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We present an electrostatic theory of band-gap renormalization in atomically thin semiconductors that captures
the strong sensitivity to the surrounding dielectric environment. In particular, our theory aims to correct known
band gaps, such as that of the three-dimensional bulk crystal. Combining our quasiparticle band gaps with an
effective-mass theory of excitons yields environmentally sensitive optical gaps as would be observed in absorption
or photoluminescence. For an isolated monolayer of MoS2, the presented theory is in good agreement with ab
initio results based on the GW approximation and the Bethe-Salpeter equation. We find that changes in the
electronic band gap are almost exactly offset by changes in the exciton binding energy such that the energy
of the first optical transition is nearly independent of the electrostatic environment, rationalizing experimental
observations.
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Introduction. Atomically thin materials exhibit remarkable
electronic properties due to their quasi-two-dimensional na-
ture [1–4]. However, their size also makes them extremely
sensitive to their local environment. A complete theoretical
picture must simultaneously treat the two-dimensional nature
of carriers and the dielectric character of the surroundings. This
latter property is the primary distinction between atomically
thin materials [such as the transition-metal dichalcogenides
(TMDCs)] and heterostructured semiconductor quantum wells
(such as GaAs in AlGaAs).

To date, many theoretical studies of atomically thin materi-
als have focused on the excitonic properties, including the large
exciton binding energy [5–7], the unique excitonic Rydberg se-
ries [8,9], the nature of selection rules [10–12], and Berry phase
modifications of the exciton spectrum [13,14]. Surprisingly,
the quasiparticle band gap has received significantly less atten-
tion, especially from simplified microscopic theories, perhaps
because it is challenging to measure experimentally. In fact,
simple theories of the exciton binding energy are often times
used in conjunction with the experimentally measured optical
gap in order to estimate the quasiparticle band gap [8,15].

The GW approximation represents the current method of
choice for the accurate calculation of band structures and band
gaps [16,17]. However, the quasi-two-dimensional nature of
the atomically thin materials makes these calculations very
challenging to converge [18–20]. In this Rapid Communi-
cation, we provide a simple electrostatic theory of band-gap
renormalization due to electrostatic proximity effects. Through
combination with an effective-mass theory of the exciton
binding energy, we find that the optical gap—i.e. the sum
of the band gap and the (negative) exciton binding energy—
is extremely insensitive to the dielectric environment. This
represents a quasianalytical demonstration of this remarkable
effect.

*berkelbach@uchicago.edu

The band gap of nanoscale materials differs from that of
the three-dimensional bulk parent material because of two
separate effects: carrier confinement and dielectric contrast.
In the first case, the geometric confinement of carriers leads to
an increased kinetic energy and a concomitantly larger band
gap. However, in layered materials (such as the TMDCs), the
two-dimensional confinement is already largely reflected in
the bulk band gap as evidenced by the small bandwidth in the
perpendicular (stacking) direction. Therefore, in the following,
we employ this idealized scenario of carriers confined to
two dimensions, even when describing the bulk material. In
particular, this approximation is invoked to describe low-
energy carriers at the K points of the Brillouin zone; here, the
wave-function character is primarily that of transition-metal d

orbitals, which are confined to the center of the TMDC layer,
precluding strong interlayer hybridization. In Fig. 1, we show
the band structure of bulk and monolayer MoS2 calculated
using density functional theory (DFT) [21]. The monolayer
band gap at the K point is only 0.09 eV larger than that of
the bulk, indicating that any band-gap renormalization due to
carrier confinement is already (largely) accounted for in the
bulk band gap; we henceforth neglect this small shift so as to
focus on alternative effects while treating the monolayer and
bulk on equal footing. We emphasize that this geometric carrier
confinement is a one-electron (kinetic-energy) effect that is
well described by density functional theory—unlike dielectric
screening effects.

