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A microscopic approach is developed to the scattering of surface states from a nonmagnetic linear defect
at a surface with strong spin-orbit interaction. Spin-selective reflection resonances in scattering of Rashba-split
surface states by an atomic stripe are theoretically discovered in a proof-of-principle calculation for a model crystal
potential. Spin-filtering properties of such linear defects are analyzed within an envelope-function formalism for
a perturbed surface based on the Rashba Hamiltonian. The continuous Rashba model is found to be in full
accord with the microscopic theory, which reveals the essential physics behind the scattering resonance. The
spin-dependent reflection suggests a novel mechanism to manipulate spins on the nanoscale.
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Scattering of spin-orbit coupled electrons by extended
defects arises in many spintronics-related phenomena, such as
spin transport, accumulation, and filtering, which underlie the
manipulation of spin currents in spin-based devices [1,2]. Fur-
thermore, a detailed understanding of reflection and transmis-
sion of relativistic electrons is important for the unambiguous
interpretation of scanning tunneling spectroscopy of spin-orbit
split surface states [3,4]. A similar problem arises in ballistic
transport through interfaces where powerful ab initio methods
exist for scattering of bulk electrons from surfaces, such as
multiple scattering [5], an embedded Green’s function [6], or a
Bloch-waves formalism [7]. These methods are, however, not
directly applicable to scattering of surface states because of a
complicated structure of the incident and reflected waves in
the asymptotic (unperturbed) region. Therefore, scattering of
surface states has been considered either within a tight-binding
scheme [8] or within a k·p theory combined with continuity
conditions for the envelope function [9–12] (see also the
application to spin-dependent transport in nanowires [13,14]).
However, in the k·p method the smoothness of the envelope
spinor function generally conflicts with current conservation
[15], which leads to a qualitatively incorrect separation of the
probability current into the spin-orbit and classical-momentum
contributions [16]. The tight-binding formalism, on the other
hand, is not well suited for free-electron-like motion along
the surface. This calls for a more universal approach to the
scattering of two-dimensional (2D) states, which could be
formulated in an ab initio framework.

We present a method to microscopically calculate the
scattering of spin-orbit split 2D states from a linear [one-
dimensional- (1D-) periodic] defect. Microscopic means that
the system is defined by the crystal potential V (r) and the
wave functions satisfy the Schrödinger equation in real space.
Therefore, the method can be straightforwardly transferred

to ab initio calculations. Here, we report a proof-of-principle
calculation of the transmission of Rashba-split states through
atomically thin defects. We study spin-filtering properties of
the defects and discover spin-dependent reflection resonances
for certain scatterers.

Previous studies of the effect of spin-orbit coupling on
the scattering of 2D states included multibeam spin-polarized
reflection from a lateral barrier [17–19], spin accumulation at
the edges of semi-infinite systems [9,10,20,21], spin-selective
refraction at an interface of two 2D media [22], spin-dependent
transmission of electrons incident from a nonrelativistic
medium through a barrier with spin-orbit coupling [11,23],
and a semiclassical reflection from a smooth barrier [24]. The
above studies relied on an envelope-function description of
the surface states using effective Hamiltonians. By contrast,
here, the perturbed surface is treated fully microscopically:
The scattering problem is reduced to a supercell band-structure
problem, which naturally involves both the propagating and
all the required evanescent 2D waves and yields a detailed de-
scription of scattering, beyond the envelope-function picture.
Still, the resonant properties of the scatterer can be related
to the parameters of a k·p Rashba model for the perturbed
surface. This demonstrates the generality of the phenomenon
and suggests a way to its experimental realization.

Typical constant energy contours (CECs) of Rashba-split
states comprise two circles centered at �̄ with spin oriented
along k × n for the inner circle (of radius R+) and along
−k × n for the outer circle (R−), where n is the surface normal
and k is the 2D Bloch vector. We denote the unperturbed states
by |kχ

