do not need to know an explicit expression for the
dissipative hydrodynamic coefficients such as viscosity.

C. How interactions modify transport

We have presented a general variational principle (118).
To make specific quantitative predictions, more information
about W is necessary. Nonetheless, following the discussion
of Sec. IV D, let us make a few general comments, now at the
nonperturbative level.

In the ballistic (noninteracting) limit where W → 0, it is
challenging to directly deduce from (118) that the resistivity
saturates to a constant

ρxx � C

ν̃ṽFξ
, (119)

with ν̃ and ṽF the “averaged” density of states and velocity
of quasiparticles, respectively, and C a dimensionless number.
See Appendix E for details of a direct variational calculation
which confirms this. Assuming that the resistivity is finite, it is
simple to show the scaling (119). When W = 0, if we define the
coordinate X = x/ξ , then the Boltzmann equation becomes

L|�〉 = 1

ξ

∣∣∣∣�v · ∂�

∂ �X − ∂Vimp

∂ �X · ∂�

∂ �p
〉

= 0. (120)

Because L exactly scales as 1/ξ , we deduce that (z + L)−1 ∼
ξ . Hence, from the expression (110) for the resistivity, we
conclude that (119) must follow on dimensional grounds alone.

In the limit when interactions become important, it is clear
from the form of W̃ that our goal is to find an admissible |�̃〉
for the variational principle which is, as much as possible,
exactly conserved in the absence of disorder: Wo|�̃〉 = 0. If
we can achieve this, while remaining consistent with all current
conservation laws, then the resistivity

ρxx � 〈�̃|L2W−1
e LT

2 |�̃〉
〈�̃|Jx〉2

∼ �ee

ξ 2
. (121)

We have used the exact scaling L ∼ 1/ξ , as well as the heuristic
scaling We ∼ 1/�ee. Clearly, the resistivity decreases as the
interaction strength increases (and �ee decreases).

However, we expect that, in general, there will be more
conserved currents than odd conserved quantities. This is the
case in a conventional fluid, where there is both charge and
energy conservation, but only momentum conservation. As we
noted previously, of additional importance in many solid-state
systems are imbalance modes. If it is not possible to satisfy
all conservation laws on an Ansatz |�̃〉 with Wo|�̃〉 = 0, then
we expect that in general the resistivity is dominated by the
microscopic scattering rates:

ρ � 〈�̃|Wo|�̃〉
〈�̃|Jx〉2

∼ 1

�ee
. (122)

In this limit, interactions enhance the resistivity and the
scattering rate for momentum will appear to be set by �ee,
although (as we have explained) this is not quite the correct
physical interpretation.

This discussion gives us nonperturbative confidence that the
bounds described in Sec. II are qualitatively correct. There are
some special limiting cases where in hydrodynamic limits [26],
one may look for Ansätze |�〉 where ρ increases more slowly

than �−1
ee in the limit �ee � ξ . These Ansätze are similar to those

discussed in Appendix E. Based on the discussion in Sec. IV D,
such a limit must be nonperturbative in the disorder strength. If
there are at least d even conserved modes which must diffuse,
and momentum is the only inversion-odd conserved quantity,
we do not expect that such special Ansätze will be able to
parametrically reduce the resistivity of a metal in d spatial
dimensions.

VI. CONCLUSION

We have described how to solve the inhomogeneous
Boltzmann equation to compute the electrical resistivity of a
metal. In appropriate limits, we have reproduced ballistic and
(conventional, viscous) hydrodynamic transport. We have also
discovered a variety of effects, which we can often interpret
with a generalized hydrodynamics [30]. At a qualitative level,
our main observation is that if there are more inversion-even
conserved quantities than inversion-odd conserved quantities,
then textbook viscous hydrodynamics does not emerge in
the limit that the mean-free path is short compared to the
disorder wavelength. Instead, the dynamics is dominated by
diffusive “imbalance” (or other such) modes. In such regimes,
the interactions cause the resistivity to increase, in dramatic
contrast to the viscous case. When quasiparticles are well
defined, we have provided two practical methods for solving
the full kinetic transport problem in condensed matter physics:
the perturbative framework of Sec. IV and the variational
methods of Sec. V.