As mentioned above, a second source of band-gap renor-
malization in nanomaterials is the dielectric contrast effect.
Physically, we recall that the quasiparticle conduction and
valence bands measure the electron affinities and ionization
potentials, respectively. The excess charge created in these
processes polarizes the material and its environment such
that the potential energy of the charge depends on the local
dielectric geometry. We model atomically thin semiconductors
as a slab of dielectric constant ε1 and width d, surrounded
by environmental dielectric constants ε2 below and ε3 above
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FIG. 1. Band structures of bulk and monolayer MoS2 calculated
with density functional theory. The direct band gap (at the K point) is
0.09 eV larger for the monolayer than for the bulk due to the carrier
confinement effect.

as shown in Fig. 2. Consistent with the arguments presented
above, the carriers will be assumed to occupy the center of the
slab at z = 0.

We now proceed to calculate the band-structure corrections
due to such a heterogeneous dielectric environment. We as-
sume that a reference many-body band gap is known; here,
we will primarily consider band-structure corrections to the
three-dimensional bulk material. The three-dimensional bulk
band gap is the simplest reference value because it can easily
be obtained from calculation or experiment, owing to the
relatively strong screening and small exciton binding energy of
three-dimensional bulk semiconductors. Although our theory
could also be applied to correct the band gap of an isolated
monolayer due to changes in its dielectric environment, we
emphasize that the latter reference band gap is much harder to
calculate or extract from experiment.

Corrections to the three-dimensional bulk band gap will
be calculated in two ways: (1) classically, using electro-
static continuum theory; and (2) quantum mechanically, using
the static Coulomb-hole plus screened exchange (COHSEX)
approximation to the quantum-mechanical GW self-energy.
When correcting a reference band structure, we require the
difference in the screened Coulomb interaction δW (r,r ′) ≡
W (r,r ′) − W ref (r,r ′), where W is the total screened Coulomb
interaction. We calculate the respective screened interactions
through their electrostatic counterparts associated with the slab
dielectric geometry shown in Fig. 2. Although this is a classical
approximation, which neglects local field effects, it avoids the
high cost of an ab initio calculation of the screened Coulomb
interaction.

z

−d/2

d/2
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FIG. 2. Idealized dielectric slab geometry used to model the
electrostatics of atomically thin semiconductors.

In recent years, effective-mass theories of atomically thin
materials have made frequent use of the model potential energy
derived by Rytova [22] and Keldysh [23] (RK),

WRK(ρ) = πe2

(ε2 + ε3)ρ0

[
H0

(
ρ

ρ0

)
− Y0

(
ρ

ρ0

)]
, (1)

where H0 and Y0 are the Struve function and the Bessel
function of the second kind and ρ is the two-dimensional
in-plane separation. The screening length is given by ρ0 =
ε1d/(ε2 + ε3) and can be related to a two-dimensional sheet
polarizability [5,24]. For the purposes of the present Rapid
Communication, the RK potential suffers from two deficien-
cies. First, it applies only in the limit of extreme dielectric
mismatch between the slab and its surroundings; although this
approximation is good for isolated (suspended) monolayers, it
breaks down in more general dielectric environments. Second,
the RK potential has an unphysical logarithmic divergence at
ρ = 0, which precludes its use in simple electrostatic theories
of band-gap renormalization. Instead, we employ the exact
solution of the finite-thickness electrostatic problem shown in
Fig. 2. We emphasize that the logarithmic behavior of the RK
potential is correct over some intermediate length scale and
only incorrect for ρ � d.

The potential energy of two charges in a slab with locations
z1, z2, and in-plane separation ρ can be calculated via image
charges to give a screened interaction W (z1,z2,ρ) [25]. In the
center of the slab (z1 = z2 = 0), we find

W (ρ) = e2

ε1ρ
+ 2

∞∑
n=1

e2Ln
12L

n
13

ε1{ρ2 + (2nd)2}1/2

+ (L12 + L13)
∞∑

n=0

e2Ln
12L

n
13

ε1{ρ2 + [(2n + 1)d]2}1/2
, (2)

where L1n = (ε1 − εn)/(ε1 + εn). Unlike the RK potential,
this continuum electrostatic potential is correct in the uni-
form case of ε1 = ε2 = ε3 and has the proper divergence as
ρ → 0. Atomistically, the dielectric function should go to
unity at q → ∞ (i.e., on subatomic length scales). Instead
of the coarse-grained electrostatic theories employed here,
all of our calculations could easily be performed with an ab
initio screened Coulomb interaction as could be efficiently
obtained using the recently introduced quantum electrostatic
heterostructure technique [26,27].