ξ 〉, where χ = ± indicates chirality and ξ = r/t is the
propagation direction along x, see Fig. 1(a). Consider a defect
created by substituting a row of atoms (along the y axis) by a
different atom, Fig. 1(b). For a surface state |k±

i 〉 incident from
the left half-plane the scattering solution |�〉 far from the defect
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FIG. 1. (a) CECs of Rashba-split surface states. k±
r , k±

t , and k±
i are the Bloch vectors of reflected, transmitted, and incident waves. (b) A

finite-thickness slab with a linear defect in the topmost layer. (c) Supercell geometry: topmost layer with a repeated row of impurity atoms.
The two boxes indicate two asymptotic regions. (d) Upper panel: CEC at E − E�̄ = 1.5 eV for a 12-fold supercell. Lower panel: The dots are
the dispersion E(Ky) of the solutions �Kn for Kx = 0. The shaded area shows the ky-projected states of the ideal surface. The spin-orbit split
states due to the defect are highlighted in blue (true bound state) and red (resonance when inside the gray area). In the 1.5-eV CEC, the arrows
indicate the bound state (B) and the resonance (R). (e) Bloch vectors kx extracted from the eigenvalues exp(iτk) of the host lattice translation
operator for the three supercells for the well (ε = 1.04, upper quadrant) and the barrier (ε = 0.96, lower quadrant). (f) Density profiles of four
scattering states at E − E�̄ = 0.7 eV for γ = 44◦, 51◦, 61◦, and 65◦ for the well ε = 1.07 in a 12-fold supercell. The dashed lines are their
asymptotic representations in the zeroth and first cells continued up to the defect.

contains two transmitted |k±
t 〉 and two reflected |k±

r 〉 waves,
Fig. 1(a). The crystal momentum along y is conserved, so k+

ty =
k−

ty = k+
ry = k−

ry = k
χ

iy . For R− > k−
iy > R+ there is only one

transmitted and one reflected wave. In the unperturbed region,
|�〉 contains also evanescent waves, and depending on how fast
they decay away from the defect the scattering state |�〉 can
be obtained from band-structure solutions �Kn for a smaller
or larger supercell, Fig. 1(c). The method works as follows:
At a given k

χ

iy , the surface states perturbed by the periodic
defect give rise to four (or two) supercell eigenfunctions �Kn

with the supercell crystal momentum Kn
y = k

χ

iy, n = 1–4 (n =
1,2 if k−

iy > R+), see Fig. 1(d). Far from the scatterers [in the
asymptotic region denoted the zeroth cell in Fig. 1(c)] the
functions �Kn (r) can obviously be decomposed into a sum
of the four unperturbed surface states |kχ

ξ 〉. The latter are
obtained as eigenfunctions of the translation operator of the
ideal surface T̂ 	(r) = 	(r + τ ) = exp(iτk)	(r) in terms of
the supercell solutions: 	 = ∑

n cn�Kn . The functions 	 are
defined everywhere in the crystal, and in the asymptotic region
they coincide with the unperturbed surface states: 	

χ

ξ (r) =
〈r|kχ

ξ 〉. The full scattering solution is then a linear combination
� = ∑

χξ a
χ

ξ 	
χ

ξ defined by the condition that � contains
only one right-traveling wave in the zeroth supercell and no
left-traveling waves in the first supercell (the next asymptotic
region), Fig. 1(c). Note that � is valid everywhere, including
the vicinity of the defect.

Let us consider a seven-layer slab with the geometry of a
Au(111) surface with an overlayer. The atoms are represented
by a three-dimensional (3D) regular muffin-tin potential, which
is expanded in a truncated 3D Fourier series and included into
the microscopic Hamiltonian p̂2 + V (r) + βσ · [∇V (r) × p̂]
with β scaled such that the Rashba splitting of the surface
states be close to that in Au(111). The supercell band structure
is calculated on a rectangular k mesh with �Kx = �Ky =
0.0056 a.u.−1, and the functions �Kn for a given energy and
Ky are obtained by triangular interpolation. A typical constant

energy contour is shown in the upper panel of Fig. 1(d). The
artificial periodicity of the defect gives rise to spectral gaps, so
for certain Ky there are no solutions �. However, for a given
Ky one can always choose a supercell for which the solution
exists.