Momentum can be relaxed by short-range quantum impu-
rity scattering and umklapp processes. These can be accounted
for by adding terms to W which do not conserve momentum,
in the conventional way. The formal perturbative expansion
in Sec. IV is broken by such collisions. Nonetheless, the
variational formalism given in Sec. V remains valid whether
or not collisions relax momentum, and it suggests that the
existence of a small amount of umklapp or quantum impurity
scattering will only weakly modify the results described above.
If �um is the mean-free path for umklapp processes, for
example, there will be an intermediate “hydrodynamic” regime
with imbalance diffusion when �ee � ξ � �um. If umklapp
can relax imbalance modes, then a conventional hydrodynamic
regime will only emerge when ξ � �um, similar to what we saw
in Sec. IV C 3.

In the future, it will be important to extend this model to
magnetotransport and nonzero frequency transport, as well as
model other types of disorder. We look forward to extensions
of this formalism, along with applications to specific materials
and to experimental tests of our predictions.
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APPENDIX A: MEMORY MATRIX FORMALISM

We are studying a quantum many-body system deformed
by a perturbatively small chemical potential. The microscopic
Hamiltonian is given by

H = Hclean +
∫

ddx n(�x)Vimp(�x), (A1)

with n(�x) now interpreted as the charge density operator. It
is now very well understood that if momentum P is the only
inversion-odd conserved quantity of Hclean, and Vimp is pertur-
batively small, that the resistivity is given by [10,28,64–66]

ρij = 1

χ2
JP

lim
ω→0

Im
(
GR

Ṗi Ṗj
(k,ω)

)
ω

= 1

χ2
JP

∫
ddk

(2π )d
kikj |Vimp(k)|2 lim

ω→0

Im
(
GR

nn(k,ω)
)

ω
.

(A2)

χJP is the susceptibility between the charge current and the
momentum, and we can evaluate the Green’s function GR in
the clean theory. One can think of this as a generalization of
Fermi’s golden rule to interacting quantum systems.

We first write the operator

n =
∑

�p
n �p. (A3)

In the kinetic limit where k � kF, we may approximate re-
tarded Green’s functions using kinetic theory, using the general
technique of [60]: if the equations of motion for “long-lived”
quantities ϕa take the form

∂t δϕa + Mabδϕb = 0, (A4)

and the susceptibility matrix of the ϕa is χab, then at low
frequencies

GR
ad (�k,ω) = Mab(�k)[M(�k) − iω]−1

bc χcd, (A5)

where bc refers to the components of the inverted matrix. The
spectral weight is then

lim
ω→0

Im
(
GR

ab(�k,ω)
)

ω
= M−1

ac (�k)χcb. (A6)

We take the ϕa to be the number density of quasiparticles at
momentum �p. In the clean theory, the equations of motion read
as

∂tδn �p +
(

−∂feq

∂ε

)
(W + L)

(
−∂feq

∂ε

)−1

δn �p = 0 (A7)

[recall that δn �p = (−∂εfeq) �p� �p], which gives

Mn �pn�q =
(

−∂feq

∂ε

)
�p
(W + L) �p�q

(
−∂feq

∂ε

)−1

�q
. (A8)

The susceptibility we require is

χn,n �p = ∂n �p
∂μ

=
(

−∂feq

∂ε

)
�p
. (A9)

The first step in this equation follows from the fact that μ

is the thermodynamic potential conjugate to n [60]. Combin-

ing (A2), (A8), and (A9) with our nontrivial inner product (21),
we obtain agreement with (37) in the main text.