Electrostatic solution. In the simplest electrostatic (Born)
approximation, the conduction- and valence-band corrections
in the center of the slab are given by the self-interaction
energy [25,28],

δ�c/v = ±1

2
lim
ρ→0

δW (ρ), (3)

which is nondivergent due to the use of an interaction difference
δW as long as the slab dielectric ε1 is identical in both W

and W ref . When the reference potential energy is that of a
uniform bulk dielectric, i.e., W ref (r,r ′) = e2/(ε1|r − r ′|), then
the electrostatic corrections using Eqs. (2) and (3) can be
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summed analytically to give the relatively simple expression,

δ�c/v = ± e2

2ε1d

{
(L12 + L13)√

L12L13
tanh−1(

√
L12L13)

− ln(1 − L12L13)

}
, (4)

where we used ln(1 − x) = −∑∞
n=1 xn/n and tanh−1(x) =∑∞

n=0 x2n+1/(2n + 1).
Tight-binding COHSEX. First-principles band-structure

calculations typically employ the GW approximation to the
self-energy. In the static screening limit, this approximation
yields two contributions to the self-energy: a Coulomb-hole
(COH) term and a screened exchange (SEX) term [16]. By
assuming that an initial many-body reference band structure is
known, we can calculate corrections in alternative electrostatic
environments as diagonal elements of the self-energy operator,
which leads to

δ�COH
p (k) = 1

2
lim
ρ→0

δW (ρ), (5a)

δ�SEX
p (k) = − 1

Nk

∫
d2x1

∫
d2x2φ

∗
p,k(x1)ρ(x1,x2)

× δW (ρ)φp,k(x2), (5b)

where x = (ρ,τ ) is the combined space and spin variable,
ρ(x1,x2) is the reduced density matrix of the mean-field
reference, Nk is the number of k points sampled in the Brillouin
zone, and p = (c,v) indexes the conduction or valence band.
In the simplest approximation, we consider the two-band
tight-binding Hamiltonian [29],

H (k) =
(

Eg/2 at(kx + iky)
at(kx − iky) −Eg/2

)
, (6)

with eigenvectors 〈x|pk〉 = φpk(x) and eigenvalues

Ec/v(k) = ± 1
2

√
E2

g + (2atk)2. In this Hamiltonian, Eg is

the band gap, a is the lattice constant, and t is the in-
teratomic transfer integral. A single (doubly occupied) va-
lence band leads to the simple density-matrix ρ(x1,x2) =∑

q φvq(x1)φ∗
vq(x2). Further simplifications concerning the

locality of the underlying real-space basis functions leads to
the SEX self-energy,

δ�SEX
p (k) = − 1

Nk

∑
q

|〈pk|vq〉|2
′∑

GδW (G + q − k), (7)

where

δW (k) = 1

ABZ

∫
d2ρeiρ·kδW (ρ), (8)

ABZ is the area of the Brillouin zone and the primed summation
in Eq. (7) excludes the term with G = 0 when k = q. Summa-
rizing, the COH term yields a positive constant shift to both
the conduction and the valence bands, which is exactly equal
to the (positive) correction obtained in the pure electrostatic
theory presented above; the SEX term yields a negative k-
dependent shift with a magnitude that depends on overlap

factors between the valence band and the band being corrected.
To a reasonable approximation (verified numerically below),
the SEX contribution is negligible in the conduction band
(due to vanishing overlaps) but is substantial in the valence
band. Furthermore, if the squared overlap is approximated by
unity, i.e., |〈vk|vq〉|2 ≈ 1, then the magnitude of the SEX
correction in the valence band is exactly twice that of the
COH term. As shown in Ref. [30] for the case of molecules
near metal surfaces, we therefore have simple approximate
COHSEX corrections given by δ�c ≈ +P − 0 = +P and
δ�v ≈ +P − 2P = −P , where P = 1

2 limρ→0 δW (ρ) is pre-
cisely the electrostatically derived correction. In reality, the
squared overlap can be less than one, and the SEX correction
to the valence band (and thus the band gap) will be slightly
smaller than that of the continuum electrostatic theory.