We will consider two types of defects: barrier and well. For
a barrier, the potential at the impurity site UD is shallower than
the potential US at the host atom, and for a well it is deeper.
Computationally, the muffin-tin potentials UD are linearly
scaled: UD(r) = εUS(r). The Bloch vectors of the unperturbed
surface states extracted from the eigenvalues exp(iτk) are
shown in Fig. 1(e). The good agreement between the three
supercells both for a well and for a barrier demonstrates that
the evanescent waves are negligible in the asymptotic region
already for the eightfold supercell. Figure 1(f) shows the
density profiles of the outer-circle surface states at E − E�̄ =
0.7 eV scattered by a well ε = 1.07 for four angles of incidence
γ . Although the unperturbed surface states are derived from
the zeroth cell, the asymptotic representation is seen to be valid
over a much wider region (see, especially, γ = 44◦). The trans-
mission probability T ± as a function of γ is shown in Fig. 2
for a barrier ε = 0.96 and for two wells ε = 1.04 and 1.07.
Here T + and T − stand for the incident wave in the inner and
in the outer circles, respectively. The colored symbols are the
microscopic calculations with shades of red used for T + and
shades of blue used for T −. The voids in the curves correspond
to the gaps in the supercell band structure, and in approaching
the gap the transmission sometimes shows a spurious growth
[see the vertical arrows in Figs. 2(a) and 2(b)]. This happens
when two of the Bloch vectors Kn

y are close to the edge of
the Brillouin zone and the numerical method finds the two
solutions �Kn linearly dependent. Such artifacts are recognized
by an accuracy criterion, and they are easily sorted out because
they occur at different angles for different supercells.

Most important is the strikingly different behavior of the
transmission probability T − for the two types of defects: for a
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FIG. 2. Transmission probability as a function of the angle of
incidence for the (a) ε = 0.96, (b) 1.04, and (c) 1.07 for E − E� =
1.5, 0.7, and 0.4 eV. The shades of red (blue) show T + (T −) for
eightfold, tenfold, and 12-fold supercells. The solid lines are the
continuous model fit of T + (red) and T − (blue) obtained with
U = 0.27, − 0.33, and −0.55 eV for ε = 0.96, 1.04, and 1.07,
respectively. The parameters α and m∗ for the presented energies
are listed in Table I.

barrier, T − steadily decreases, Fig. 2(a), whereas for a well, it
shows a sharp minimum followed by a maximum, see Figs. 2(b)
and 2(c). By contrast, T + steadily decreases in both cases. To
understand this behavior, let us consider the contribution of
evanescent waves to the scattering states �. Their weight can
be inferred from the deviation of the density profile |�|2 in
Fig. 1(f) from the left and right asymptotics (the dashed lines)
continued up to the scatterer. For small angles the weight of the
evanescent waves is negligible, and it starts growing when k−

iy

exceeds R+ because the evanescent waves replace the missing
propagating solutions of the inner circle. This point manifests
itself by a cusp maximum in T −, e.g., at 0.4 eV around γ =
45◦ in Fig. 2(a). In approaching the minimum [see γ = 61◦
in Fig. 1(f)] the density around the defect steeply grows and

TABLE I. Rashba Hamiltonian parameters m∗ and α used to
model the transmission through the defect, Fig. 2. They are derived
by fitting the dispersion E(k) of the unperturbed surface state of the
microscopic calculation. m∗ and α depend on energy because E(k)
is not exactly parabolic. Atomic Hartree units are used: h̄ = m0 =
e = 1.

E − E� (eV) m∗ (a.u.) α (a.u.) R− − R+ (a.u.−1)

0.0 1.59 0.033 0.105
0.4 1.85 0.026 0.096
0.7 2.00 0.020 0.080
1.5 2.00 0.012 0.048

then rapidly decreases with increasing γ . This happens because
the defect causes a sharp perturbation of the potential V (r)
(comparable to the lattice period), which is known to give rise
to a bound state localized at the defect and energetically split
off from the band continuum [25]. For the Rashba states that
are bounded only from below a barrier does not produce any
bound states. By contrast, a well-like perturbation produces
two structures [Fig. 1(d)]: bound state B and its spin-orbit
counterpart resonance R [highlighted red in Fig. 1(d)]. The
hybridization of the incident wave of the outer circle with the
resonance—the inner branch of the Rashba-split 1D impurity
state—gives rise to the asymmetric T −(γ ) feature.