The generalization of (37) to the case where there are mul-
tiple conserved inversion-odd quantities is immediate within
the memory matrix formalism [10]. Let us denote with Qa the
list of odd conserved quantities, of which a finite subset are the
momenta Pi . Then, the conductivity tensor σij is given by

σij = χJiQa

(
lim
ω→0

Im
(
GR

Q̇aQ̇b
(k,ω)

)

ω

)−1

χJj Qb
, (A10)

where the spectral weight is to be inverted as a matrix with
ab indices. To obtain ρij , one takes the inverse of σij over
ij indices as usual. If the disorder does not break every
conservation law, and so there is some Q̇a = 0, then the
conductivity will be infinite.

APPENDIX B: TOY MODELS OF 2D FERMI LIQUIDS
AT WEAK DISORDER

The toy models that we have presented are exactly solvable
due to an elegant mathematical trick introduced in Ref. [31],
and extended in Refs. [32,33]. Let us write (for the homoge-
neous theory)

W = W0 − X, (B1)

where W0 is chosen such that [W0 + L(�k)]−1 ≡ G(�k) is an-
alytically computable; we will often leave the �k dependence
implicit. Suppose that P projects onto a finite number of modes,
and that X = PXP. Then, we write

(W + L)−1 = (W0 + L − X)−1 =
∞∑

n=0

G(PXPG)n

= G + GPX

( ∞∑
n=0

(PGPX)n
)

PG. (B2)

Defining G̃ ≡ PGP, we find

(W + L)−1 = G + GP[X(1 − G̃X)−1]PG. (B3)

The only matrix inverse we must compute, which is located
within the square brackets above, is of a finite-dimensional
matrix. Hence, it is highly efficient to compute (W + L)−1

numerically. In fact, in simple cases, we can compute it
analytically.

Let us begin with the simple model of a single rotationally
symmetric Fermi surface for a 2D Fermi liquid at low temper-
ature, discussed in Sec. IV C 2. This will form the basis for all
the toy models we consider in this paper. In this model,

W0 = 1

ν(μ)
× vF

�ee
,

X = 1

ν(μ)
× vF

�ee
P, (B4)

P = 1

ν(μ)
× (|1〉〈1| + |0〉〈0| + |−1〉〈−1|).
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The overall prefactors of 1/ν follow from (67). Similarly, one can compute

L(�k) =
∑

n

vF

2ν(μ)
[(ikx + ky)|n − 1〉〈n| + (ikx − ky)|n + 1〉〈n|]. (B5)

Using contour integration one can exactly compute [32]

Gmn(�k) ≡ G0
mn(�k) = 1

ν(μ)

(−i)|n−m|ei(n−m)φk√
k2 + �−2

ee

(√
1 + 1

(k�ee)2
− 1

k�ee

)|n−m|

, (B6)

with |k|eiφk ≡ kx + iky . As noted in the main text, we normalize the harmonic bras 〈j |j ′〉 = δjj ′ ; hence, the nontrivial inner
product is not relevant for the matrix multiplication in Eq. (B3). It will become relevant for computing (37) because there we did
not normalize the bras. In this simple model of a Fermi surface, the unnormalized and normalized inner products differ only by
a factor ν. Given G̃ and X, we may now compute A(k) = ν〈0|(W + L)−1|0〉; the result is shown in Eq. (68) in the main text.

It is simple to generalize to the more complicated models. In the model of Sec. IV C 3, one uses an identical G as before, but
sets

W0 = 1

ν(μ)
× νvF

�ee
,

X = 1

ν(μ)
× νvF

�ee
(P − b|2〉〈2| − b| − 2〉〈−2|), (B7)

P = 1

ν(μ)
×
∑
|j |�2

|j 〉〈j |.