Effective-mass theory of excitons. The optical gap as mea-
sured in linear spectroscopies, such as absorption or photolu-
minescence, is the sum of the quasiparticle band gap and the
(negative) exciton binding energy. At a similar level of theory
to that used so far, the exciton states can be calculated using
an effective-mass theory,

[
− 1

2μ
∇2

ρ − W (ρ)

]
	n(ρ) = En	n(ρ), (9)

where ρ is the electron-hole separation, 	n is the exciton wave
function, and En is its binding energy. The material parameters
enter through the exciton-reduced mass μ = memh/(me + mh)
and the same screened Coulomb interaction W as used above.
Due to the angular symmetry, the effective-mass equation is
a simple one-dimensional Schrödinger equation in the radial
direction, which may be solved numerically exactly on a
real-space grid to obtain the full Rydberg series of band-edge
excitons. The exciton wave functions and binding energies
are sensitive to the local dielectric environment where higher
dielectric constants result in stronger screening, more diffuse
wave functions, and smaller binding energies.

Results. Although our theory is appropriate for any atomi-
cally thin semiconductor, we will apply it to the well-studied
case of MoS2, a prototypical layered transition-metal dichalco-
genide. As is common for quantum-confined materials, we
correct the bulk band gap using a uniform reference Coulomb
potential with ε1 = ε2 = ε3, i.e., W ref (r,r ′) = e2/(ε1|r −
r ′|) [31]; for MoS2, we use ε1 = 14, which is approximately
the value of the in-plane element of the bulk dielectric tensor,
calculated using various first-principles techniques including
density functional theory and the GW approximation [5]. For
the monolayer, we solve the electrostatic problem in Fig. 2
with ε1 = 14 and d = 6 Å, which roughly corresponds to the
perpendicular extent of monolayer MoS2; these parameters
yield the ideal screening length ρ0 = 42 Å in good agreement
with the ab initio value of 41.5 Å [5]. We take the reference
A-series band gap of bulk MoS2 to be Ebulk

g = 1.98 eV [32],
and for the tight-binding Hamiltonian in Eq. (6), we use
at = 3.51 eV Å [29]. For the exciton problem in Eq. (9), we
use the effective-mass μ = 0.25m0 as parametrized by DFT
calculations [5].

First, we consider the experimentally relevant situation of
a monolayer on a substrate with dielectric constant ε2 and
vacuum above (ε3 = 1). In Fig. 3(a), we show the band gap
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FIG. 3. The quasiparticle band gap and optical gap (i.e., excitonic
transition energy) of monolayer MoS2 as a function of (a) the
substrate dielectric constant with vacuum above (ε3 = 1) and (b) the
encapsulating dielectric constant (ε2 = ε3). The bulk band gap, which
is a fixed parameter in the theory, is indicated by a dotted gray line.
The filled circles at ε2 = 1 indicate the ab initio G0W0 result (the
black circle) and the Bethe-Salpeter equation results (the red and blue
circles) for an isolated monolayer from Ref. [20].

calculated using the tight-binding COHSEX approximation
as a function of the substrate dielectric constant. The purely
electrostatic approximation in Eq. (4) is not shown but gives
nearly identical results, predicting band gaps that are slightly
larger (about 0.05 eV), which can be understood based on the
arguments presented above. Remarkably, the simple theory
presented here—parametrized only on bulk data and an esti-
mate of the monolayer width—predicts an isolated monolayer
(ε2 = 1) band gap of 2.62 eV (a 0.64-eV increase from bulk);
this compares very favorably to a recent carefully converged ab
initio calculation using the many-body G0W0 approximation,
which predicts 2.67 eV [20]. This huge increase in the quasi-
particle band gap reflects the strong role played by reduced
dielectric screening in atomically thin materials.

At larger values of ε2, the increased screening ability of the
substrate yields a rapid decrease in the band gap, demonstrating
the strong sensitivity of atomically thin materials to their
local environment. Even a modest substrate, such as silica,
with a dielectric constant of ε2 ≈ 4, is predicted to have a
band gap of 2.35 eV, which is 0.27 eV smaller than an ideal
suspended monolayer. On graphite, with ε2 ≈ 10, the band gap
is reduced by 0.45 eV. Similar results have been obtained with
an approximate treatment of substrate screening in otherwise
ab initio G0W0 calculations [33,34]. These findings underscore
the care required when comparing experimental measurements
on substrates to ab initio calculations of isolated atomically
thin materials. In reverse, the simple formula given in Eq. (4)
can be used to infer the ideal suspended band gap based on
measurements performed on substrates.