In order to relate the reflection resonance to phenomeno-
logically relevant spin-orbit characteristics of the material let
us consider a Rashba system with the Hamiltonian ĤR =
k2/2m∗ + α(kyσx − kxσy). The relation k2 = k2

x + k2
y deter-

mines whether a given branch is propagating or evanescent
for a given ky and E [11]. The defect is represented by
a potential barrier (well) V (x) = U for −l < x < l with
V (x) = 0 elsewhere. The width of the defect equals the width
of the unit cell: 2l = τx . The scattering solution is found by the
condition of the continuity of the spinor wave function and flux
across the defect [15]. Thus, the envelope-function formalism
solves the problem without resorting to an artificial supercell. A
four-wave representation in the perturbed region

∑
χξ d

χ

ξ |k̃χ

ξ 〉
is matched to the wave function in the left and right half-planes
at the boundaries x = ±l indicated in Fig 1(f). Here k̃’s are the
wave vectors of the eigenfunctions of the Hamiltonian ĤR + U

(with the same α and m∗ as for the unperturbed surface). The
scattering problem then reduces to an 8 × 8 matrix equation
M̂a = f for the vector a = (r±,d±

r ,d±
t ,t±)T. Here M̂ is the

matching matrix, and r± and t± are the coefficients of the two
reflected and two transmitted waves in the two unperturbed
half-planes, see the legends in Fig. 1(f). The right-hand side
f represents the incident wave |kχ

i 〉, and it has four nonzero
components: the value and the flux (for both spins) at x = −l.

The transmitted current T χ = |t+χ |2 + |t−χ |2 is shown in
Fig. 2 by the solid lines. With U adjusted to fit the microscopic
calculations the Rashba model perfectly reproduces the shape
of the curves and the dependence of the position and the width
of the resonance on the energy and on the scatterer. Surpris-
ingly, the envelope-function method originally designed for
slowly varying potentials shows excellent performance for the
atomic stripe. To establish the analogy with the microscopic
picture, let us consider the eigenspectrum of the perturbed
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FIG. 3. (a) Electronic structure of the Rashba system with linear
defect. The solid lines show the bound states split off from the Rashba
continuum. The width of the blurred red line shows the ky width of
the resonance. The Rashba continuum of the ideal system E±(k) [cf.
the gray area in Fig. 1(d)] is shown by the sign of the ky-projected
x-spin spectral density S tot

x . Light red indicates S tot
x > 0, and light

blue indicates S tot
x < 0. (b) Band structure and side-view geometry

of a BiTeI trilayer with a nanostripe. The shaded area covers the
ky-projected states of the clean trilayer. The localization of the trilayer
states on the atoms beneath the stripe are shown by red (σ ↑

x ) and blue
(σ ↓

x ) fat bands. Light red (light blue) fat bands correspond to σ ↑
x (σ ↓

x )
dangling bond states localized on the stripe.

system. It is obtained by dropping the incident wave and
finding zeros of the real and imaginary parts of the determinant
of the matrix M̂ . In Fig. 3(a), the ideal surface is presented
by the energy-momentum distribution of the sign (↑ or ↓)
of the ky-projected σx-spin spectral density S tot

x = S+
x + S−

x ,
where S±

x (E,ky) = ∫
dkx〈k±|σx |k±〉δ[E − E±(k)]/8π2. The

incident wave comes from the σ
↓
x continuum (blue area), which

overlaps with the spectral resonance having σ
↑
x spin. Just at the

resonance, T −(γ ) sharply drops to zero and then steeply rises
to unity, exactly as in the microscopic model, see Figs. 2(b)
and 2(c). Thus, the scattering by the 1D defect is transparently
expressed through the relation between the CECs of the host
and the defect region. Here, an important ingredient is the spin
nonconservation, so the effect does not occur, e.g., for Zeeman
splitting.

Finally, as a possible platform for the experimental real-
ization of the discovered resonant reflection, we suggest the
layered semiconductors of the BiTeX (X = I, Br, Cl) family
where giant Rashba-split surface states reside in an absolute
gap [26–30]. Already a trilayer Te-Bi-X—the easily exfoliated
structure element of these semiconductors—provides the de-
sired 2D spin-orbit split valence and conduction states [31,32].
For holes and electrons of a stand-alone trilayer, a perturbation
can be introduced by putting on it a nanostripe as shown in
the inset of Fig. 3(b) [33]. This linear defect gives rise to 1D
spin-orbit split bound states that split off from the valence band
as follows from our ab initio calculation [34], see the vertical
arrows in Fig. 3(b). These states form the 1D Rashba channel
that guides the holes. As seen in Fig. 3(b), the inner branch (the
red arrow) becomes the above-mentioned spectral resonance
when it enters the projected continuum.