Again, the finite-dimensional matrix inverse in Eq. (B3) can be done analytically, and the result for A(k) ∼ 〈0|(W + L)−1|0〉 is
shown in Eq. (74) in the main text. In the model of two Fermi surfaces (Sec. IV C 4) and of electron-phonon coupling (Sec. IV C 5),
by rewriting (82) as

L = 1

ν(μ)
× ivF,2(cos θkx + sin θky)(P2 + ζP1) , (B8)

with

ζ ≡ vF,1

vF,2
, (B9)

it is straightforward to see that, upon choosing W0 = νvF,2/�ee as before,

G =
∑
mn

(
G0

mn(ζ �k)|m1〉〈n1| + G0
mn(�k)|m2〉〈n2|). (B10)

Now, defining

cos α ≡ 1√
1 + ζ 2

, (B11)

we take

X = 1

ν(μ)
× vF,2

�ee

⎡⎣b̂|01〉〈01| + |02〉〈02| +
∑
j=±1

(sin α|j1〉 + cos α|j2〉)(sin α〈j1| + cos α〈j2|)
⎤⎦, (B12)

where b̂ = 0 in the electron-phonon model, and b̂ = 1 in the
model of two Fermi surfaces. X hence is a projector onto the
conserved quantities, in each model. It is straightforward to
numerically compute A(�k) from here.

APPENDIX C: CONSEQUENCES OF INVERSION
SYMMETRY AT WEAK DISORDER

We explicitly carry out the matrix inverse for W + L given
in Eq. (92). First integrating out only the fast modes (but not
the odd slow modes) we obtain

Ŵe = LT
of,es

(
Wo + LT

ef,ofW
−1
e Lef,of

)−1
Lof,es, (C1a)

Ŵo = LT
ef,os

(
We + LT

of,efW
−1
o Lof,ef

)−1
Lef,os, (C1b)

L̂os,es = Los,es − LT
ef,os

(
We + LT

of,efW
−1
o Lof,ef

)−1

× Lef,ofW−1
o Lof,es , (C1c)

L̂es,os = Les,os − LT
of,es

(
Wo + LT

ef,ofW
−1
e Lef,of

)−1

× Lof,efW−1
e Lef,os = −L̂T

os,es. (C1d)

045105-20



KINETIC THEORY OF TRANSPORT FOR INHOMOGENEOUS … PHYSICAL REVIEW B 97, 045105 (2018)

Next, we assume for simplicity that Ŵo is invertible. We
find (96) as in the main text, and so all that remains is to
justify (94) and (95). In order to derive these scaling arguments,
let us explicitly define �ee and vF as follows:

kvF ∼ eigenvalue of L = i�k · �v, (C2a)
vF

�ee
∼ typical eigenvalue of We,o. (C2b)

In both of the equations above, and for the remainder of the
Appendix, we have used ∼ to denote that we are neglecting
O(1) prefactors. Both eigenvalues should be computed in the
absence of disorder; we have already integrated out disorder
by (37). In models with parametric hierarchies of relaxation
times, or both very fast and very slow fermions, the scalings
above should not be expected to fully capture the physics at
intermediate length scales, and one would need to define a
larger block-matrix decomposition than (92) to keep track of
modes that decay at parametrically different rates, for example.
First, let us discuss the hydrodynamic limit. In this case,
because by definition both We and Wo are invertible, we may
approximate

Ŵe ≈ LT
of,esW

−1
o Lof,es + O

(
k2�2

ee

) ∼ k2�eevF. (C3)

A similar equation holds for Ŵo. We next find that

L̂os,es ≈ Los,es − LT
ef,osW

−1
e Lef,ofW−1

o Lof,es + O
(
k2�2

ee

)
∼ kvF

(
1 + k2�2

ee

) ∼ kvF. (C4)

A similar equation holds for L̂es,os. The ballistic limit is
somewhat more subtle: the infinite dimensionality of the vector
space of fast modes is critical to obtain physically sensible
results. Consider the matrix Wo + LT

ef,ofW
−1
e Lef,of , which must

be inverted to compute Ŵe. A naive application of (C2)
suggests that this matrix scales as �eek

2 and hence that Ŵe ∼
�−1

ee , namely, that in the ballistic limit there is no dissipation
at all. However, this is not true. At a mathematical level, the
argument above fails because the matrix Lof,ef is very far from
full rank, and so has many null vectors. Physically, these null
vectors correspond to any velocity for which �k · �v = 0. Do
these null vectors lead to Ŵe ∼ �eek