In Fig. 3(a), we also show the optical gap for the 1s and
2s exciton states, obtained by summing the quasiparticle band
gap and the exciton binding energies of each state as a function
of the substrate dielectric constant. For the isolated monolayer,
we predict optical gaps of 2.03 and 2.35 eV (positive binding
energies of 0.59 and 0.27 eV) for the 1s and 2s states,
respectively. Again, these compare well with converged ab

initio calculations using the Bethe-Salpeter equation, which
predict optical gaps of 2.04 and 2.32 eV (binding energies of
0.63 and 0.35 eV) [20].

As the dielectric constant of the substrate increases, the
exciton binding energies are reduced due to increased environ-
mental screening. Remarkably, the competing effects in the
band gap and 1s binding energy almost exactly cancel. Up
to a substrate dielectric constant of ε2 = 20, the 1s optical
transition energy only changes by 0.1 eV. In the aforemen-
tioned examples of silica and graphite substrates, the exciton
binding energy is reduced by 0.24 and 0.49 eV, respectively.
Not only is the optical transition energy roughly constant,
but the cancellation is almost perfect such that the monolayer
transition energy is nearly identical to the bulk transition energy
(the bulk band gap and optical gap roughly coincide because
the exciton binding energy is only about 0.04 eV [32]).

In addition to the well-known observation that the optical
gap of bulk TMDCs is almost identical to that of monolayers,
the effects predicted by the theory are in good agreement
with a number of other more detailed experimental findings,
such as the insensitivity of the optical gap in TMDCs when
comparing suspended samples and samples on fused-silica
substrates [35]. Identical effects in the band gap, optical
gap, and exciton binding energy have been observed in a
joint experimental-computational study of MoSe2 on bilayer
graphene and graphite: The latter exhibits a 0.24-eV reduction
in the band gap and a concomitant 0.28-eV reduction in the
exciton binding energy, leading to a minimal change in the
optical gap [33]. Similar competing effects have been observed
in the optical properties of doped or photoexcited TMDCs [36],
although the screening physics is quite different.

The above analysis can be repeated for more general
dielectric environments; the results of uniform encapsulation
(ε2 = ε3) are shown in Fig. 3(b). Although the qualitative
behavior is the same, the effects are naturally stronger due to the
simultaneous screening from above and below the monolayer.

Finally, we mention that, although we have focused on
the band gap, our theory separately predicts changes to the
ionization potential and electron affinity. The environmental
renormalization of these quantities may be of interest for
photochemistry, catalysis, or device engineering.

Conclusions. To summarize, we have presented a simple
but powerful theory of environmentally sensitive electronic
and optical transition energies in atomically thin materials.
Although the theory shows that the quasiparticle band gap
and the exciton binding energy are individually very sensitive
to their local dielectric environment, the sum of the two
(the lowest-energy optical transition) is almost completely
insensitive. In some sense, this is an unfortunate state of affairs
for the use of atomically thin materials as environmental or
chemical sensors because optical transitions are the simplest
to measure (by absorption or photoluminescence); by contrast,
measuring the band gap by photoemission or electron tunneling
experiments is much more difficult. Nonetheless, the theory
presented here enables rapid and quantitative exploration of
accessible energetic changes through dielectric engineering.

In light of our results, we propose that the higher-
lying excitonic resonances are promising optical reporters of
the local environment. Even the 2s resonance—which can
typically be resolved in experiments—is predicted to redshift
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by 0.1 eV when a suspended sample is placed on a silica
substrate. Indeed, the 1s-2s separation was used recently as
an experimental probe of environmental effects [15].

Going forward, this approach can be used to study other
environmentally sensitive atomically thin materials, such as
black phosphorous [37]. These techniques can also be ap-
plied to more heterogeneous dielectric environments as might
be experimentally realized through patterning [15], molecu-

lar coverage [38,39], or functional layered heterostructures
[40–42]. In many cases, explicit electronic hybridization and
charge transfer should be accounted for in the theory. Work
along these lines is currently in progress.
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