To summarize, we have developed a microscopic approach
for the scattering of relativistic surface states by a linear defect
and found strong spin selectivity of electron transmission for
well-like perturbations. Thereby, the transmitted spin current
can be enhanced, which suggests a potential technique for
nonmagnetic spin filtering and spin injection.
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tersburg State University (Grant No. 15.61.202.2015).

[1] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton,
S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M.
Treger, Spintronics: A spin-based electronics vision for the
future, Science 294, 1488 (2001).

[2] D. Bercioux and P. Lucignano, Quantum transport in Rashba
spinorbit materials: A review, Rep. Prog. Phys. 78, 106001
(2015).

[3] L. El-Kareh, P. Sessi, T. Bathon, and M. Bode, Quantum Inter-
ference Mapping of Rashba-Split Bloch States in Bi/Ag(111),
Phys. Rev. Lett. 110, 176803 (2013).

[4] S. Schirone, E. E. Krasovskii, G. Bihlmayer, R. Piquerel, P.
Gambardella, and A. Mugarza, Spin-Flip and Element-Sensitive
Electron Scattering in the BiAg2 Surface Alloy, Phys. Rev. Lett.
114, 166801 (2015).

[5] J. Henk, A. Ernst, K. K. Saha, and P. Bruno, Computing con-
ductances of tunnel junctions by the Korringa-Kohn-Rostoker
method: Formulation and test of a Green function approach,
J. Phys.: Condens. Matter 18, 2601 (2006).

[6] D. Wortmann, H. Ishida, and S. Blügel, Embedded
Green-function approach to the ballistic electron
transport through an interface, Phys. Rev. B 66, 075113
(2002).

[7] E. E. Krasovskii, Augmented-plane-wave approach to scattering
of Bloch electrons by an interface, Phys. Rev. B 70, 245322
(2004).

[8] K. Kobayashi, Electron transmission through atomic steps
of Bi2Se3 and Bi2Te3 surfaces, Phys. Rev. B 84, 205424
(2011).

[9] G. Usaj and C. A. Balseiro, Spin accumulation and equilib-
rium currents at the edge of 2DEGs with spin-orbit coupling,
Europhys. Lett. 72, 631 (2005).

[10] A. Reynoso, G. Usaj, and C. A. Balseiro, Spin hall effect in
clean two-dimensional electron gases with Rashba spin-orbit
coupling, Phys. Rev. B 73, 115342 (2006).

[11] V. A. Sablikov and Y. Y. Tkach, Evanescent states in two-
dimensional electron systems with spin-orbit interaction and
spin-dependent transmission through a barrier, Phys. Rev. B 76,
245321 (2007).

[12] H. Xie, F. Jiang, and W. E. I. Sha, Numerical methods for
spin-dependent transport calculations and spin bound states
analysis in Rashba waveguides, Comput. Phys. Commun. 198,
118 (2016).

[13] L. Zhang, P. Brusheim, and H. Q. Xu, Multimode electron trans-
port through quantum waveguides with spin-orbit interaction