2, which would diverge
in the ballistic limit? This is also not correct because although
there are infinitely many null vectors, they still form a set
of measure zero of the total “size” of the vector space.
Following the explicit calculation of Sec. IV B, we expect that
the vanishing eigenvalues of a vanishingly small fraction of
eigenvectors lead instead to

Ŵe ∼ kvF + O

(
1

�ee

)
. (C5)

This result can alternatively be understood by observing that
(W + L)−1 is not a singular matrix in the ballistic limit,4 and so
by dimensional analysis one is forced to arrive at (C5). There

4This is easiest to see in position space, where one can see
by directly solving the Liouville (noninteracting Boltzmann) equa-
tion that 〈�x �p|(W + L)−1|�x0 �p0〉 ∝ �[�v( �p) · (�x − �x0)]δ( �p − �p0)δ[�v ×
(�x − �x0)].

is less subtlety in estimating L̂os,es in the ballistic limit. A naive
application of (C2), together with (C1), leads to

L̂os,es ∼ kvF. (C6)

As we saw above, this is more precisely argued for by
noting that all components of (W + L)−1

fast ∼ 1/kvF. The end
result is the same. Combining the results of the previous two
paragraphs, we arrive at (94) and (95). Ŵo is invertible if the
streaming terms couple every odd mode to an even mode.
This is not always the case; see, for example, the model of
a conserved j = 2 harmonic in Sec. IV C 3. If this assumption
is not satisfied, then we can modify the block decomposition
of (92) straightforwardly to

|�〉 =

⎛⎜⎜⎜⎜⎜⎝
|�even,slow〉
|�odd,slow′ 〉
|�odd,slow〉
|�even,fast〉
|�odd,fast〉

⎞⎟⎟⎟⎟⎟⎠,

W + L =

⎛⎜⎜⎜⎜⎜⎝
0 Ls1 Les,os 0 Les,of

−LT
s1 0 0 0 0

Los,es 0 0 Los,ef 0

0 0 Lef,os We Lef,of

Lof,es 0 0 Lof,ef Wo

⎞⎟⎟⎟⎟⎟⎠. (C7)

We have added a fifth row and column to this block matrix that
corresponds to the odd conserved quantities |�odd,slow′ 〉 which
do not couple via streaming terms to fast modes. We can again
integrate out the fast degrees of freedom, which leads to the
following modification of (93):

(W + L)−1
slow =

⎛⎜⎝ Ŵe Ls1 L̂es,os

−LT
s1 0 0

L̂os,es 0 Ŵo

⎞⎟⎠
−1

, (C8)

together with (C1). The generalization of (96) is

(A)(�k) = 〈n|M − MLs1
(
LT

s1MLs1
)−1

LT
s1M|n〉, with

M = (
Ŵe + L̂es,osŴ−1

o L̂T
es,os

)−1
. (C9)

The presence of the additional odd conservation laws thus
reduces the spectral weight. In particular, the role of Ls1 in the
above formula is, roughly, to project out the components of
M. which have overlap with the odd slow modes. This may be
enough to kill any imbalance modes in M (eigenvalues ∼k−2);
a more detailed analysis requires more specific details of the
model. The case we studied in Sec. IV C 3 (when the j = 2 har-
monics were exactly conserved) is not quite of the above form,
because in that model, there were no odd conserved quantities
that coupled via streaming to nonconserved quantities. In this
case, one simply deletes the middle row/column of (C7), and
a careful analysis of the resulting matrix inverse in the slow
sector leads to A ∼ 1/�ee in the hydrodynamic limit, as we
found in the main text.
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APPENDIX D: JOULE HEATING

In this short Appendix we explicitly show that entropy
production is given by (104) in the main text. At the quantum
level, the many-body density matrix is

� ≈
⊗
x,p

(f (x,p)|1x,p〉〈1x,p| + [1 − f (x,p)]|0x,p〉〈0x,p|),

(D1)

where we have employed Fermi statistics in an obvious way.
The ket |nx,p〉 denotes whether a given “quantum state” has
0 or 1 fermions in it. This is an approximate formula, and
should be interpreted as only valid on distancesx andp obeying

x
p � h̄. The von Neumann entropy is then given by

S = −tr[� log �]

= −
∫

ddx ddp(f (x,p) log f (x,p)

+[1 − f (x,p)] log[1 − f (x,p)]), (D2)

with the latter equality coming from the explicit expres-
sion (D1). Hence, expanding in small perturbations around
equilibrium, the time-dependent (unsourced) Boltzmann equa-
tion leads to

dS

dt
=−

∫
ddx ddp

(2πh̄)dVx

∂f

∂t
log

f

1 − f

≈
∫

ddx ddp

(2πh̄)dVx

(
−∂feq

∂ε

)
[W� + L�]

×
[

log
feq

1 − feq
+ 1

feq(1 − feq)

(
−∂feq

∂ε

)
� + · · ·

]
.

(D3)

Using the form of the Fermi-Dirac distribution (11), we can
simplify the above expression:

dS

dt
=
∫

ddx ddp

(2πh̄)dVx

(
−∂feq

∂ε

)
[W� + L�]

×
[
−ε + Vimp

T
+ �

T
+ · · ·

]
. (D4)

To get rid of the first term in the final brackets, we use the
fact that ε(p) and 1 are, pointwise in x, null vectors of W
since they correspond to locally conserved quantities, as well
as the fact that L annihilates ε + Vimp by its definition in
Eq. (23). Because W is symmetric and L is antisymmetric, we
readily arrive at T Ṡ = 〈�|W|�〉 using the inner product (21).
This leads to (104) in the main text. While (22) is a sourced,
static problem, we continue to interpret (104) as the entropy
production.

APPENDIX E: VARIATIONAL PRINCIPLE
IN THE BALLISTIC LIMIT

In this Appendix we will show how the variational princi-
ple (118) is consistent with a finite resistivity in the limit where
W → 0. For simplicity, let us assume that the matrix

W = z, (E1)

with z an (infinitesimal) relaxation rate which we will send to
zero. Also for simplicity, we will neglect the constraints, as
they are automatically satisfied when we remove the regulator
z at the end of the calculation. We thus look for a “minimum”
of

R[�] = 〈�|Wo + LTW−1
e L|�〉

〈�|Jx〉2
. (E2)

As z → 0, it is clear that we should look for vectors where
L|�〉 ≈ 0. More precisely, let us look for vectors where L|�〉 ∼
z|�〉. In the conventional basis |�x �p〉, we look for solutions to

L|�〉 =
∣∣∣∣�v · ∂�

∂ �x + �F · ∂�

∂ �p
〉

= z|�〉. (E3)

Solutions to this differential equation are of the form

|��x(0) �p(0)〉 =
∫

dt e−z|t ||�x(t) �p(t)〉, (E4)

where

d �x
dt

= �v,
d �p
dt

= �F . (E5)

Equation (E4) should be interpreted as follows. We may choose
arbitrary initial conditions �x(0) and �p(0). By solving (E5), we
obtain a trajectory �x(t) and �p(t). The subscript on |��x(0) �p(0)〉
then simply denotes that we have chosen a solution to (E3) for
the initial conditions specified in the subscript. At this point,
we also note that when z → 0, we recover solutions to the
noninteracting Boltzmann equation, which satisfies current and
energy conservation.

We now introduce a set S, which intuitively consists of a set
of initial conditions �x(0) and �p(0) which, after time evolution
for a time of order z−1, according to (E5), “cover” the classical
phase space. S is an infinite set. We will now evaluate R[�]
via a scaling argument on trial functions of the form

|�〉 =
∫

(�x(0), �p(0))∈S

dS|��x(0) �p(0)〉. (E6)

For some purposes, it is easiest to think about |�〉 in the
form (E6), but for other purposes it will be more instructive to
write

|�〉 ≡
∫

ddx dp e−Z(�x, �p)|�x �p〉. (E7)

Because S is a continuous, the function Z(�x, �p) is O(1).
We start by evaluating the numerator of R, which is

elementary. Since L|�〉 ∼ W|�〉 on Ansätze of the form (E6),
we conclude that

〈�|Wo + LTW−1
e L|�〉

∼ 〈�|Wo|�〉 ∼ z

∫
ddx ddp

(2πh̄)dVx

(
−∂feq

∂ε

)
e−2Z(�x, �p) ∼ νz.