041407-4

https://doi.org/10.1126/science.1065389
https://doi.org/10.1126/science.1065389
https://doi.org/10.1126/science.1065389
https://doi.org/10.1126/science.1065389
https://doi.org/10.1088/0034-4885/78/10/106001
https://doi.org/10.1088/0034-4885/78/10/106001
https://doi.org/10.1088/0034-4885/78/10/106001
https://doi.org/10.1088/0034-4885/78/10/106001
https://doi.org/10.1103/PhysRevLett.110.176803
https://doi.org/10.1103/PhysRevLett.110.176803
https://doi.org/10.1103/PhysRevLett.110.176803
https://doi.org/10.1103/PhysRevLett.110.176803
https://doi.org/10.1103/PhysRevLett.114.166801
https://doi.org/10.1103/PhysRevLett.114.166801
https://doi.org/10.1103/PhysRevLett.114.166801
https://doi.org/10.1103/PhysRevLett.114.166801
https://doi.org/10.1088/0953-8984/18/8/021
https://doi.org/10.1088/0953-8984/18/8/021
https://doi.org/10.1088/0953-8984/18/8/021
https://doi.org/10.1088/0953-8984/18/8/021
https://doi.org/10.1103/PhysRevB.66.075113
https://doi.org/10.1103/PhysRevB.66.075113
https://doi.org/10.1103/PhysRevB.66.075113
https://doi.org/10.1103/PhysRevB.66.075113
https://doi.org/10.1103/PhysRevB.70.245322
https://doi.org/10.1103/PhysRevB.70.245322
https://doi.org/10.1103/PhysRevB.70.245322
https://doi.org/10.1103/PhysRevB.70.245322
https://doi.org/10.1103/PhysRevB.84.205424
https://doi.org/10.1103/PhysRevB.84.205424
https://doi.org/10.1103/PhysRevB.84.205424
https://doi.org/10.1103/PhysRevB.84.205424
https://doi.org/10.1209/epl/i2005-10266-0
https://doi.org/10.1209/epl/i2005-10266-0
https://doi.org/10.1209/epl/i2005-10266-0
https://doi.org/10.1209/epl/i2005-10266-0
https://doi.org/10.1103/PhysRevB.73.115342
https://doi.org/10.1103/PhysRevB.73.115342
https://doi.org/10.1103/PhysRevB.73.115342
https://doi.org/10.1103/PhysRevB.73.115342
https://doi.org/10.1103/PhysRevB.76.245321
https://doi.org/10.1103/PhysRevB.76.245321
https://doi.org/10.1103/PhysRevB.76.245321
https://doi.org/10.1103/PhysRevB.76.245321
https://doi.org/10.1016/j.cpc.2015.09.008
https://doi.org/10.1016/j.cpc.2015.09.008
https://doi.org/10.1016/j.cpc.2015.09.008
https://doi.org/10.1016/j.cpc.2015.09.008


SPIN FILTERING VIA RESONANT REFLECTION OF … PHYSICAL REVIEW B 97, 041407(R) (2018)

modulation: Applications of the scattering matrix formalism,
Phys. Rev. B 72, 045347 (2005).

[14] M. I. Alomar, L. Serra, and D. Sánchez, Interplay between
resonant tunneling and spin precession oscillations in all-electric
all-semiconductor spin transistors, Phys. Rev. B 94, 075402
(2016).

[15] L. W. Molenkamp, G. Schmidt, and G. E. W. Bauer, Rashba
Hamiltonian and electron transport, Phys. Rev. B 64, 121202
(2001).

[16] E. E. Krasovskii, Microscopic origin of the relativistic splitting
of surface states, Phys. Rev. B 90, 115434 (2014).

[17] A. O. Govorov, A. V. Kalameitsev, and J. P. Dulka, Spin-
dependent transport of electrons in the presence of a smooth
lateral potential and spin-orbit interaction, Phys. Rev. B 70,
245310 (2004).

[18] H. Chen, J. J. Heremans, J. A. Peters, A. O. Govorov, N. Goel,
S. J. Chung, and M. B. Santos, Spin-polarized reflection in a
two-dimensional electron system, Appl. Phys. Lett. 86, 032113
(2005).

[19] V. Teodorescu and R. Winkler, Spin angular impulse due to
spin-dependent reflection off a barrier, Phys. Rev. B 80, 041311
(2009).

[20] E. B. Sonin, Edge spin accumulation: Spin Hall effect without
bulk spin current, Phys. Rev. B 81, 113304 (2010).

[21] A. Khaetskii and E. Sukhorukov, Unitarity of scattering and edge
spin accumulation, Phys. Rev. B 87, 075303 (2013).

[22] M. Khodas, A. Shekhter, and A. M. Finkel’stein, Spin Polariza-
tion of Electrons by Nonmagnetic Heterostructures: The Basics
of Spin Optics, Phys. Rev. Lett. 92, 086602 (2004).