(E8)

The last step above follows simply from the fact that Z is not
parametrically small, by definition of S.
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The denominator of R is a little more subtle. On a single
trajectory, we have

〈Jx |��x(0) �p(0)〉

= −e

∫
ddx ddp

(2πh̄)dVx

(
−∂feq

∂ε

)
vx(�x, �p)〈�x �p|

∫
dt

× e−z|t ||�x(t) �p(t)〉

= − e

(2πh̄)dVx

(
−∂feq

∂ε

)∫
dt e−z|t |vx(t), (E9)

where vx(t) is now the x velocity of the quasiparticle at time
t , given that it started at position (�x(0), �p(0)); it can be found
by solving (E5). In this formula, we have applied (E6) directly
because it is easier to account for how vx(t) evolves along
each trajectory separately. Under the assumption that (in spatial
dimensions d > 1) the quasiparticles undergo random walks
at long times [56,57], we estimate that on a typical trajectory,
the quasiparticle displacement

|
x| ≡
∣∣∣∣∫ dt e−z|t |vx(t)

∣∣∣∣ ∼
√

D

z
, (E10)

whereD is a suitable diffusion constant. In the smooth potential
problem that we are studying, D ∼ vFξ up to a dimensionless
constant, which may be large at weak disorder.

In order to get a strong upper bound on the resistivity, we
must maximize the typical size of 〈E|�〉2. This leads to the
following consideration: if we include all possible trajectories
in S, then half of the time 
x is positive, and half of the time
it is negative; only the magnitude was given in Eq. (E10). We
then expect the disorder averaged

E[〈Jx |�〉2]

= E

{[
−e

∫
dS

(2πh̄)dVx

(
−∂feq

∂ε

)

x(�x(0), �p(0))

]2
}

→ 0. (E11)

There are an infinite number of trajectories in S, and while
infinitesimally close trajectories (at any finite z) will be
correlated, we expect that in the thermodynamic limit this
average vanishes: trajectories starting at very distant �x(0) will
be completely uncorrelated. Also note that in this formula, we
integrate over �x and �p by first integrating over each trajectory
(to replace vx with 
x), and then we integrate over all possible
starting points.

We must, therefore, slightly improve our definition of |�〉.
A simple thing to do is to replace the set S by the set S ′,
consisting only of trajectories where 
x � c

√
D/z, with c >

0 some finite O(1) number. This does not change the estimate
in Eq. (E8). But now, because all 
x > 0, we may estimate

E[〈Jx |�〉2]

= E

{[
−e

∫
dS ′

(2πh̄)dVx

(
−∂feq

∂ε

)

x(�x(0), �p(0))

]2
}

∼ E[|
x|2](zνe)2 ∼ zν2e2D. (E12)

The second scaling argument in this equation follows from the
fact that the (−∂feq/∂ε)/(2πh̄)dVx weighted integral over the
set S ′ scales as ν × z; the factor of z comes from the fact that
we cannot include two points in S ′, if (i) they lie on the same
single-particle trajectory, and (ii) a particle can move from
one point to the other in a time �z−1. In Eq. (E12) this extra
factor of z has arisen, in contrast to (E8), due to the fact that
trajectories are weighted by vx .

Combining (E8) and (E12) we obtain

ρ � R[�] ∼ 1

e2νD
, (E13)

which is the Sommerfeld-Drude scaling for the conductivity
of a noninteracting electron gas: in particular, it will scale as
1/ξ , as stated in the main text.
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