[23] V. M. Ramaglia, D. Bercioux, V. Cataudella, G. De Filippis,
and C. A. Perroni, Spin polarization of electrons with Rashba
double-refraction, J. Phys.: Condens. Matter 16, 9143 (2004).

[24] P. G. Silvestrov and E. G. Mishchenko, Polarized electric current
in semiclassical transport with spin-orbit interaction, Phys. Rev.
B 74, 165301 (2006).

[25] Otfried Madelung, Introduction to Solid-State Theory (Springer-
Verlag, Berlin, Heidelberg, 1978).

[26] K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano, T.
Shimojima, T. Sonobe, K. Koizumi, S. Shin, H. Miyahara, A.
Kimura, K. Miyamoto, T. Okuda, H. Namatame, M. Taniguchi,
R. Arita, N. Nagaosa, K. Kobayashi, Y. Murakami, R. Kumai,

Y. Kaneko, Y. Onose, and Y. Tokura, Giant Rashba-type spin
splitting in bulk BiTeI, Nature Mater. 10, 521 (2011).

[27] A. Crepaldi, L. Moreschini, G. Autès, C. Tournier-Colletta,
S. Moser, N. Virk, H. Berger, P. Bugnon, Y. J. Chang,
K. Kern, A. Bostwick, E. Rotenberg, O. V. Yazyev,
and M. Grioni, Giant Ambipolar Rashba Effect in the
Semiconductor BiTeI, Phys. Rev. Lett. 109, 096803
(2012).

[28] S. V. Eremeev, I. A. Nechaev, Y. M. Koroteev, P. M. Echenique,
and E. V. Chulkov, Ideal Two-Dimensional Electron Systems
with a Giant Rashba-Type Spin Splitting in Real Materials: Sur-
faces of Bismuth Tellurohalides, Phys. Rev. Lett. 108, 246802
(2012).

[29] M. Sakano, M. S. Bahramy, A. Katayama, T. Shimojima, H.
Murakawa, Y. Kaneko, W. Malaeb, S. Shin, K. Ono, H. Kumi-
gashira, R. Arita, N. Nagaosa, H. Y. Hwang, Y. Tokura, and K.
Ishizaka, Strongly Spin-Orbit Coupled Two-Dimensional Elec-
tron Gas Emerging Near the Surface of Polar Semiconductors,
Phys. Rev. Lett. 110, 107204 (2013).

[30] S. V. Eremeev, I. P. Rusinov, I. A. Nechaev, and E. V. Chulkov,
Rashba split surface states in BiTeBr, New J. Phys. 15, 075015
(2013).

[31] Y. L. Chen, M. Kanou, Z. K. Liu, H. J. Zhang, J. A. Sobota, D.
Leuenberger, S. K. Mo, B. Zhou, S.-L. Yang, P. S. Kirchmann,
D. H. Lu, R. G. Moore, Z. Hussain, Z. X. Shen, X. L. Qi, and
T. Sasagawa, Discovery of a single topological Dirac fermion in
the strong inversion asymmetric compound BiTeCl, Nat. Phys.
9, 704 (2013).

[32] Y. Ma, Y. Dai, W. Wei, X. Li, and B. Huang, Emergence of
electric polarity in BiTeX (X = Br and I) monolayers and the
giant Rashba spin splitting, Phys. Chem. Chem. Phys. 16, 17603
(2014).

[33] We consider a stripe of 1-nm width made of a single BiTeI trilayer
and with stable stoichiometric edges as in Ref. [35].

[34] Our density-functional-theory calculations within the
generalized-gradient approximation employed the full-potential
linearized augmented-plane-wave method implemented in the
FLEUR code, http://www.flapw.de.

[35] S. V. Eremeev, I. A. Nechaev, and E. V. Chulkov, Two- and
three-dimensional topological phases in BiTeX compounds,
Phys. Rev. B 96, 155309 (2017).

041407-5

https://doi.org/10.1103/PhysRevB.72.045347
https://doi.org/10.1103/PhysRevB.72.045347
https://doi.org/10.1103/PhysRevB.72.045347
https://doi.org/10.1103/PhysRevB.72.045347
https://doi.org/10.1103/PhysRevB.94.075402
https://doi.org/10.1103/PhysRevB.94.075402
https://doi.org/10.1103/PhysRevB.94.075402
https://doi.org/10.1103/PhysRevB.94.075402
https://doi.org/10.1103/PhysRevB.64.121202
https://doi.org/10.1103/PhysRevB.64.121202
https://doi.org/10.1103/PhysRevB.64.121202
https://doi.org/10.1103/PhysRevB.64.121202
https://doi.org/10.1103/PhysRevB.90.115434
https://doi.org/10.1103/PhysRevB.90.115434
https://doi.org/10.1103/PhysRevB.90.115434
https://doi.org/10.1103/PhysRevB.90.115434
https://doi.org/10.1103/PhysRevB.70.245310
https://doi.org/10.1103/PhysRevB.70.245310
https://doi.org/10.1103/PhysRevB.70.245310
https://doi.org/10.1103/PhysRevB.70.245310
https://doi.org/10.1063/1.1849413
https://doi.org/10.1063/1.1849413
https://doi.org/10.1063/1.1849413
https://doi.org/10.1063/1.1849413
https://doi.org/10.1103/PhysRevB.80.041311
https://doi.org/10.1103/PhysRevB.80.041311
https://doi.org/10.1103/PhysRevB.80.041311
https://doi.org/10.1103/PhysRevB.80.041311
https://doi.org/10.1103/PhysRevB.81.113304
https://doi.org/10.1103/PhysRevB.81.113304
https://doi.org/10.1103/PhysRevB.81.113304
https://doi.org/10.1103/PhysRevB.81.113304
https://doi.org/10.1103/PhysRevB.87.075303
https://doi.org/10.1103/PhysRevB.87.075303
https://doi.org/10.1103/PhysRevB.87.075303
https://doi.org/10.1103/PhysRevB.87.075303
https://doi.org/10.1103/PhysRevLett.92.086602
https://doi.org/10.1103/PhysRevLett.92.086602
https://doi.org/10.1103/PhysRevLett.92.086602
https://doi.org/10.1103/PhysRevLett.92.086602
https://doi.org/10.1088/0953-8984/16/50/005
https://doi.org/10.1088/0953-8984/16/50/005
https://doi.org/10.1088/0953-8984/16/50/005
https://doi.org/10.1088/0953-8984/16/50/005
https://doi.org/10.1103/PhysRevB.74.165301
https://doi.org/10.1103/PhysRevB.74.165301
https://doi.org/10.1103/PhysRevB.74.165301
https://doi.org/10.1103/PhysRevB.74.165301
https://doi.org/10.1038/nmat3051
https://doi.org/10.1038/nmat3051
https://doi.org/10.1038/nmat3051
https://doi.org/10.1038/nmat3051
https://doi.org/10.1103/PhysRevLett.109.096803
https://doi.org/10.1103/PhysRevLett.109.096803
https://doi.org/10.1103/PhysRevLett.109.096803
https://doi.org/10.1103/PhysRevLett.109.096803
https://doi.org/10.1103/PhysRevLett.108.246802
https://doi.org/10.1103/PhysRevLett.108.246802
https://doi.org/10.1103/PhysRevLett.108.246802
https://doi.org/10.1103/PhysRevLett.108.246802
https://doi.org/10.1103/PhysRevLett.110.107204
https://doi.org/10.1103/PhysRevLett.110.107204
https://doi.org/10.1103/PhysRevLett.110.107204
https://doi.org/10.1103/PhysRevLett.110.107204
https://doi.org/10.1088/1367-2630/15/7/075015
https://doi.org/10.1088/1367-2630/15/7/075015
https://doi.org/10.1088/1367-2630/15/7/075015
https://doi.org/10.1088/1367-2630/15/7/075015
https://doi.org/10.1038/nphys2768
https://doi.org/10.1038/nphys2768
https://doi.org/10.1038/nphys2768
https://doi.org/10.1038/nphys2768
https://doi.org/10.1039/C4CP01975J
https://doi.org/10.1039/C4CP01975J
https://doi.org/10.1039/C4CP01975J
https://doi.org/10.1039/C4CP01975J
http://www.flapw.de
https://doi.org/10.1103/PhysRevB.96.155309
https://doi.org/10.1103/PhysRevB.96.155309
https://doi.org/10.1103/PhysRevB.96.155309
https://doi.org/10.1103/PhysRevB.96.155309



